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Abstract

Time series forecasting analysis has become a ntafrin different applications for the Manufactugi
Company. Among the most effective approaches falyamg time series data is ARIMA (Autoregressive
Integrated Moving Average). In this study we usexkBenkins methodology to build ARIMA model for asah
sales forecast for 7up Bottling Company Plc for pegiod from January 2010 to December 2015, given t
available monthly sales data. After the model djmtion; the best model for production was ARIMA (, 1)
and for utilization was ARIMA (0, 1, 1). A 12 morsttiorecast have also been made to determine therixp
amount of sales revenue in year 2016. The timerplatals seasonal variation. It thus concludestHatthere is
increase in sales revenue of Company with timecédhese models can be adopted for sales, productio
utilization and demand forecasting in Nigeria,
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1 Introduction

Business forecasting is defined as a managemehthiatoaims at predicting the uncertainties of hass trends

in order for managers to make better decisions Kela# Wichern, 2005). A quantitative approach toibass
forecasting relies heavily on statistics and thenimalation of historical data. Quantitative foretiag has been
studied extensively in the last decades, and vanoethods on how to manipulate and interpret date lheen
proposed. Quantitative forecasting methods haven bfeeind to produce more accurate forecasts than
judgemental, or qualitative forecasts (Pant & Siakh 1990). However, despite the advanced computers
have today, and the constant development of qa&imét models and methods, most scholars emphatsises
involvement of logic thinking and judgemental adfnsnt to quantitative forecasts (Pant & Starbuck9Qt
Hanke & Wichern, 2005).

There is a scarcity of resources within all firnesmd companies cannot undertake all projects.
Researchers studying business forecasting rardeytkas fact into account, as the methods resessaumstruct
tend to become more and more advanced, and thiesgostly (Makridakis & Hibon, 2000). The risk asisded
to researchers naaking the boundaries of resource-reality of acfirals into consideration might be that the
research becomes focused on forecasting methotkathea few practical implications, as they aredapensive
and too difficult to implement in actual firms. Alse actual definition of business forecasting thea practical,
one might also argue that the scholarly commusityoving away from the actual object the commucigyms
to be studying.

This research exclusively deals with time seriegdasting model, in particular, the Auto Regressive
Integrated Moving Average (ARIMA) in describing aedaluating the trends of sales of Seven-Up Baitlin
Company PLC, Nigeria.

Seven-Up Bottling Company PLC was incorporated pevate company limited by shares on th& 25
of June 1959 under the nhame ‘Seven-Up Limited’raft@aining franchise to bottle and distribute 7h&verage
from Seven-Up International Inc. The Company comreenoperations on®lof October 1960 with the first
bottle of 7Up coming off the production line at figsra Plant on the same date which coincidentatyg also the
date Nigeria gained independence from Britain. €bmpany has come a long way from being a one plant
business to that which currently operates 9 pliotated in Aba, Abuja, Benin, Enugu, Ibadan, Ikéferin,
Kaduna and Kano. These plants support variousildisiton centres across the country. In a bid toewidts
distribution network, the Company exports its pretduto the West African sub-region which produaistmue
to enjoy increase loyalty in the market. The Conypmbrands: Pepsi, 7Up, Mirinda Orange, Mirindadgiple,
Mountain Dew, Teem Bitter Lemon, Teem Tonic, Teeod& and Aquafina. Table water are produced in
conformity with International standards. In linetlvimodern trends and market demand, the Comparmy als
package its products in PET and Can, this thugfyusie choice of the case study.

2. Conceptual clarification
2.1 Background and history of Business Forecasting
When business forecasting was introduced as aduifjacademic interest, the method used most widéhin
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the business sector was exponential smoothing msth& practitioner, Robert G. Brown, introduced the
methods in the late 50s (Lapide, 2009). These exqital smoothing methods still live on today. Latetwore
advanced methods taking seasonality and trenddotmunt were brought forward in the 60’s and 70J)s b
scholars such as Holt (trend) and Winter (seastyratid trend) (Lapide, 2009).

As managers later understood that actions suchaasgpional activities, competitor action and produc
introduction would shape and create demand, thasables needed to be understood and incorporatedhie
forecasts. One method to incorporate explanatonabigs was the ARIMA-model. Pioneers within theldi of
ARIMA-models were statisticians George Box and Gwil Jenkins who 1970 created the Box-Jenkins
methodology to find the best fit of a model in arde forecast (Lapide, 2009).With the introductioh
computers, more advanced forecasting measurestexged. In the latest of the M-competitions, wafferent
forecasting methods are compared, seven (out ofw&fe software-run commercially available packages
(Makridakis & Hibon, 2000).

2.2 Quantitative forecasts
The features of quantitative forecasting modely ggeatly, as they have been developed for diffepenposes.
The results are a number of techniques varying lmotomplexity and structure. However, a commornamis
that quantitative forecasts can be applied whesetbonditions are met (Makridakis, et al., 1998):
1. There is information about the past
2. The information can be quantified
3. It can be assumed that the past pattern witecethe future pattern.
Once it has been specified that the data availeddeond well to the three conditions above, theiact
recognition of an appropriate forecasting technigae begin. This is mainly done by initially invigstting the
data, a task known &ecomposition (Hanke & Wichern, 2005)
2.2.1 Decomposition
Quantitative forecasting methods are based on tneapt that patterns in historical data exist, #rat this
pattern can be used when predicting future salesk(idakis, et al., 1998). Most of the forecastingtihods
break down the pattern into components, where egemgponent is analysed separately. This breakddwn o
pattern is also called thidiecomposition of a pattern. Decomposition is usually divided @ofvs:
Y =f(T, & B) (1)
Where:
Yt = the time series value at period t; St = th@ss@al component at period t ; Tt = the trend-cgolmponent at
period t; Et =the error component at time t
The method that calculates the time series valoéhase an additive or a multiplicative form. Thelgige form
is appropriate when the magnitude of the seasduetubtions does not vary with the level of theiesgrThe
multiplicative form is thus appropriate when seaddiuctuations increase and decrease with thel lefzéhe
series.
The additive decomposition equation has the forps V; + S + E | (2)
While the multiplicative decomposition has the féy= T, x S X E 3)
2.2.2  Seasonally Adjusted Data
Seasonally Adjusted Data can be can easily be lesdcli by subtracting the seasonal component froen th
additive formula, or by dividing it from the multipative formula. Calculating the seasonal compoream be
done in many ways, and involves comparing seastai@ to the average value. For example, if theameer
value over a year is 100, while the value for Jayus 150, the seasonal component is 50 for antiaddi
approach, and 1.50 for a multiplicative approachc®the data has been seasonally adjusted, onlyethe-
cycle and irregular components remain. Most econotime-series are seasonally adjusted as seasonalit
variations are generally not of primary interestél the seasonally adjusted component has beeweelribis
easier to compare values to each other.
2.2.3  Trend adjusted data
Trend-cycle components can be calculated by exatudiie seasonality and irregular component. Thege a
many different methods to identify a trend-cyclé the basic idea is to eliminate the irregular comgt from a
series (as the seasonality component has alreayreenoved — see above) by smoothing historical. ddie
simplest and oldest trend-cycle analysis modeiésnhoving average model. There are several diffen@ving
average models such as simple moving average, elomiolving average and weighted moving average
(Makridakis, et al., 1998)
2.2.4  Error adjusted data
Simple moving average assumes that observationsatlaadjacent in time are likely to be close iluga
Through a smooth trend-cycle component, simple ngpwaverage will eliminate some of the randomneas th
occurs (Makridakis, et al., 1998).

When using simple moving average the first thind#odecided is the order of the moving average.
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Order means how many different checkpoints to ngbeé analysis. Common orders to use are 3 or &.ridre
order of numbers included, the smoother forecastget. The likelihood of randomness in the datd aldo be
eliminated with a large number of orders. Simpleving average can be used for any odd order. Omdler i
defined ak, and the trend cycle component by the use of implving average is computed as:

m
Tt = 1/KkZYt+]j 4)
J=-m

where m = (k -1)/2
t is the period which trend component is estimased] t is also the centred number. This meansnhathree-
order average, the thirds;¥s the period that follows the period that is lgemneasured. Every new calculation
drops the oldest number and include a new numbat vthy that is called moving average. Becauséisf it is
not possible to calculate the trend-cycle in thgitm@ng and in the end of a time series. To overdhis
problem a shorter length moving average can be st initiating phase, which means that thet finsmber
can be estimated by using an average.of
2.25  Autocorrelation
Another way to decompose a data series is to perfam autocorrelation analysis. Autocorrelation gsial
allows you to investigate patterns in the datathgyng the autocorrelation coefficients. The dicéfnt shows
the correlation between a variable lagged a number of periods tmedf.i The autocorrelation can be used to
answer four questions regarding patterns in a senges (Hanke & Wichern, 2005):
1. Is the data random?
2. Do the data have a trend?
3. Is the data stationary?
4. Is the data seasonal?
The autocorrelation coefficient)ris computed as:
Ie = 2" -+ o(Yi —mean(Y) (¥_—mean (Y)) (5)

2" - (Yi—mean (Y)})
Wherek is the lag and is the observed value.
If ry is close to zero, the series can be assumed tarigom. That means that for any lathe series are not
related to each other.

If ry is significantly different from zero for the firtime lags and then slowly drop towards zero as the
number of lags increases, the series can be asdorhage a trend.

If r, reappears in cycles, the series can be assumbdvio a seasonal pattern. The coefficient will
reoccur in a pattern as for example four or twdbgs. A seasonal lag of four means that the datasses
quarterly, while a significant value twelve meanattthe series is yearly.

The definition ofautocorrelation close to zero is that the distribution of the autocorrelation fficent
is approximated as a normal distribution with a mefzero and has an approximated standard dewiafiaAn
(Hanke & Wichern, 2005). To calculate the critisa@lues, Makridakis et. al. (1998) propose to usgs%
confidence interval, meaning that 95% of all sammieautocorrelations coefficients will be withid . #6An for
the series to be counteddsse to zero.

2.2.6  ldentifying outliers

An important aspect of setting up a quantitativeedasting model is that of identifying outliers. tidars are
values outside a lower and upper limit (TypicalB?® confidence interval around the mean of the datathat
depend on an external factor. In business forauastin outlier usually means that seasonal fa¢sush as the
end of a budget year, or vacations) or single ev@arge tender orders from a big company) for ectic
month/week/day affect the order intake heavily. Extreme value in order intake will not reflect mad
demand, and should therefore not be considered wh#ing up quantitative forecasting models (Hagke
Wichern, 2005).

Consider a firm that has a price increase in Deegrabhch year. The price increase makes the demand
for the company’s product increase by 200% in Ndvem If the November value should be used when
forecasting future demand, the forecast will behagh, as future demand will depend on a datahs#tdoesn’t
reflect normal demand. Researchers have identifisderous ways of identifying outliers. Two methads
called trimming and winsorizing. When trimming datiae top and bottom values are excluded deterntiyeal
fixed value in per cent. For example, a 10 per ¢gmtming means that the top 5 percent and theoboth
percent are discarded from the data set. Winsgrizisimilar to trimming, but it replaces extrenaues instead
of discarding them. A 10 per cent winsorization nsethat the data below the 5th percentile of tha daset to
the 5th percentile and the values above the 95ttepéle is set to the 95th percentile (Jose & W&nk2008).

A major factor influencing the selection of foretiag method is what pattern that can be identified
within the data. Depending on characteristics aaglseasonality, trend and cyclical patterns inddia series,
different models are better optimized to deal whk patterns found in the data. The concept of singoa
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forecasting method is based on trial and error Kda Wichern, 2005). The trial is set up by apptyimistorical
data to a forecasting model to measure how acctitatenodel would have forecasted. The forecastinthod
that produces the most accurate and the one wéthetist error will be used for the future (Hanké\8chern,
2005).

2.3 Overview of Auto Regressive Integrated Moving Average (ARIMA)
The ARIMA procedure analyzes and forecasts equsced univariate time series data, transfer fonatata,
and intervention data by using the autoregressntegrated moving-average (ARIMA) or autoregressive
moving-average (ARMA) model. An ARIMA model predich value in a response time series as a linear
combination of its own past values, past errorso(aklled shocks or innovations), and current aasd palues of
other time series. The ARIMA approach was firstyagzed by Box and Jenkins, and ARIMA models dtero
referred to as Box-Jenkins models. The generasfearfiunction model employed by the ARIMA proceduras
discussed by Box and Tiao (1975). When an ARIMA #giddcludes other time series as input variables, t
model is sometimes referred to as an ARIMAX mod&hnkratz (1991) refers to the ARIMAX model as
dynamic regression

The ARIMA procedure provides a comprehensive settomfls for univariate time series model
identification, parameter estimation, and forecegtiand it offers great flexibility in the kinds &RIMA or
ARIMAX models that can be analyzed. The ARIMA prdaes supports seasonal, subset, and factored ARIMA
models; intervention or interrupted time series eledmultiple regression analysis with ARMA erroes)d
rational transfer function models of any complexithe ARIMA class of time series models is compéed
powerful, and some degree of expertise is needadddhem correctly.

3. Materials and M ethods

This research exclusively deals with time serggedasting model, in particular, the Auto Regressntegrated
Moving Average (ARIMA). These models were descriligdBox and Jenkins (Box and Jenkins, 1976) and
further discussed in some other resources (Wd&83; Chatfild, 1996 and Montgomery, and Johns@V19
such as: The Box-Jenkins approach which possesarg appealing features. It allows the manager wd® h
only data on past years’ quantities, rainfall asesgample, to forecast future ones without havingearch for
other related time series data, for example tenperaBox- Jenkins approach also allows for theafsseveral
time series, for example temperature, to explagnbbhavior of another series, for example rainifiahese other
time series data are correlated with a variablantdrest and if there appears to be some causehisr
correlation; Box-Jenkins (ARIMA) modelling has besuiccessfully applied in various water and envirental
management applications.

The main stages in setting up a forecasting ARIMdAdel includes model identification, model
parameters estimation and diagnostic checking ffier identified model appropriateness for modelingl an
forecasting. Model Identification is the first stepthis process. The data was examined to cheackh&o most
appropriate class of ARIMA processes through silgahe order of the consecutive and seasonalrdiffing
required to make series stationary, as well asifyreg the order of the regular and seasonal aetpeassive and
moving average polynomials necessary to adequabgyesent the time series model. The Autocorreiatio
Function (ACF) and the Partial Autocorrelation Fimt (PACF) are the most important elements of tgaeges
analysis and forecasting. The ACF measures the ahafuinear dependence between observations ima t
series that are separated by a lag k. The PACFhglipts to determine how many auto regressive temas
necessary to reveal one or more of the followingrabteristics: time lags where high correlationpesp,
seasonality of the series, trend either in the nemal or in the variance of the series. The gdneradel
introduced by Box and Jenkins includes autoregresand moving average parameters as well as differg in
the formulation of the model. The three types obpaeters in the model are: the autoregressive meas(p),
the number of differencing passes (d) and moviregaye parameters (q). Box-Jenkins model are surnethas
ARIMA (p, d, q). For example, a model describeddMA (1,1,1) means that this contains 1 autoregjres
(p) parameter and 1 moving average (q) parametehéotime series data after it was differencedeaicattain
stationary. In addition to the non-seasonal ARIMA, q) model, introduced above, we could idergdasonal
ARIMA (P, D, Q) parameters for our data. These peters are: Seasonal autoregressive (P), seasonal
Differencing (D) and seasonal moving average (@). &xample, ARIMA (1,1,1)(1,1,1) 12 describes a giod
that includes 1 autoregressive parameter, 1 moavegage parameter, 1 seasonal autoregressive pgarand
1 seasonal moving average parameter.

These parameters were computed after the seriesliffei®nced once at lag 1 and differenced once at
lag 12.

This model can be multiplied out and used for fagting after the model parameters were estimased, a
we discussed below. After choosing the most apjtgprmodel (step 1 above) the model parameters are
estimated (step 2) by using the least square methdtis step, values of the parameters are chtwserake the
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Sum of the Squared Residuals (SSR) between thedadaland the estimated values as small as paskible
general, nonlinear estimation method is used tamagt the above identified parameters to maximize t
likelihood (probability) of the observed series ajivthe parameter values. The methodology useotlogving
criteria in parameter estimation:

The estimation procedure stops when the changk par@meters estimate between iterations reaches a
minimal change of 0.001. The parameters estimationedure stops when the SSR between iteratiochesa
minimal change of 0.0001

In diagnose checking step (step three), the relsiduam the fitted model shall be examined against
adequacy. This is usually done by correlation aialyhrough the residual ACF plots and the goodnésis
test by means of Chi-square statistics. If thedresds are correlated, then the model should bee@fas in step
one above. Otherwise, the autocorrelations areewmiise and the model is adequate to representiroar
series. After the application of the previous prhae for a given time series, a calibrated modél be
developed which has enclosed the basic statigticglerties of the time series into its parametstep(four). For
example, the developed model, as shown in (1) abamebe multiplied out and the general model idtemiin
terms of Xt.

Time series Model Builder (Time Series Modeler)SHSS was used to obtain the appropriate model
for the Time Series Data (Sales of Seven-Up BgttlGompany PLC). The Time Series Modeler procedure
estimates exponential smoothing, univariate Aut@sgjve Integrated Moving Average (ARIMA), and puods
forecast values. The procedure automatically ifiestiand estimates the best-fitting ARIMA or expotial
smoothing model for the series. This eliminatesrtbed to identify an appropriate model througH &rad error.

In common models for time series data can have nfarps and stand for different stochastic
processes. There are two commonly used linear $ignes models in literature, viz. Autoregressiv&R)Aand
Moving Average (MA) models. Combining these twoe tAutoregressive Moving Average (ARMA) and
Autoregressive Integrated Moving Average (ARIMA) dets have been proposed in literature. The
Autoregressive Fractionally Integrated Moving Aygga(ARFIMA) model generalizes ARMA and ARIMA
models. For seasonal time series forecasting, iatiar of ARIMA, viz. the Seasonal Autoregressivgelgrated
Moving Average (SARIMA) model is used.

ARIMA model and its different variations are basmdthe well known Box-Jenkins principle and so
these are also broadly known as the Box-Jenkinstaodn ARIMA (p, g, d) model is a combination oR{p),

I(d) and MA(q) models and is suitable for univagidime series modeling. In an AR (p) model the reitvalue
of a variable is assumed to be a linear combinatiop past observations and a random error mutweily a
constant term.

4 Results and Discussion
41 Results
Since the data is a monthly production and utilargtFig. 1, shows that there is a seasonal cykctaeseries
and the series is not stationary. The ACF and PALtRe original data, as shown in Fig. 3 and 4,idspghat
the sales and utilization data is not stationamyorder to fit an ARIMA model, stationary data iath variance
and mean are needed. Stationarity in the variarmédcbe attained by having log transformation and
differencing of the original data to attain statioy in the mean. For our data, we need to haveosahéirst
difference, d = 1, of the original data in orderhive stationary series. After that, we need tottes ACF and
PACF for the differenced series to check stationary
Sequence Plot

Table 1: Case Processing Summary

7-UP
Series or Sequence Length 72
Number of Missing Values i User-Missing 0
the Plot System-Missing 0

10
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Figure 1: Time plot for sales before differencing

The plot shows the variability of the series appaarbe changing with time. Therefore the mean and
varianceare not constant, suggesting that thessisrigot stationary
Time Series M odeler

Table 2: Model Description
Model Type
Model ID  7-UP  Model_1 | ARIMA(0,0,1)(0,1,0)

Model Summary
Table 3: Modéd Fit

Fit Statistic Mean SE Minimum Maximum
Stationary R-squared .288 . .288 .288
R-squared .880 . .880 .880
RMSE 46432.927 . 46432.927 46432.927
MAPE 5.500 . 5.500 5.500]
MaxAPE 16.048 . 16.048 16.048
MAE 37819.884 . 37819.884 37819.884
MaxAE 120607.663 . 120607.663 120607.663
Normalized BIC 21.628 . 21.628 21.628
Table4: Mode Statistics
Model Number of Model Fit Ljung-Box Q(18) Number of
Predictors statistics Outliers
Stationary R- | Statistics DF Sig.
squared
7-UP-Model 1 0 .288 23.406) 17 .136 0

11
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Table5: Forecast
Model
7-UP-Model 1
Forecast UCL LCL
Jan 2016 905379.07 998121.65 812636.49
Feb 2016 863950.14 970841.14 757059.07%
Mar 2016 1.04E+006 1.15E+006 935209.07%
Apr 2016 774875.13 881766.14 667984.0%
May 2016 641263.14 748154.14 534372.0%
Jun 2016 953025.14 1.06E+006 846134.07%
Jul 2016 863950.14 970841.14 757059.07%
Aug 2016 908488.14 1.02E+006 801597.07%
Sep 2016 897440.14 1.00E+006 790549.07%
Oct 2016 863950.14 970841.14 757059.07%
Nov 2016 873480.14 980371.14 766589.07%
Dec 2016 710818.14 817709.14 603927.07%

For each model, forecasts start after the lastmimsing in the range of the requested estimaticioge
and end at the last period for which non-missinlges.of all the predictors are available or atghd date of the
requested forecast period, whichever is earlier.
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Figure 2: Numbers Predictor
ACF
Table6: Model Description
Model Name MOD_11
Series Name 1 7-UP
Transformation None

Non-Seasonal Differencing
Seasonal Differencing

Length of Seasonal Period
Maximum Number of Lags

Display and Plot

Process Assumed for Calculating the Standard Eofditse Autocorrelations

All lags

Independence(white noide)

0
0
12
16

Applying the model specifications from MOD_11
a. Not applicable for calculating the standard rsraof the partial autocorrelations.

12
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Table7: CaseProcessing Summary

7-UP
Series Length 72
. User-Missing 0
Number of Missing Values System-Missing 0
Number of Valid Values 72
Number of Computable First Lags 71
7-UP
Table8: Autocorrelation
Series: 7-UP
Lag Autocorrelation Std. Errof Box-Ljung Statistic
Value df Sig®
1 .588 115 25.920 1 .000
2 490 115 44.193 2 .000
3 .528 114 65.695 3 .000
4 .387 113 77.415 4 .000
5 .506 112 97.773 5 .000
6 .538 111 121.129 6 .000
7 .455 110 138.130 7 .000
8 .296 110 145.409 8 .000
9 .345 .109 155.495 9 .000
10 .256 .108 161.116 10 .000
11 275 107 167.702 11 .000
12 .595 .106 199.153 12 .000
13 .298 .105 207.188 13 .000
14 234 .104 212.202 14 .000
15 .252 .103 218.126 15 .000
16 .104 .103 219.154 16 .000
a. The underlying process assumed is independamite (noise).
b. Based on the asymptotic chi-square approximation
7-UP
Bl cosfficient
1.0 — Upper Confidence Limit
— Lower Confidence Limi
0.5+ =1 =i
18
2 0o D
-0is
1.0
T I ] T T T ] T T T T ] [] T T T
12 3 4 & & F B 9 10 1 12 13 14 15 16
Lag Number
Figure3: ACF

13
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Table9: Partial Autocorrelations

Series: 7-UP
Lag Partial Autocorrelation Std. Error
1 .588 .118
2 221 .118
3 .279 .118
4 -.056 .118
5 314 .118
6 .160 .118
7 .061 .118
8 -.314 .118
9 145 .118
10 -.187 .118
11 144 .118
12 496 .118
13 -.380 .118
14 -.040 .118
15 -.150 .118
16 .001 .118
T-UP
O coefficient
1.0 = Upper Conficence Limit
— Lower Confidence Limit
0.5 —
E —
=z O= [0 [
& 0 || I
0 IO

054
1.0
T T | T | | T I | T T I T T I I
12 3 4 5 6 7 B 8 10 11 12 13 14 15 16
Lag Number
Figure 4: Partial ACF
4.2 Discussion

Since the time plot, autocorrelation and partiabearrelation functions indicated seasonality ia Heries, the
Autoregressive Integrated Moving Average (ARIMA) deb is appropriate. The results are as shown in the
Tables 3 to 5. The forecast values for 12 montla®.(2016 to Dec. 2016) were shown in Table 5. The
Autocorrelation function (ACF) before differencispows that it has no cyclical pattern but obsenved the
highest spike is in lag 12. While the Partial Autrelation function (PACF) shows that it has a madlpattern
and cut off after lag 1 but the highest spike ik 1, after lag 12 everything tends to zero.

Time plot for quarterly sales as presented in Bg@r after first differencing shows the mean and
variance appeared to be constant. Therefore, tliesse stationary since the mean and variancec@anstant.
ACF shows there is no correlation function aftez fiist differencing. Therefore the series is siadry. The
PACF shows that there is no correlation in theesesfter first difference. However the series iaticthe
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presence of AR and MA process models. It is cléat tn both the Sales and Utilization that the gratt
continues for the upcoming years 2016 and beyoddtzere are no indications that the quantity sdl&even-
Up products decreases with time.

5. Conclusion

The study aimed at predicting the amount of sagsnue that Seven-Up Bottling Company PLC wouldisea
from January 2016 to December 2016 given the aailmonthly data on sales revenue from January 2010
December 2015. This is with a view to find whettiegre would be an increase or decrease in salesuevof
7Up Bottling Company’s products. Time plot analyaigs used in this research work to analyze thesipatif
Sales revenue within the time under study. Theystlberved that the series have irregular pattdter taken
the first differencing the series became stationbigvertheless in modeling ARIMA (p, d, q) the bexidel is
ARIMA (1, 1, 1) for production and ARIMA (0, 1, Tpr utilization. A 12 months forecast have alsorbesde
to determine the expected amount of sales revenyesar 2016. The time plot reveals seasonal variati

ARIMA is a trendy method to analyze stationary amiate time series data. There are generally three
main stages to build an ARIMA model, with model ritiication, model estimation and model checking, o
which model classification is the most crucial stag building ARIMA models. Thus the survey prowsdan
insight into the various time series prediction dokcasting models with reference to ARIMA. Alsdoa of
real world applications conducted by the variouspes were studied and it has come to prove thaMARs a
real world toll for time series prediction, foretiag and analysis with accuracy.

From the result, the trend used to determine wihetakes revenue is increasing or decreasing shows
that there is increase in sales revenue of Compaitly time. From the forecast for sales it showst tha
Company’s sales revenue will be increasing by eacdwrter Hence these models can be adopted for, sales
production, utilization and demand forecasting ige\ia.
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