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Abstract 

Two second-order response surface designs have been evaluated. The designs are the small composite designs 

and the minimum-run resolution V designs. The cube and star portions of these second-order designs are 

replicated with different amounts and the variations of the designs generated by replication are compared 

independently to assess the performance of the prediction variances for each of the second-order design under 

consideration. Two optimality criteria, G- and I-optimality, that are prediction variance-oriented are used to 

evaluate the maximum and average prediction variance of the designs while fraction of designs space plots are 

constructed to track the prediction variance performance of these designs throughout the design space. For the 

two second-order designs, the results indicate that it is advantageous to replicate the star than replicating the 

cube.  

Keywords: Optimality criteria, fraction of design space plot, small composite design, minimum-run resolution V 

design, design replication, cube, star. 

 

1. Introduction  
Response surface methodology (RSM) is a collection of mathematical and statistical techniques that are very 

useful when modeling and analyzing experimental situations. The objective is, by careful design of experiments, 

a response variable (output variable) that is being influenced by several independent variables (input variables) is 

optimized (see Montgomery, 2005). Designs used to describe these experimental situations are called response 

surface designs. A second-order response surface design is often chosen based on many considerations such as 

those identified by Box and Draper (1959), Montgomery (2005), Myers et al (2009) and Anderson-Cook et al 

(2009a). 

As the number of factors in a second-order model increases, the number of terms also increases. 

Therefore, economic second-order designs with reasonable prediction variance are highly desirable. Two second-

order response surface designs with similar components (cube, star and centre point) and used as smaller 

alternatives to the central composite designs are considered. They are the small composite designs (SCD) and 

minimum-run resolution V (MinResV) designs. Hartley (1959) and Oehlert and Whitcomb (2002) are useful 

references for detailed discussion on the two designs.  Several other second-order response surface designs have 

been evaluated and compared using various criteria: see, for example, Zahran et al (2003) ad Ozol-Godfrey 

(2004). 

Replication of experimental observations is considered indispensible for efficient and optimal 

performance of the second-order designs. Traditionally, the centre point of the design is replicated to ensure 

proper estimation of the experimental error with 0 1n −  degrees of freedom as it is assumed that the optimum 

response is at the centre of the design. However, recent researches have shown that replicating at the centre alone 

may lead to estimating error that may be too small for correct evaluation of the model. Since there is no 

assurance that variability will remain constant throughout the design region, Dykstra (1960) posits that it is 

sound experimental strategy to replicate at other locations in the design region. See also, Giovannitti-Jensen and 

Myers (1989) for further contributions on replication at other design locations apart from the centre point. 

Several works on replicating at other design locations have been focused on the central composite 

designs (CCD). Such works include Dykstra (1960), Draper (1982), Borkowski (1995), Borkowski and Valeroso 

(2001) and recently, Chigbu and Ohaegbulem (2011). In this study, we extend this idea to the SCD and MinResV 

designs since these designs share similar components (cube, star and centre point) with the CCD. We adopt the 

replication procedure introduced by Draper (1982). 

The distance of the star points (axial distance), α , from the centre of the design plays significant role in 

the distribution of the prediction variance in the design region of interest. Several axial distances have been 

proposed in the literature and each axial distance affects the structure and performance of the design. Some of 

the available values of α  can be found in Box and Hunter (1957), Montgomery (2005), Myers et al (2009) and 
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Li et al (2009).  

We consider the practical α  value in evaluating the replicated versions of the SCD and MinResV 

designs in this study. The practical α  value is proposed by Myers et al (2009) as compromise between the 

spherical α  value when kα= , k  being the number of design factors, and the rotatable α  value when 

4 fα= , f  being the size of the cube. The practical α  is given by 
4 kα= . It has been observed by Li et 

al (2009) that placing the axial runs at practical α  levels results in the stability of the estimated parameters and 

this yields gain in prediction precision. The practical α  is very useful especially when the number of factors is 

large ( 5k> ) as it provides design point that is less extreme. 

 

2. Model Development 

The relationship between the response variable, y , and the design variables, 1 2, ,..., kx x x , is described by the 

model 

 Y = Xβ + ε ,          (1) 

 where Y  is an N?  vector of the responses, X  is an N譸 expanded design matrix obtained from the 

N譳  design matrix, ξ , p  being the number of model parameters, β  is the vector of unknown coefficients 

while ε  is the random error that is normally and independently distributed with mean zero and variance, 
2
σ . 

However, some experimental situations can best be described with the second-order response surface model  

 ′ ′x x x0y = β + β + B + ε ,        (2) 

where x  is a point in the design space spanned by the design and B is a k譳  matrix whose diagonal elements 

are the coefficients of the pure quadratic terms while the off-diagonal elements are one-half coefficients of the 

mixed quadratic (interaction) terms. 

At a point, x , in the design space, the prediction variance is given by 

 ( ) ( ) 12ˆVar y x xσ
−  ′ ′= x X X ,        (3) 

where 
2 2 2

1 2 1 2 1 2 11; , ,..., ; , ,..., ; ,...,k k k kx x x x x x x x x x x−
 =     is the vector of design point in the design matrix 

expanded to model form. Equation (3) is scaled by multiplying by N , the total number of runs, and dividing by 
2σ , the process variance. The resulting expression, 

  
( )

( ) 1

2

ˆNVar y
Nx x

σ

−   ′ ′=
x

X X ,      (4) 

is the scaled prediction variance (SPV). The benefits of SPV in model assessment has been widely 

acknowledged: see, for example, Giovannitti-Jensen and Myers (1989), Borkowski (1995), Montgomery (2005), 

Anderson-Cook et al (2009a) and Li et al (2009). 

Often, the standardized or unscaled prediction variance (UPV), given by 

\ 
( )

( ) 1

2

ˆVar y
x x

σ

−   ′ ′=
x

X X         (5) 

is preferred by some experimenters in design assessment. See Piepel (2009), Goos (2009), Li et al (2009) and 

Anderson-Cook et al (2009b) for the benefits of using UPV in design evaluation. The benefits of both the scaled 

and unscaled prediction variances will be explored in evaluating the performances of the variations of the 

second-order response surface designs. 

 

3. Optimality Criteria 

Two optimality criteria that are prediction variance-oriented are employed in the assessment of the replicated 

second-order designs. They are the G- and I-optimality criteria. The G-optimality criterion minimizes the 

maximum SPV. That is 

 ( ){ }1

opt min maxG Nx x
−′ ′− = X X .       (6) 

The I-optimality criterion minimizes the average SPV. That is 

 ( )ˆ

R

1
I opt min V y x dx

k
 − =  ∫ .       (7) 
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4. Partial Replication of Design 

Let the cube be replicated cn  times, the star replicated sn  and the centre point replicated 0n  times, then the 

SCD and MinResV designs use a total of 02c sN n f n k n= + +  number of observations or runs for model 

parameter estimation. For each replication of the cube portion, the star portion is not replicated and for each 

replication of the star portion, the cube portion is not replicated. In this study, the number of centre points used is 

0 1n = . 

 Six versions of the designs are generated by replicating the cube and star portions by different amount. 

The first design is where the cube is replicated twice and the star is not replicated. This design is denoted by 

2 1C S . The second is 1 2C S , where the star is replicated twice and the cube is not replicated. Other designs are 

3 1C S , 1 3C S , 4 1C S  and 1 4C S . These designs are generated for each of the second-order response surface 

designs for 6 to 10 factors. The spread of the prediction variance of the replicated designs over the entire design 

region is evaluated using the fraction of design space (FDS) plots. 

 

5. Comparison of Designs 

In this section, variations of the SCD and MinResV designs are created and compared using the two optimality 

criteria and the graphical technique. The FDS plots are constructed for both the scaled (SPV) and unscaled (UPV) 

prediction variances. The optimality values are displayed in Table 1 for SCD and Table 2 for MinResV designs. 

 

5.1. Small Composite Designs 

We first study the prediction variances of the six variations of the SCD using the criteria already stated above. 

Comparison Using G-Optimality Criterion 

The results of the G-optimality criterion for the SCD are presented in Table 1. From the results, replicating the 

star reduces the G-optimality for six-factor design while it increases the G-optimality for seven, eight and nine-

factor designs. Replicating the cube increases the G-optimality for all the factors. However, the G-optimality 

values for the replicated star designs, 1 2C S , 1 3C S  and 1 4C S , are far smaller than those of the replicated cube 

designs, 2 1C S , 3 1C S  and 4 1C S , for all the factors under consideration. Again, the number of runs for the 

replicated cube designs far exceeds those of the replicated star designs. Therefore, it is more beneficial to 

replicate the star than replicating the cube. 

Comparison Using I-Optimality Criterion 

The I-optimality values are presented in Table 1. The replicated designs display similar behaviour as in the case 

of G-optimality. The I-optimality values decrease by replicating the star for the six-factor designs and increases 

for the other factors. Also, for all the factors, replicating the cube increases the I-optimality. Again, the I-

optimality values of the replicated cube designs are higher than those of the replicated star designs, making 

replication of the cube designs undesirable. 

Comparison Using Fraction of Design Space Plots 

The FDS plots for six, seven, eight and nine factors displayed in Figures 1, 2, 3 and 4. For the UPV and SPV, 

the replicated star designs have graphs that are flatter and maintain minimum prediction variances distributed 

throughout the design space. For the UPV, the three replicated cube designs are the same for six and eight factors 

and show dispersion for the replicated star designs. For seven and nine factors, the FDS plots for UPV show that 

the replicated designs compete favourably with the replicated star designs having lower prediction variance than 

the replicated cube designs. In all, for the UPV, the higher replicated star design, 1 4C S , seem to be more stable 

with low prediction variance. 

 On the other hand, the FDS plots of the replicated star designs show that the designs have equal and 

minimum scaled prediction variance spread throughout the entire design space for all the factors under 

consideration. Slight deviation from this general result for the SPV is in factor six where 1 2C S  competes 

favourably with 1 3C S  and 1 4C S  for about 30% of the entire design space and then slightly deviate with 

moderately higher SPV.  

5.2.  Minimum-run Resolution V Designs 

In this section, we take a look at the prediction variance properties of the six variations of the replicated 

MinResV designs. 

Comparison Using G-Optimality Criterion 
The G-optimality values are presented in Table 2. The results indicate that replicating the star portion of the 

MinResV designs reduces the G-optimality for the six-factor designs and increases the G-optimality for the 
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remaining factors with very slight margin among the three variations of the replicated star designs. The 

replicated cube designs increase the G-optimality for all the factors under consideration and the values increase 

significantly as the cube replication increases.  

Comparison Using I-Optimality Criterion 

The  I-optimality values for all the factors are displayed in Table 2. The values show that the three star designs 

compete favourably in terms of the I-optimality values with very slight differences among the values for the 

factors under consideration. However, for the replicated cube designs, the I-optimality values increase rapidly as 

the size of replication increases for all the factors under consideration. 

Comparison Using Fraction of Design Space Plots 

The FDS plots for the scaled and unscaled prediction variances are displayed in Figures 5, 6, 7 and 8. The plots 

show that for both UPV and SPV, the replicated star designs display minimum prediction variance spread 

throughout the design space than the replicate designs. Among the star designs, 1 4C S  show stronger prediction 

capability than the other designs, displaying the most minimum of the prediction variances with the graphs flatter 

incase of the SPV. 

 

6. Conclusion 

Six variations of two second-order response surface designs generated by replication of the cube and star 

portions have been independently evaluated using three design criteria. The following conclusions are obvious 

from the results. 

1. For the two response surface designs, the replicated star designs have smaller number of runs than the cube 

designs replicated with the same amount. 

2. The replicated star designs have smaller G- and I-optimality values than the cube designs replicated with the 

same amount.  

3. The FDS plots of the replicated cube and star designs show that the replicated star designs maintained 

minimum prediction variance throughout the entire design space unlike those of the cube designs.  

4. The FDS plots for UPV show that the higher replicated star design, 1 4C S , display stronger prediction 

capability than the other replicated designs and competes favourably with the other replicated star designs in 

terms of SPV.  

 Since the replicated star designs excellently perform better than the replicated cube designs for the three 

criteria used to evaluate the designs, we recommend that it will be more beneficial to replicate the star. The cube 

portion should not be replicated for obvious reasons. When it is economically feasible, the higher replicated star 

design, 1 4C S , should be the best choice for experiments involving any of the two second-order response surface 

designs. 
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Table 1: Summary Statistics for Small Composite Designs with Practical α  

k  Design N  G-Optimal I-Optimal 
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Table 2: Summary Statistics for Minimum-run Resolution V Designs with Practical α  

k  Design N  G-Optimal I-Optimal 
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   (a)       (b) 

Figure 1: (a)UPV  and (b) SPV for the SCD for 6k =  Factors. 
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   (a)       (b) 

Figure 2: (a) UPV  and (b) SPV for the SCD for 7k =  Factors. 

 

  
   (a)       (b) 

Figure 3: (a) UPV  and (b) SPV for the SCD for 8k =  Factors. 

 



Industrial Engineering Letters                                                                                                                                                            www.iiste.org 

ISSN 2224-6096 (Paper) ISSN 2225-0581 (online) 

Vol.4, No.12, 2014 

 

35 

  
   (a)       (b) 

Figure 4: (a) UPV  and (b) SPV for the SCD for 9k =  Factors. 

 

   
   (a)       (b) 

Figure 5: (a) UPV  and (b) SPV for the MinResV Designs for 6k =  Factors. 
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   (a)       (b) 

Figure 6: (a) UPV  and (b) SPV for the MinResV Designs for 7k =  Factors. 

 

    
   (a)       (b) 

Figure 7: (a) UPV  and (b) SPV for the MinResV Designs for 8k =  Factors. 
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   (a)       (b) 

Figure 8: (a) UPV  and (b) SPV for the MinResV Designs for 9k =  Factors. 
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