Information and Knowledge Management www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) pLLy
Vol 2, No.2, 2012 ISt

The Novel Lossless Text Compression Technique Using
Ambigram Logic and Huffman Coding
Suresh Kumar, Madhu Rawat, Vishal Gup®atendra Kumar

Department of Computer Science, G. B. Pant Enging&ollege, Pauri, Uttarakhand, INDIA
* E-mail of the corresponding authatishalgupta87@gmail.com

Abstract

The new era of networking is looking forward to imped and effective methods in channel utilization.
There are many texts where lossless data recovemitally essential because of the importance of
information it holds. Therefore, a lossless decositfgm algorithm which is independent of the natanel
pattern of text is today's top concern. Efficienfwlgorithms used today varies greatly dependim¢he
nature of text. This paper mainly brings in theaidé using an art form called ambigram to comptest
which is again compressed by Huffman coding withststency in the efficiency of the compression.

Keywords. Ambigrams, Huffman coding, Lossless compressioeg&tography, Embedded algorithms,
Encryption.

1. Introduction

There are many algorithms exist in this world fompressing the data, some of them carries lossy
techniques which sometimes destroy some importatat @lso. Our technique is carries lossless
compression using ambigram and Huffman coding wharhpress the data more than 60%. The ambigram
technique is known to this world from decades eabiut not to be used for compressing the data. Our
main concern is in this technique which can behferused with the much known compression technique
Huffman coding without the loss of any data.

A. Ambigram - Definition

The word ambigram was firstly describe by Dougla$iBfstadter, a computer scientist who is best kmow
as the Pulitzer Prize winning author of the booki@pEscher, Bach. In Hofstadter defines what hanmse
by an ambigram.

"An ambigram is a visual pun of a special kinda#ligraphic design having two or more (clear)
interpretations as written words. One can voluhtguimp back and forth between the rival readings
usually by shifting one's physical point of viewdwng the design in some way) but sometimes by imp
altering one's perceptual bias towards a desigrkie an internal mental switch, so to speak). Stimes
the readings will say identical things; sometintesytwill say different things."

B. Huffman Coding:

In computer sciencandinformation theoryHuffman coding is agntropy encodinglgorithmused for
lossless data compressidrhe term refers to the use ofariable-length codtable for encoding a source
symbol (such as a character in a file) where thi@bke-length code table has been derived in aqodait
way based on the estimated probability of occurdnc each possible value of the source symbol.

2. Types of Ambigrams
A. Half Turn Ambigrams

Half-tum ambigrams have two different readings tmswitch from one to the other we simply have to
rotate the ambigram 180 degrees in the plandiitifgy in as shown in Fig. 1.

25

Information and Knowledge Management www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) pLLy
Vol 2, No.2, 2012 ISt

B. Quarter Turn Ambigrams

Quarter Tum Ambigrams have three different readamg$to switch from one to another we simply have t
rotate 90 degrees in the clockwise or anti-clockvdsection as shown in Fig. 2.

C. Wall Reflection Ambigrams

Wall Reflection Ambigrams have two different reagbrand to switch from one to another you simplyehav
to reflect through a vertical line in the planesswn in Fig. 3.

D. Lake Reflection Ambigrams

Lake reflection ambigrams have two different regdiand to switch from one to the other you simpalyeh
to reflect through a horizontal line in the plane.

E. Dissection Ambigrams

Another type ambigram that does not fall into eitbiethe categories is the dissection ambigram. The
example below illustrates that the circle can heased after all as shown in Fig. 4.

3. Types of Huffman coding

Many variations of Huffman coding exist, some ofiethuse a Huffman-like algorithm, and others of
which find optimal prefix codes (while, for examppruitting different restrictions on the output).tsi¢chat,
in the latter case, the method need not be Hufflikenand, indeed, need not even be polynomial titre
exhaustive list of papers on Huffman coding anddtsations is given by "Code and Parse Trees for
Lossless Source Encoding".

A. n-ary Huffman coding

Then-ary Huffman algorithm uses the {0, 1, .n + 1} alphabet to encode message and build-ary tree.
This approach was considered by Huffman in hisiogigpaper. The same algorithm applies as for ginar
(n equals 2) codes, except that thieast probable symbols are taken together, insiEadt the 2 least
probable. Note that far greater than 2, not all sets of source words capgsly form am-ary tree for
Huffman coding. In this case, additional O-probipplace holders must be added. This is becalst¢e
must form am to 1 contractor; for binary coding, this is a 2ltoontractor, and any sized set can form
such a contractor. If the number of source wordeiggruent to 1 modulo-1, then the set of source words
will form a proper Huffman tree.

B. Adaptive Huffman coding

A variation called adaptive Huffman coding involwvegculating the probabilities dynamically based on
recent actual frequencies in the sequence of seyrobols, and changing the coding tree structure to
match the updated probability estimates.

C. Huffman template algorithm

Most often, the weights used in implementationsioffman coding represent numeric probabilities, but
the algorithm given above does not require thigduires only that the weights form a totally osde
commutative monoid, meaning a way to order weight$ to add them. The Huffman template algorithm
enables one to use any kind of weights (costsuémgies, pairs of weights, non-numerical weights) a
one of many combining methods (not just additi&ych algorithms can solve other minimization
problems, such as minimizimg#=< [=e: + leme=th (=231 g problem first applied to circuit design.

D. Length-limited Huffman coding

Length-limited Huffman coding is a variant where tjpal is still to achieve a minimum weighted path
length, but there is an additional restriction it length of each code word must be less thavem g
constant. The package-merge algorithm solves toisi@m with a simple greedy approach very simitar t
that used by Huffman's algorithm. Its time compigié O(nL), whereL is the maximum length of a code

26

Information and Knowledge Management www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) pLLy
Vol 2, No.2, 2012 ISt

word. No algorithm is known to solve this problemlinear or linearithmic time, unlike the presortett
unsorted conventional Huffman problems, respeactivel

4. Working model

In this model, the text to be compressed is gahftioe user which is stored in a temporary memairgt F
step is to calculate the position of white spaogahé entered text and store the same in a fitail&iy, the
positions of special characters are stored in araépfile, after which the white spaces and specia
characters are removed from the original text. Tthemumber of alphabets in the text is calculatedi the
text is divided into two equal parts. The firsttgartaken and for each letter present, a symiooh fihe font
file is chosen in such a way that when the texoiated by 180 degrees, the second part of thectexbe
read. In this way the text can be compressed tatdifi. After this we compressed this text with
Huffman coding which further compressed the daththe final data is compressed more than 60%. [Refe
Fig. 5].

5. Implementation
A. Creating font file

Creating a font file for ambigram would require 6nbols for each character. For example, 'a’ alone
requires 26 symbols for it has look like all possiletters of alphabet when rotated. An exampleHi is
given below:

A true type font file containing about 676 ambigraymbols is created and each symbol is given a asde
follows:

 Each of the letters in the English alphabetseiven an index from 0 to 25. For example, letteis
given an index 0. Under each alphabet index, afs2® symbols is created. For example, under.&’, i
under 0, 26 ambigram symbols are created by comdpial with all the 26 alphabets in such a way that
when rotated 180 degrees, every other letter fréanzacan be formed following which the code foctea
symbol is assigned to be

code = (first alphabet's index*26) +
second alphabet's index (1)

For example, the code of the symbol which represdbt is calculated as (3*26) + 1 = 79. Thus th# f
file with 676 ambigram symbols with each one maptoea user defined code is created.

B. Text Compression

During first phase of the compression, the firtteleof the first part on rotating should be thet latter of
the second part and the second letter of thedadtof the first part must be the last but ontetedf the
last part. Thus the first letter of the first pand the last letter of the second part are takdrttasir
corresponding indices are found out and assignéedrd j respectively. Then the code of the synfobol
representing these two letters is found out usingThe corresponding symbol is fetched from thr fidee
and stored in a file and the two letters are rerddu@m the original file. The process is repeaikdtere
are no more letters left. If the total count ofédes in the original file is odd, then a singladewill be left
out, which will be copied as it is without any rapément in the compressed file containing symi&jls [

After that Huffman compression starts working whiglthe second phase of the compression and as
follows:

The technique works by creating a binary tree afaso These can be stored in a regular array, zkeo$i
which depends on the number of symbaolsh node can be either a leaf node or an interadenlnitially,
all nodes are leaf nodes, which contain the syritbelf, the weight (frequency of appearance) of the

symbol and optionally, a link to a parent node whicakes it easy to read the code (in reverse)rsgart
from a leaf node. Internal nodes contain symbobWegilinks to two child nodes and the optional linka

27

Information and Knowledge Management www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) pLLy
Vol 2, No.2, 2012 ISt

parent node. As a common convention, bit '0' reprissfollowing the left child and bit '1' represent
following the right child. A finished tree has uprt leaf nodes and — 1 internal nodes. A Huffman tree
that omits unused symbols produces the most optiode lengths.

The process essentially begins with the leaf nadegining the probabilities of the symbol theyresent,
and then a new node whose children are the 2 neitlesmallest probability is created, such thatrkeey
node's probability is equal to the sum of the akilts probability. With the previous 2 nodes merigal
one node (thus not considering them anymore), atidtive new node being now considered, the
procedure is repeated until only one node reméesiHuffman tree.

The simplest construction algorithm uses a priagitgue where the node with lowest probability isegi
highest priority:

1. Create a leaf node for each symbol and add ite@tlority queue.
2. While there is more than one node in the queue:
1. Remove the two nodes of highest priority (lowestability) from the queue

2. Create a new internal node with these two nodehitdren and with probability equal to the sum
of the two nodes' probabilities.

3. Add the new node to the queue.
3. The remaining node is the root node and the treer®plete.

Since efficient priority queue data structures reg@(logn) time per insertion, and a tree witheaves
has 2-1 nodes, this algorithm operates im@fg n) time, wheren is the number of symbols.

If the symbols are sorted by probability, thera ignear-time (Of)) method to create a Huffman tree using
two queues, the first one containing the initiaigi#s (along with pointers to the associated legvaesl
combined weights (along with pointers to the trdesihg put in the back of the second queue. Tlisras
that the lowest weight is always kept at the fraindbne of the two queues:

1. Start with as many leaves as there are symbols.

2. Enqueue all leaf nodes into the first queue (bybpbility in increasing order so that the leastlijke
item is in the head of the queue).

3. While there is more than one node in the queues:
1. Dequeue the two nodes with the lowest weight byreming the fronts of both queues.

2. Create a new internal node, with the two just-reatomodes as children (either node can be either
child) and the sum of their weights as the new hig

3. Enqueue the new node into the rear of the secoedequ
4. The remaining node is the root node; the tree basbheen generated.

Although this algorithm may appear "faster" comggxise than the previous algorithm using a ptiori
queue, this is not actually the case because thbayg need to be sorted by probability before-hand,
process that takes ®@log n) time in itself.

In many cases, time complexity is not very impariarthe choice of algorithm here, sincéere is the
number of symbols in the alphabet, which is typycalvery small number (compared to the lengtthef t
message to be encoded); whereas complexity anakysierns the behavior whargrows to be very large.

It is generally beneficial to minimize the variarafecode word length. For example, a communication
buffer receiving Huffman-encoded data may neecdettabger to deal with especially long symbols & th
tree is especially unbalanced. To minimize variasoaply break ties between queues by choosing the
item in the first queue. This modification will aét the mathematical optimality of the Huffman augli
while both minimizing variance and minimizing trength of the longest character code.

C. Decompressing Text

28

Information and Knowledge Management www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) pLLy
Vol 2, No.2, 2012 ISt

While decompressing, the process of decompressisimiply a matter of translating the stream ofigref
codes to individual byte values, usually by trairegghe Huffman tree node by node as each bitad re
from the input stream (reaching a leaf node necidgsarminates the search for that particular byaéue).
Before this can take place, however, the Huffmaa must be somehow reconstructed. In the simplest
case, where character frequencies are fairly ptaole, the tree can be pre-constructed (and even
statistically adjusted on each compression cyaid)thus reused every time, at the expense of stt $eene
measure of compression efficiency. Otherwise, tifiérimation to reconstruct the tree must be semtosip
A naive approach might be to prepend the frequeoncyt of each character to the compression stream.

This initial decompressed text with Huffman codiagead from the end of the file. If the end comsaany
letter it is copied as it is to a file. As and wheesymbol is encountered, the code of the symbaligined
on comparison with the font file. The indices of tiwo letters are calculated from the code asvialo

* Perform the operation (code / 26).
» The quotient gives the index of the first chagaci)

And the remainder gives the index of the secondacher 0). Once the indices are calculated, the
ambigram symbol is replaced by the correspondimggbalphabets in the new file, by appending the
alphabet corresponding to index 'i' to the begigrihthe file and the alphabet corresponding t@ing to
the end of the new file. After decompressing adl sigmbols with respective characters, the files #ie
position of white spaces and special characterseaictand the white spaces and special characeers a
inserted accordingly in the new file thereby gegtivack the original text.

6. Applicationsin thefield of steganography

The purpose of steganography is to hide the verggurce of communication by embedding messages into
innocuous-looking cover objects, such as digitalges [9]. To accommodate a secret message, theabrig
cover image is slightly modified by the embeddifgpathm to obtain the stego image. Our compression
method (which is the combination of Huffman codargl ambigrams) is applicable over a variety of data
For example-confidential data of Indian Army, nand Air Force, confidential letters of the CEO loé t
companies, etc. where privacy is the most key isBhis method enhances the security and decreases
detectability manifold as the original font setriade available to only the receiver. Thereforestiret
message cannot be tracked by any external ageatodtput of this technique is embedded by an image
and then suitably encrypted and sent to the receiith the corresponding stego key.

7. Conclusion and futurework

We concluded here by saying that this techniquegmed here compressed text by around 60% which is
comparable to other methods in existence. Moreandike many other algorithms, this method does not
restrict the user to give only specific types qfts. Also, this is a lossless compression teclknigich
involves no data loss while decompressing.

In future work, this proposed idea can be implemérnd further be extended by embedding this
technique in any other compression technique. Hyatee overall efficiency of compression can betfer
increased.

References
Douglas R. Hofstadter, Ambigrammi (in Italian), Hdpl-monster Editor, Firenze, 1987.

D.A. Huffman, "A Method for the Construction of Mmum-Redundancy Codes", Proceedings of the
I.R.E., September 1952, pp 1098-1102. Huffmantgiraal article.

Burkard Polster, Les Ambigrammes-I'art de symetiise mots, Editions Ecritextes, 2004.

29

Information and Knowledge Management www.iiste.org
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) pLLy
Vol 2, No.2, 2012 ISt

John Langdon, "Wordplay Ambigrams and Reflectionsghe art of Ambigrams, Harcout" Brace
Jovanovich, 1992.

Scott Kim, Inversions: A Catalog of Calligraphicr@eeels, Byte Books, McGraw-Hili, 1981.
Ken Huffman. Profile: David A. Huffman, Scientiffemerican, September 1991, pp. 54-58

Thomas H. Cormen, Charles E. Leiserson, Ronald\ed® and Clifford Stein.ntroduction to
Algorithms, Second Edition. MIT Press and McGraw-Hill, 20(BBN 0-262-03293-7. Section 16.3,
pp. 385—-392.

Gowtham S., lyshwarya G., Kaushik Veluru, TamaelvBA., Vasudha JText Compression Using
Ambigrams, IEEE Conf. ICETE 2010,V4 page 509-511

Faisal Alturki, and Russell Mertsereau, "A Novelpkpach for Increasing Security and Data Embedding
Capacity in Images for Data Hiding Applicationgtternational Conference on Information Technology:
Coding and Computing, 2011. Page(s):228-233

Figure 1: Half Tum Ambigram of the word "ambigram"

OHIO

Figure 2: Quarter Turn Ambigram of the word "OHIO”

(roMeIR)

Figure 3: Wall Reflection Ambigram of the word “GEETRY”

Be cisdle

Figure 4: Dissection Ambigram of the word “CIRCLE”

30

Information and Knowledge Management
ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)

Vol 2, No.2, 2012

User Input(Text to be
compressed)

File containing position of
white spaces and special
characters

Preliminary Compression
steps

P

\
/

Ambigram (.ttf) files

Final compressed Text

www.iiste.org
Ly

i’

Intermediate output with
spaces and special
characters

/ using ambigram technique

Compression mechanism

!

\

Compression mechanism
using Huffman coding

Initial compressed text

Figure 5: Text Compression Mechanism

31

This academic article was published by The International Institute for Science,
Technology and Education (IISTE). The IISTE is a pioneer in the Open Access
Publishing service based in the U.S. and Europe. The aim of the institute is
Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:
http://www.iiste.org

The 1ISTE is currently hosting more than 30 peer-reviewed academic journals and
collaborating with academic institutions around the world. Prospective authors of
IISTE journals can find the submission instruction on the following page:
http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified
submissions in a fast manner. All the journals articles are available online to the
readers all over the world without financial, legal, or technical barriers other than
those inseparable from gaining access to the internet itself. Printed version of the
journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalITOCS, PKP Open
Archives Harvester, Bielefeld Academic Search Engine, Elektronische
Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial
Library , NewJour, Google Scholar

m EB O INDEX (\@‘ COPERNICUS
I N T E RN A TTITIT ON AL

INFORMATION SERVICES
ULRICHSWES, JournalTOCs @

N A ;
. E'z B Elektronische
lBAS(E T— Q0@ Zeitschriftenbibliothek O

open
>)
OCLC v)

The world’s libraries. — U cDigitalLibrary —
Connected. WorldCat e

Ny

'- ¥
GEORGETOWN UNIVERSITY
LIBRARY

http://www.iiste.org/
http://www.iiste.org/Journals/

