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Abstract  

This paper presents a chaotic particle swarm algorithm for solving the multi-objective reactive power dispatch 
problem. To deal with reactive power optimization problem, a chaotic particle swarm optimization (CPSO) is 
presented to avoid the premature convergence. By fusing with the ergodic and stochastic chaos, the novel 
algorithm explores the global optimum with the comprehensive learning strategy. The chaotic searching region 
can be adjusted adaptively.  In order to evaluate the proposed algorithm, it has been tested on IEEE 30 bus 
system and simulation results show that (CPSO)   is more efficient than other algorithms in reducing the real 
power loss and maximization of voltage stability index. 
Keywords:chaotic particle swarm optimization, Optimization, Swarm Intelligence, optimal reactive power, 
Transmission loss. 
 
1.Introduction 

One of the major problems faced by power system operators is the reactive power dispatch imposed on electric 
power utilities for a continuous and reliable supply of energy. Major power loads require a significant amount of 
reactive power that has to be supplied while maintaining load bus voltages within their permissible operating 
limits. In order to maintain desired levels of voltages and reactive flows under various operating conditions and 
system configurations, power system operators may utilize a number of control tools such as switching var 
sources, changing generator voltages, and by  adjusting transformer tap settings. By an optimal adjustment of 
these controls, the redistribution of the reactive power would minimize transmission losses.Various 
mathematical techniques have been adopted to solve this optimal reactive power dispatch problem. These 
include the gradient method (O.Alsac et al.1973; Lee K Yet al.1985), Newton method (A.Monticelli et al.1987) 
and linear programming (Deeb Net al.1990; E. Hobson1980; K.Y Lee et al.1985; M.K. Mangoli 1993) .The 
gradient and Newton methods suffer from the difficulty in handling inequality constraints. To apply linear 
programming, the input- output function is to be  expressed as a set of linear functions which may lead to loss of 
accuracy. Recently Global Optimization techniques such as genetic algorithms have been proposed to solve the 
reactive power flow problem (S.R.Paranjothi et al 2002;D. Devaraj et al 2005)  . In recent years, the problem of 
voltage stability and voltage collapse has become a major concern in power system planning and operation. To 
enhance the voltage stability, voltage magnitudes alone will not be a reliable indicator of how far an operating 
point is from the collapse point (C.A. Canizareset al.1996). The reactive power support and voltage problems are 
intrinsically related. Hence, this paper formulates the reactive power dispatch as a multi-objective optimization 
problem with loss minimization and maximization of static voltage stability margin (SVSM) as the objectives. 
Voltage stability evaluation using modal analysis is used as the indicator of voltage stability. In recent years, 
several new optimization techniques have emerged. The evolutionary algorithms (EAs) for reactive power 
optimization problem have been extensively studied. Several global optimization algorithms such as differential 
evolution (DE) (Dib.N et al .2010; Lin. C  et al.2010), genetic algorithm (GA) (Zhang et al.2009 ; 
Vaitheeswaran.S et al.2008) , simulated annealing (SA) (Ferreira, J. A et al.1997 ), Ant colony optimization 
(ACO) (Hosseini.S. A et al 2008 ), particle swarm optimization (PSO) (Perez Lopez et al.2009; Liu, D et al.2009; 
Li, W.-T et al.2010 ; Goudos, S et al.2010 ; Shavit, R et al.2005) are used for reactive power optimization 
problem. However, these methods present certain drawbacks with the possibility of premature convergence to a 
local optimum. In this paper, a novel chaotic PSO algorithm (CPSO) is proposed. Based on the ergodicity, 
regularity and pseudo-randomness of the Chaotic variable, chaotic search is used to explore better solutions. The 
performance of (CPSO) has been evaluated in standard IEEE 30 bus test system and the results analysis shows   
that our proposed approach outperforms all approaches investigated in this paper. 
 
2. Voltage Stability Evaluation 

2.1 Modal analysis for voltage stability evaluation 

Modal analysis is one of the methods for voltage stability enhancement in power systems. The linearized 
steady state system power flow equations are given by. 
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�∆P
∆Q� = � J�							J��	

J�						J
�					�        (1) 

Where 
∆P = Incremental change in bus real power. 
∆Q = Incremental change in   bus   reactive 
Power injection 
∆θ = incremental change in bus voltage angle. 
∆V = Incremental change in bus voltage Magnitude 
Jpθ , J PV , J Qθ , J QV jacobian matrix are   the   sub-matrixes    of   the System  voltage  stability  is affected  by 
both P and Q. However at each operating point we keep P constant and evaluate voltage stability by 
considering incremental relationship between Q and V. 
To reduce (1), let ∆P = 0 , then. 

∆Q = �J
� − J
	J�	��J���∆V = J�∆V      (2) 

∆V = J�� − ∆Q                                         (3) 
Where 

J� = �J
� − J
	J�	��JPV�                        (4) 

J�	is called the reduced Jacobian matrix of the system. 
2.2 Modes of Voltage instability 

Voltage Stability characteristics of the system can be identified by computing the eigen values and eigen 
vectors  
Let 
J� = ξ˄η                                                     (5) 
Where, 
ξ = right eigenvector matrix of JR 
η = left eigenvector matrix of JR 
∧ = diagonal eigenvalue matrix of JR and 
J��� = ξ˄��η       (6)                                  
          From (3) and (6), we have 
∆V = ξ˄��η∆Q       (7)                                  
                 or 

∆V = ∑ � ! 
" # ∆Q       (8) 

Where ξi  is the ith  column right eigenvector and  η the ith row left  eigenvector of JR.  
 λi   is the ith eigen value of JR. 
The  ith  modal reactive power variation is, 
∆Q$% = K%ξ%        (9) 
  where, 
K% = ∑ ξ%'(' − 1      (10) 

Where 
ξji is the jth element of ξi 
The corresponding ith modal voltage variation is 
∆V$% = *1 λ%⁄ -∆Q$%        (11) 
It is seen that, when the reactive power variation is along   the   direction   of   ξi the   corresponding   voltage 
variation is also along the same direction and magnitude is amplified by a factor which is equal to the magnitude 
of the inverse of the ith  eigenvalue.   In this sense, the magnitude of each eigenvalue λi determines the weakness 
of the corresponding   modal voltage.  The  smaller  the  magnitude  of  λi, the  weaker  will  be  the  
corresponding modal voltage. If  |    λi    |    =0  the  ith modal voltage will collapse because any change in that 
modal reactive power will cause infinite modal voltage variation.  
In (8), let ∆Q = ek   where ek has all its elements zero except the kth one being 1. Then,  

 ∆V = 	∑ ƞ�.		ξ�			
λ�%                                            (12) 

ƞ�/					k th element of ƞ�					 
V –Q sensitivity at bus k  
0�1
0
1

= ∑ ƞ�.		ξ�			
λ�% 	= ∑ �. 

λ�%                 (13) 

 

3.Problem Formulation 

The objectives of the reactive power dispatch problem considered here is to minimize the system real power loss 
and maximize the static voltage stability margins (SVSM).  
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3.1Minimization of Real Power Loss 
It is aimed in this objective that minimizing of the real power loss (Ploss) in transmission lines of a power 

system. This is mathematically stated as follows. 
P23445 ∑ g/(� (8�9(�:� 	�9	 ;<= θ 9)

?/5�
/5(%,')

           (14)            

Where n is the number of transmission lines, gk is the conductance of branch k, Vi and Vj are voltage 
magnitude at bus i and bus j, and θij is the voltage angle difference between bus i and bus j. 
3.2 Minimization of Voltage Deviation 

It is aimed in this objective that minimizing of the Deviations in voltage magnitudes (VD) at load buses. This 
is mathematically stated as follows. 

Minimize VD = ∑ |V/ − 1.0|?2/5�             (15) 
Where nl is the number of load busses and Vk is the voltage magnitude at bus k. 

3.3 System Constraints 
Objective functions are subjected to these constraints shown below. 

Load flow equality constraints: 

DEF	–	DHF − IF ∑ JKLMKN� � OFP cos TFP
+VFP sin TFP

� = 0, Y = 1,2… . , \]                                                              (16) 

^EF	 − ^HF −	IF ∑ JKLMKN� � OFP cos TFP
+VFP sin TFP

� = 0, Y = 1,2… . , \]                                                           (17) 

where, nb is the number of buses, PG and QG are the real and reactive power of the generator, PD and QD are the 
real and reactive load of the generator, and Gij and Bij are the mutual conductance and susceptance between bus i 
and bus j.Generator bus voltage (VGi) inequality constraint: 

IEF	_F` ≤	IEF ≤ IEF_bc , Y ∈ \e																													(18) 
Load bus voltage (VLi) inequality constraint: 

IfF	_F` ≤	IfF ≤ IfF_bc , Y ∈ \g   (19) 
Switchable reactive power compensations (QCi) inequality constraint: 

^hF	_F` ≤	^hF ≤ ^hF_bc , Y ∈ \i   (20) 
Reactive power generation (QGi) inequality constraint: 

^EF	_F` ≤	^EF ≤ ^EF_bc , Y ∈ \e    (21) 
Transformers tap setting (Ti) inequality constraint: 

jF	_F` ≤	jF ≤ jF_bc , Y ∈ \k																																	(22) 
Transmission line flow (SLi) inequality constraint: 

lfF	_F` ≤ lfF_bc , Y ∈ \g             (23) 
Where, nc, ng and nt are numbers of the switchable reactive power sources, generators and transformers.  

 

4. Principle of CPSO 

4.1Principle of CPSO 
Inspired by the social behaviours of animal, bird flocking and fishing, PSO was developed by (Kennedy  et al . 
1995) . The particle is endowed with two factors: velocity and position which can be regarded as the potential 
solution in the D dimension problem space. In basic PSO, they can be updated by following formulas: 
 

mFn(k + 1) = 	omFn(k) + i�p�n�DFn(k) − qFn(k)� + i:p:n rDsn(k) − qFn(k)t                                    (24) 

 
qFn(k + 1) = 	qFn(k) + mFn(k + 1)                          (25) 
 
Where i = 1,….., N, d = 1,…,D, N is the number of particles. o		is the inertia weight factor to control the 
exploration and exploitation. r1d and r2d are two random numbers within the range [0, 1]. vid(t) and xid(t) are the 
velocity and position of the current particle i at time step t in the dth-dimensional search space respectively. 
When vid(t) and xid(t) are beyond the boundary, the solution may be illegal. So, the treatment of boundaries in the 
PSO method is important in order to prevent the swarm from explosion (Xu.S et al .2007 ). In many practical 
problems, the search range xid is in [Xmin;Xmax]D. vid should be clamped to a maximum magnitude Vmax. pi is the 
previous best position of particle I which is also called   “personal best”, and its dth-dimensional part is pid. The 
global best" pg is the best position found in the whole particles, and its dth-dimensional part is pgd. c1, c2 are the 
acceleration constants which change the velocity of a particle towards the pi and pg. 
4.2Modification Techniques in CPSO 
The basic PSO uses pg as neighbourhood topology. Each particle learns from its pi and pg. Restricting the social 
learning part to pg can make basic PSO converge quickly. However, because all particles in the swarm learn 
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from the pg even if the current pg is far from the global optimum, particles may easily be attracted to the area and 
trapped in a local optimum. Furthermore, the fitness value of a particle is determined by all dimensions. A 
particle that has discovered the region corresponding to the global optimum in some dimensions may have a low 
fitness value because of the poor solutions in other dimensions (  Liang, J.-Jet al 2006 ) . In order to acquire more 
beneficial information from the entire swarm, we define pc as “comprehensive best position”. 
 

uv = w∑ xy�zyN�
{ 	 , ∑ xy(zyN�

{ , . . , ∑ xy|zyN�
{ , . . , ∑ xy}zyN�

{ ~        (26) 

 
Where i = 1,..,N. Thus Equation (1) is modified as 
 

mFn(k + 1) = omFn(k) + i�p�n�DFn(k) − qFn(k)� + i:p:n�Dvn(k) − qFn(k)�                                      (27) 

where pcd is the dth-dimensional part of pc. By using pc instead of pg, all particles' pi can potentially be used as 
the exemplars to guide their flying direction. The comprehensive learning strategy yields a larger potential 
search space than that of the basic PSO. On the other hand, a particle can learn from pg, as well as its personal 
best and the other particles' best, so that the particle can learn from particle itself, the elite and other particles. 
The strategy can increase the initial diversity and enable the swarm to overcome premature convergence problem. 
Basic PSO has shown some important advances by providing high speed of convergence in specific problems. 
However it does exhibit some shortages (Modares.H et al.2010). During the process of evolution, sometimes 
particles lose their abilities of exploration and will be stagnated. When some particles' velocity is be close to zero, 
other particles will quickly fly into the region near the inactive particles position that guided by pi and pg. 
Because of the particles randomicity in initialization and evolution process, the updating sometimes looks 
aimless. As a result, when pg is trapped in a local optimum, the whole swarm becomes premature convergence, 
and the exploration performance will not be improved. Optimization algorithms based on the chaos theory are 
stochastic search methodologies that differ from any of the existing evolutionary algorithms. Due to the non-
repetition of chaos, it can carry out overall exploration at higher velocities than stochastic and ergodic searches 
that depend on probabilities (Coelho, L. Det al.2009) . Chaotic PSO can be divided into two types. In the first 
type, chaos is embedded into the velocity updating equation of PSO. In (Modares.H et al.2010) , c1 and c2 are 
generated from the iterations of a chaotic map instead of using the rand function. In (Wang, Y., et al. 2010 ), a 
chaotic map is used to determine the value of o during iterations. In the second type, chaotic search is fused with 
the procedures of PSO. This type is a kind of multi-phase optimization technique that chaotic optimization and 
PSO can switch to each other according to certain conditions (Wu.Q 2011 ) . Therefore, this paper provides a 
new strategy, which not only introduces chaotic mapping with certainty, ergodicity and stochastic property into 
PSO algorithm, but also proposes multi-phase optimization integrated by chaotic search and PSO evolution. The 
multi-phase optimization of chaotic PSO includes: vid and xid are updated by basic PSO with comprehensive 
learning strategy. If the swarm is stagnated, chaotic disturbance would be introduced. Here, variance �: 
demonstrates the converge degree of all particles. 

�: = ∑ ���F − �b�s� �⁄ �:{F5�               (28) 

� = ��q �1,��q���F − �b�s���       (29) 

Where fi is the fittness of the ith particle; favg is the average fitness value; f is the factor of fitness value. The 
bigger �: is the broader ith particles will spread. Otherwise, they will almost converge. The chaotic sequence 
can be generated by the logistic map introduced by Robert May in 1976. It is often cited as an example of how 
complex behaviour can arise from a simple dynamic system without any stochastic disturbance (He, Y.-Y., et al. 
2009)  The equation is the following 

�Fn(k + 1) = ��Fn(k)�1 − �Fn(k)�    (30) 

 
Where �Fn(k) ∈ (0,1), Y = 1, . . , �	, � = 1, . . , �. � is usually set to 4 obtain ergodicity of �Fn(k + 1)	�YkℎY\	(0,1). 
When the initial value  �Fn(0) ∈ �0.25.0.5.0.75� using equation (30) we can obtain chaotic sequences. In order 
to increase the population diversity and prevent premature convergence, we add adaptively chaotic disturbance 
Dv at the time of stagnation. Thus, Dv 	Y�	���Y�Y��		��	Dv′ . 
uvn� (k + 1) = uvn(k) + �Fn�2�Fn(k) − 1�    (31) 

�Fn = �|uvn(k) − uFn(k)|                             (32) 
Where �	is the region scale factor. Because�Fn ∈ (0,1), the second part of Equation (31) is in the range of 
(−|�Fn|, |�Fn|)  that would restrict the searching area around pc. In addition, the searching range can be 
adaptively adjusted by the distance between pi and pc. If pc is surrounded with the previous best positions pi, it 
means that a good region may have been found, and it is reasonable to search elaborately in a small area. On the 
contrary, if pi is far from pc, this probably suggests that a good area has not yet been found. For better solution, 
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searching region should be enlarged (Lin, C.et al.2007). 
Thus in CPSO, the new position can be expressed as 

mFn(k + 1) = omFn(k) + i�p�n�uFn(k) − qFn(k)� + i:p:n�uvn� (k) − qFn(k)�                               (33) 

Different from Equation (24), pg is replaced by uv�   at the time of stagnation when �: is less than the stagnation 
factor � . Chaotic search is restricted into a small range to obtain high performance in local exploration. 
Additionally, the algorithm keeps a dynamic balance between global and local searches due to its adaptive 
mechanism. With the new updating rule, different exemplars are used in different dimensions to explore a larger 
search space than the basic PSO. In addition, chaotic disturbance is embedded in different dimensions to 

maintain the diversity which plays an important role in avoiding early convergence. 
 
5.Simulation Results 

 The validity of the proposed Algorithm technique is demonstrated on IEEE-30 bus system. The IEEE-30 bus 
system has 6 generator buses, 24 load buses and 41 transmission lines of which four branches are (6-9), (6-10) , 
(4-12) and (28-27) - are with the tap setting transformers. The lower voltage magnitude limits at all buses are 
0.95 p.u. and the upper limits are 1.1 for all the PV buses and 1.05 p.u. for all the PQ buses and the reference bus.  

Table 1. Voltage Stability under Contingency State 

Sl.No Contigency ORPD 

Setting 

Vscrpd 

Setting 

1 28-27 0.1400 0.1422 
2 4-12 0.1658 0.1662 
3 1-3 0.1784 0.1754 
4 2-4 0.2012 0.2032 

 

Table 2. Limit Violation Checking Of State Variables 

State 

variables 

limits 
ORPD VSCRPD 

Lower  upper 

Q1 -20 152 1.3422 -1.3269 
Q2 -20 61 8.9900 9.8232 
Q5 -15 49.92 25.920 26.001 
Q8 -10 63.52 38.8200 40.802 
Q11 -15 42 2.9300 5.002 
Q13 -15 48 8.1025 6.033 
V3 0.95 1.05 1.0372 1.0392 
V4 0.95 1.05 1.0307 1.0328 
V6 0.95 1.05 1.0282 1.0298 
V7 0.95 1.05 1.0101 1.0152 
V9 0.95 1.05 1.0462 1.0412 
V10 0.95 1.05 1.0482 1.0498 
V12 0.95 1.05 1.0400 1.0466 
V14 0.95 1.05 1.0474 1.0443 
V15 0.95 1.05 1.0457 1.0413 
V16 0.95 1.05 1.0426 1.0405 
V17 0.95 1.05 1.0382 1.0396 
V18 0.95 1.05 1.0392 1.0400 
V19 0.95 1.05 1.0381 1.0394 
V20 0.95 1.05 1.0112 1.0194 
V21 0.95 1.05 1.0435 1.0243 
V22 0.95 1.05 1.0448 1.0396 
V23 0.95 1.05 1.0472 1.0372 
V24 0.95 1.05 1.0484 1.0372 
V25 0.95 1.05 1.0142 1.0192 
V26 0.95 1.05 1.0494 1.0422 
V27 0.95 1.05 1.0472 1.0452 
V28 0.95 1.05 1.0243 1.0283 
V29 0.95 1.05 1.0439 1.0419 
V30 0.95 1.05 1.0418 1.0397 

Table 3. Comparison of Real Power Loss 
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Method Minimum loss 

Evolutionary programming[11] 5.0159 
Genetic algorithm[12] 4.665 
Real coded GA with Lindex as 
SVSM[13] 

4.568 
 

Real coded genetic algorithm[14] 4.5015 
Proposed CPSO  method  4.2031 

 

6. Conclusion 

A large-scale power system should supply power to the customers in a reliable and economic way while keeping 
system voltages in permissible limits. The purpose of the optimal reactive dispatch problem is to improve system 
voltage profile by minimizing power system losses. In this research paper a chaotic particle swarm has been 
utilized to sole the optimal reactive power dispatch problem. The performance of the proposed algorithm has 
been tested in standard IEEE test system and simulation results shows the best performance of the proposed 
system and the real power loss has been considerably reduced .  
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