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Abstract 

Compression test was conducted on packaged Roma tomatoes to study the effects of stage of ripeness, level of 

vibration and container type on load, deformation and stress at bioyield point of the fruit. Tomatoes harvested at 

three stages of ripeness: unripe (5.6 Brix %), half-ripe (3.9 Brix %), and full-ripe (3.2 Brix %), were packed in 

plastic crate and raffia basket and were subjected to three levels of vibration: non-vibrated, low vibration 

(frequency 3.7 hz) and high-vibration (frequency 6.7 hz). The tomatoes were then compressed at a loading rate 

of 2.50 mm/min
-1
 in a Testometric Universal Testing Machine. Data obtained directly from computer printout 

were statistical analyzed using the SPSS 110 software package. Load and stress at bioyield decreased 

significantly (P=0.05) with advances in ripeness stage of the fruit. of increasing vibration significantly (P=0.05) 

increased deformation at yield and also reduced load and stress at bioyield.  

Keywords: Roma tomato, Packaging, Mechanical damage, Strength parameter, Bioyield, Ripeness, Vibration, 

Universal Testing Machine 

 

1. Introduction 

Tomato (Lycopersicon esculentum Mill.) is a major vegetable crop grown in Nigeria and the Roma variety is 

highly favoured in commercial production and transportation in the country. The variety is widely grown in the 

northern part of Nigeria and is usually bulk packaged in raffia woven baskets for transportation, by road, to the 

southern parts using commercial trucks. Considerable mechanical damage is inflicted, due to compression, to the 

packaged fruits in the distribution system (Babarinsa & Nwangwa, 1987, Okhuoya, 1995 and Daramola, 1998). 

This contributes substantially to the huge postharvest losses suffered by the tomatoes in the country. The 

strategic reduction of this aspect of losses requires improvement to the packaging method with a clear 

understanding of the behavior of the delicate tissues under externally applied forces. As noted by Rorbertson 

(2006), modern packaging of fresh horticultural produce is expected to meet a wide range of requirements, 

including the prevention of mechanical damage resulting from compression.   

Mohsenin (1986) reported that, in intact fruits and vegetables, mechanical damage is usually initiated 

through a rupture in the internal or external cellular structure of the material. He recalled that at bioyield point, 

cells start to rupture or move with respect to their neighbors. Hence, relating externally applied forces to the 

initial disruption of the cellular structure of a packaged fruit calls for a clear understanding of the strength 

parameters at bioyield point. Bioyield behavior of the fruit under compressive loading characterizes the 

microstructural (cellular) disintegration of its vegetable tissues in packaging during transportation. Deformation 

at bioyield, which weakens the cell walls and the forces binding cells together, has been attributed to weak 

ruptured cells by (Okhuoya 1995 and Daramola 1998). Typically, bioyield does not show an immediate external 

symptom for mechanical damage in tomatoes (McColloch, 1962) but causes permanent (irreversible) 

deformation at the cellular level. It particularly encourages breakdown of cell structure, with loss of firmness, by 

allowing breakdown of polymeric carbohydrates, especially pectic substances. The resulting internal damage 

often degenerates into tissue disintegration, external fracture and other forms of mechanical damage which 

eventually leads to physiological disorder and greatly reduce fruits shelf life. Determination of bioyield 

deformation and measurements of strength parameters in fruits often involves a study of force-deformation 

behavior under compression (Burkner & Kinch. 1967). This approach has been justified for fresh tomato fruits 

on the ground that the fresh tomato is usually subjected to mechanical forces in packaging.  

Mechanical behavior of a compressed material at bioyield can be expressed in terms of strength parameters 

such as of maximum sustainable load, resultant deformation and maximum sustainable stress (Vursavus & 

Ozguven 2004, Mencarelli et al., 2005). This provides a basis for predicting the occurrence of mechanical 

damage under an applied force.  

This study investigated the effects of stage of fruit ripeness, level of vibration and packaging container on 

strength parameters (load, deformation and stress) at bioyield of packaged Roma tomatoes under compressive 
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loading.  

2. Materials and Method 

2.1 Experimental Plant Material  

Tomatoes of the Roma variety were hand-harvested from a local market farm in Ilorin suburb at three stages of 

maturity. These were transported to the Engineering Material Testing Laboratory at the National Center for 

Agricultural Mechanization (NCAM), Ilorin. Wholesome fruits were sorted for reasonable uniformity into shape 

and size range of 2.5 to 3.0cm. 

Stages of tomato ripeness were first determined subjectively by skin colour as (i) unripe (mature 

green/breaker or green pink, consisting of the first point of skin colour change from complete green to about 

30% pink), (ii) half-ripe, consisting of 30-70% pink to red skin and (iii) the ripe, consisting of 70-100% red skin 

but still firm, These are identical to skin colour levels depicted as 1, 5 and 9 on the recommended tomato colour 

chart of the Organisation de Cooperation et de Development Economiques, Paris (Thompson, 2003). The 

ripening stages are also equivalent to colour levels 2, 4 and 6 on another chart presented by McGlasson et al. 

(1985).   

The ripeness stages were further evaluated objectively by measuring the total soluble solids (as Brix %) in 

the undiluted juice of samples of the tomato fruit. The digital hand-held refractometer (ATAGO
® 
PAL-1 No.3810) 

used had an automatic internal temperature compensation feature, a measurement resolution of Brix 0.1% and 

accuracy of Brix ±0.2%. Approximately 0.3ml of the tomato samples, blended to a uniform juice, were placed on 

the prism of the digital refractometer. The total soluble solids content (in Brix %), measured in triplicates, were 

5.6, 3.9 and 3.2 for the unripe, half- ripe and full ripe stages respectively.   

 

2.2   Packaging containers 

The two packaging containers used are plastic crate and raffia basket. The plastic crate (manufactured by Shongai 

Packaging Industries Ltd) has been recommended by the Nigerian Stored Products Research Institute for 

packaging tomatoes for road transportation in Nigeria (NSPRI, 1990).  It is similar to the nest/stack type 

described by Thompson (2003).  The crate has total external dimensions of 60cm x 40cm x 25cm high and is 

capable of holding 25kg of tomato fruit. The basket is the traditional hand-woven raffia type extensively used in 

road transportation of tomatoes in Nigeria. It is 30cm deep and 43cm in diameter, capable of holding 20kg of 

tomato fruit. Both containers are adequately ventilated and are strong to resist failure by buckling.  

 

2.3  Experimental design 

A 2 x 3
2 
factorial experiment was conducted to study the effect of three ripening stages, three vibration levels 

and two containers on load, deformation and stress at bioyield point of Roma tomatoes under compressive 

loading.  

 

2.4  Vibration treatment  

A laboratory mechanical vibrator, a Gallenhamn Orbital Shaker (App. No 9B 3742 E), was used to vibrate the 

packaged tomatoes in their respective containers (plastic crate and raffia basket) while being carried on the 

vibrator’s platform. The carriage platform is fitted internally with oscillating cams that vibrate the platform, 

thereby imparting oscillation at the variable speed of 0-400 rev/min. Vibration, designated either as low-level or 

high level, was applied at fixed frequencies of oscillation, 3.5 and 6.7 Hz respectively, by setting the operating 

speed at 200 or 400 rev/min for duration of 60 minutes. 

 

2.5  Compression test 

Compression tests were conducted with the Testometric Universal Testing Machine (UTM), (manufactured by 

Testometric Co. Ltd. UK), with a force exerting capacity of 50kN. The functional components of the testing 

machine include the load frame, load cell, crosshead, control console and a printer. It was installed in the 

Engineering Material Testing Laboratory of the National Center for Agricultural Mechanization (NCAM), 

Ilorin.   

The compression test was conducted in triplicates by mounting and compressing the tomatoes in the loading 

space of the UTM. A pair of rigid plates of 1.27cm thick plywood was used as the force-transmitting devices, 

one as bottom support and the other as top loading device for the fruit. Loading rate (crosshead speed) of 2.50 

mm/ min was applied as recommended by Mohsenin (1986). The electronic computing unit of the UTM was set 

to measure selected strength parameters (load, deformation and stress) at bioyield of the compressed tomatoes. 

Data sheets of measured values and load-deformation plots were obtained directly as produced with the aid of a 

PC. 
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2.6  Statistical Analysis    

Data collected from compression test runs were subjected to statistical analysis using randomized complete 

block design based on a 3
2
x2 factorial experiment. Statistical analysis was carried out using Statistical Package 

for Social Sciences (SPSS 110 software package). Treatment means were compared using Duncan’s Multiple 

Range Test (P< 0.05).     

 

3. Results and Discussion 

3.1 Load-deformation curves  

Typical compression load-deformation curve generated for the compressed tomatoes is shown in Figure 1. The 

curves generally showed sharp peaks after the elastic deformation at the end of each compression. Bourne (2002) 

made similar observation with Instron generated curves which show sharp peaks at the end of each compression, 

rather than rounded peaks like those yielded by the General Foods Texturometer. Fellows (2009), while 

considering idealized and typical load-deformation curves for various foods, attributed the observed behavior in 

compression to soft, weak brittle materials. He particularly noted that the point of maximum force or rupture 

could also occur at bioyield point. This, thus, explains why in curves such as that in Figures 1, bioyield point 

may not be distinguishable from rupture point.  

 

3.2 Statistical Analysis  

Results of analysis of variance of the compression tests for determination of load, deformation and stress at 

bioyield, are as presented in Tables 1 to 3 respectively, showing the effects of ripeness, vibration and container. 

The Tables revealed vibration level had significant effects on load at bioyield and deformation at bioyield (at P = 

0 005) while stage of ripeness shows significant effects on load at bioyield and deformation at bioyield (at P = 

0.05). The effects of container were not significant on any of the treatments. The two-factor interactions were not 

significant (P=0.05) on the strength parameters. The analysis also indicated that Vibration*Container interaction, 

with F-value 1962, was also the most important two-factor interaction on stress at bioyield (with F-value 1962), 

load at bioyield and  stress at bioyield (with F-value 0.785). Effects between the subject three factors 

(Ripeness*Container*Vibration) were not significant for all strength parameters at bioyield. 

 

3.3  Effects of stage of ripeness  

Stage of ripeness had highly significant (p = 0.001) effects on stress at bioyield (Table 3) while having 

significant (p=0.005 level) effects on load at bioyield. The effects of ripeness were, however, not significant for 

deformation at yield (Table 2). The statistical analysis of variance means and differences among the three stages 

of ripeness tested during the compression testing are presented in Table 4. Load at bioyield as well as stress at 

bioyield of Roma tomato reduced with advancing stages of ripeness. This can be attributed to the reduction of 

turgor in tomatoes during ripening as noted by Shackel et al., (1991) Tong et al., (1999) and De Belie et al., 

(2000). Shackel et al., (1991) observed that this reduced stressing of the cell wall in intact tomato (variety 

"Castelmart") fruit., When such tissues are subjected to compressive loads, higher turgor tends to make the cell 

more brittle, and fail at a lower force (Lin & Pitt, 1986; Tu, et al., 2000).. This, perhaps, is why Schouten et al. 

(2007) stated that mechanical damage results in immediate loss in cell wall only in the riper fruit of tomato. This 

is also supported by findings of Garcia et al. (1995) who noted that mechanical stresses in the tissues were higher 

in turgid fruit. The two modes of structural feature, which initiate the failure of the cellular conglomerate - the 

tension failure of the cell walls and the failure of the intercellular bonds- both vary among different commodities 

and may change as the tissue ripens. 

The observed reduction in load and stress at bioyield and increase in deformation at bioyield with 

advancing stage of ripeness of tomato fruits (Table 1) indicate a decrease in the resistance of the fruit to 

compression loading. Compression force will, thus inflict greater bioyield damage on tomatoes at advancing 

stages of ripeness. The results obtained therefore support the findings of Olorunda & Tung (1985) that the 

susceptibility to mechanical injury depended on fruit maturity. The authors noted that ripe tomatoes were more 

subject to mechanical injury.   

The results
 
obtained in the present work may be explained by the hypothesis that changes such as 

solublization and degradation of pectin, that occur in the cell wall during ripening of fruit, are critical to the 

mechanical properties of the fruit (Seymour & Gross, 1996; Harker et al., 1997). The practical significance of 

these results is that fresh tomatoes to be packaged for road transportation should be harvested at earlier stages of 

ripeness to minimize internally mediated mechanical damage (caused by bioyield).    

3.4 Effects of Vibration Level 

The analysis of variance (Tables 1 to 3) revealed that vibration level had significant effects only on load at 

bioyield and deformation at bioyield (at P = 0 005). The effect of vibration shows significant (P=0.05 level) 
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differences on load at bioyield. 

 Table 5 shows the statistical analysis of variance means and differences among the three levels of vibration 

tested during the compression testing.  Load at bioyield, deformation at bioyield as well as stress at bioyield of 

Roma tomato all reduced with advancing levels of vibration.  

The experimental application of varying levels of vibration to packaged Roma-type tomato before 

compressive loading aimed at simulating vibration of fruit during road transportation. Packaged tomatoes 

subjected to increasing vibration generally become weaker and softer. The packaged fruit was rendered 

susceptible to mechanical damage by the imparted vibration received in the packaging containers. Vibration is 

inter-related with ripeness and together determine the intensity of compression damage inflicted on the packaged 

fruits. Tomatoes subjected to excessive vibration will easily be inflicted with mechanical damage, judged by the 

low maximum load and stress at bioyield recorded for the treated fruit.  

These results agree with other studies carried out by Idah et al. (2007), which revealed that severity of 

compression damage to fruits is primarily related to the level of vibration (and the stage of ripeness). Since the 

non-vibrated fruits suffered the least compression damage, it can be inferred from the study that in considering 

tomato fruits for transportation by road in packaging containers, the well maintained vehicles and roads should 

be preferred. Therefore, subjection of packaged tomatoes to excessive vibration, before or during road 

transportation is discouraged. Berardinelli et al. (2003) noted that the vibrations due to transportation are 

influenced by road roughness, distance, travelling speed, load, and some characteristics of the truck such as the 

suspension and the number of axles 

 

3.5  Effects of container types  

Table 1 to 3 shows that the effects of container on all strength parameters at bioyield were not significant 

(P=0.05) during the compression testing of Roma tomato fruits. For example, deformation at bioyield was not 

affected by container type (Table 6). Regardless of the stage of ripeness, the stress at bioyield was consistently 

higher in basket packaged tomatoes than in crate. The stress reduction of 0.0008N/mm
2
 and 0.001N/mm

2
 

observed in half- ripe and full-ripe fruits respectively in crate were maintained in the basket. In crate, load at 

yield drops from 340N in unripe fruits to 220N and 130N in half-ripe and full-ripe fruits respectively. The same 

trend was observed in basket packaged fruits but all values were slightly elevated by 20N above those in crate.      

           

4.  Conclusions 

This research investigated the effects of ripeness stage, imparted vibration and packaging containers (raffia 

basket and plastic crates) on three important strength parameters – load, deformation and stress – all at bioyield 

point of the packaged fruit when compressed. 

Measurements of the strength parameters at bioyield point of Roma tomatoes revealed that stage of fruit 

ripeness is the major factor contributing to the internal mechanical damage encountered in the compressed fruit. 

Advancing stage of fruit ripeness or increased level of vibration rendered the fruit more susceptible to 

compression stress and reduced fruit resistance to bioyield. This, thus, increases the susceptibility of the 

packaged fruit to mechanical damage under compressive loading. The factors (ripeness and vibration) are 

inter-related and together determine the intensity of compression damage inflicted on the packaged fruits. 

Therefore, packaging of tomatoes at advanced stage of ripeness or subjection to excessive vibration is 

discouraged.  

Hence, unripe tomatoes fruits should be preferred in considering tomatoes for road transportation in 

packaging containers. Considering the correlation between ripening and vibration, careful choice of well 

maintained vehicles for road transportation is also crucial to avoid imparting vibration to the packaged fruit. The 

findings of this study will facilitate an understanding of the mode of mechanical damage caused by compressive 

loading induced within the packages during road transportation.  
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Table 1: Statistical Analysis of Variance (ANOVA) of data on load at bioyield of tomato fruit under compression 

 

Table 2: Statistical Analysis of Variance (ANOVA) of data on deformation at bioyield of tomato fruit under 

compression 

 

 

 

 

 

 

Source Type III Sum 

of Squares 

df Mean Square F Sig. 

Corrected Model 512206.500
a
 11 46564.227 3.848 .001 

Intercept 3102283.684 1 3102283.684 256.384 .000 

VIBRATION 150098.437 2 75049.219 6.202 .004 

CONTAINER 2403.556 1 2403.556 .199 .658 

RIPENESS 131036.190 2 65518.095 5.415 .008 

VIBRATION*CONTAINER 18989.001 2 9494.501 .785 .463 

VIBRATION*RIPENESS 37354.895 4 9338.724 .772 .550 

CONTAINER*RIPENESS .000 0    

VIBRATION*CONTAINER*RIPENESS .000 0    

Error 508206.888 42 12100.164   

Total 4210955.070 54    

Corrected Total 1020413.388 53    

Source Type III Sum 

of Squares 

df Mean Square F Sig. 

Corrected Model 512206.500
a
 11 46564.227 3.848 .001 

Intercept 3102283.684 1 3102283.684 256.384 .000 

VIBRATION 150098.437 2 75049.219 6.202 .004 

CONTAINER 2403.556 1 2403.556 .199 .658 

RIPENESS 131036.190 2 65518.095 5.415 .008 

VIBRATION*CONTAINER 18989.001 2 9494.501 .785 .463 

VIBRATION*RIPENESS 37354.895 4 9338.724 .772 .550 

CONTAINER*RIPENESS .000 0    

VIBRATION*CONTAINER*RIPENESS .000 0    

Error 508206.888 42 12100.164   

Total 4210955.070 54    

Corrected Total 1020413.388 53    
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Table 3: Statistical Analysis of Variance (ANOVA) of data on stress at bioyield of tomato fruit under ompression 

 

Table 4:  Statistical analysis of variance means and ripeness stages 

 

 

In each row, means with the same letter were not significantly (p = 0.05) different. 

Table 5: Statistical analysis of variance means and vibration levels 

 

In each row, means with the same letter were not significantly (p = 0.05) different. 

Source Type III 

Sum of 

Squares 

df Mean Square F Sig. 

Corrected Model 1.614E-05
a
 11 1.467E-06 9.869 .000 

Intercept 1.898E-04 1 1.898E-04 1276.675 .000 

VIBRATION 5.312E-06 2 2.656E-06 17.869 .000 

CONTAINER 9.245E-06 1 9.245E-06 62.193 .000 

RIPENESS 6.957E-06 2 3.479E-06 23.402 .000 

VIBRATION*CONTAINER 5.833E-07 2 2.917E-07 1.962 .153 

VIBRATION*RIPENESS 3.993E-07 4 9.981E-08 .671 .615 

CONTAINER*RIPENESS .000 0    

VIBRATION*CONTAINER*RIPENESS .000 0    

Error 6.243.E-06 42 1.487E-07   

Total 2.147E-04 54    

Corrected Total 2.238E-05 53    

Strength parameter 

 

 Stage of ripeness 

Unripe   Half-ripe Full-ripe 

Load  at yield   (N) 339.933a 233.069b 156.217c 

Deformation at yield   (mm) 18.888a 16.179a 17.483a 

Stress at yield  (N/mm
2
) 1.8944E-03a 1.950E-03a 1.817E-03a 

 

Strength parameter 

Level of vibration 

Non-vibrated Low-vibration  High-vibration 

Load  at yield   (N) 309.379a 221.350b 190.983b 

Deformation at yield  (mm) 21.091a 16.511b 13.945b 

Stress at yield  (N/mm
2
) 2.287E-03a 1.875E-03ab 1.546E-03b 
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Table 6: Statistical Analysis for variable means and container type 

           

 

 In each row, means with the same letter were not significantly (p = 0.05) different. 

 

 

 

Figure 1: Load-deformation curve for vibrated ripe tomatoes packaged in basket 

 

Strength parameter 
Type of container 

Crate   Basket 

Load  at yield   (N) 280.722a 200.419b 

Deformation at yield  (mm) 16.799a 17.565a 

Stress at yield  (N/mm
2
) 1.564E-03a 2.242E-03a 
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