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Abstract 

This paper compared the performance of two forecasting models (Seasonal ARIMA and 
Exponential smoothing) in an attempt to identify the model that fits properly in forecasting 
tourist arrivals in a dynamic tourism industry in Tanzania.  A two-staged approach to 
forecasting was carried out using monthly data for the period of 2000 to 2009. The models 
were assessed in similarly structured setting at the outset, and then best models identified at 
this level were compared in a differently structured setting. The results show that Seasonal 
ARIMA(4,1,4)(3,1,4)12 and Holt-Winters multiplicative smoothing method are effective in 
forecasting tourist arrivals in Tanzania in a similarly structured setting. However, when the 
two models were compared under different structures, the performance of Holt-Winters 
multiplicative smoothing method outstripped that of Seasonal ARIMA(4,1,4)(3,1,4)12. This 
suggests that Holt-Winters multiplicative smoothing method with Alpha (0.01), Delta (0.11) 
and Gamma (0.11) is more effective in forecasting tourist arrivals in Tanzania in the short run 
and it can be used to aid planning processes in the tourism industry. Moreover, the seasonality 
pattern that characterizes tourist arrivals in Tanzania highlights the need to promote more of 
local tourism so as to lessen the negative impacts associated with it. 
Keywords: Tourist Arrivals, Forecasting, Model, Seasonal ARIMA, Exponential Smoothing, 
Holt-Winters additive, Holt Winters Multiplicative 
JEL: C53 
 

1. Introduction 

The tourism sector is recognized as a growing industry playing an important role in trade, 
economic and social development. A large number of countries worldwide depend on tourism 
for their economic growth since has been a major sector in foreign exchange earnings via the 
economic linkages with other sectors. According to the United Nation World Tourism 
Organization (UNWTO, 2009), visitor expenditure on accommodation, food and drink, local 
transport, entertainment and shopping is an important pillar of the economies of many 
destinations. As an internationally traded service, tourism has become one of the major trade 
categories. The overall export income generated by inbound tourism, including passenger 
transport exceeded USD 1 trillion in 2009 worldwide (UNWTO, 2010). Tourism exports 
account for as much as 30 per cent of the world’s exports of commercial services and 6 per 
cent of overall exports of goods and services. Globally, as an export category, tourism ranks 
fourth after fuels, chemicals and automotive products. The contribution of tourism to 
economic activity worldwide is estimated to be 5 per cent. For many developing countries, it 
is one of the main sources of foreign exchange income and the number one export category, 
creating much needed employment and opportunities for development (Ibid). 

 

International tourist arrivals have continued to grow. For instance in 1990 tourist arrivals were 
438 million and continued to grow to 684 million in 2000, and reaching 922 million in 2008 
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(UNWTO, 2009). In 2006, the sector generated 10.3 per cent of GDP and providing 234 
million jobs, the 8.2 percent of total world employment (UNWTO, 2007). In 2008, the GDP 
of the international tourism reached USD 7.5 trillion, while the capital investment for tourism 
was USD 682 billion and tax revenue were USD 503 billion (WTTC, 2009).  In 2008, 83.2 
per cent of all international tourist arrivals took place in Europe and North America. The 
leading tourism generating countries worldwide include USA, Britain, Germany, France, 
Canada and Japan, which contribute almost half of the global tourism revenue (WTO, 2010). 
The World Tourism Organization (2010) forecasts that international arrivals will be up to 1.6 
billion in the year 2020 and travelers will spend over USD 2 trillion, making tourism the 
world’s leading industry. These projections are based on annual growth rates of 4.3 percent for 
arrivals and 6.7 per cent of spending, well above the maximum expected expansion of 3 per 
cent per year in world GDP. The total tourist arrivals by region shows that by 2020 the top 
three receiving regions will be Europe (717 million tourists), East Asia and the Pacific (397 
million) and the Americas (282 million), followed by Africa, the Middle East and South Asia. 
Africa achieved positive growth of international tourism, in which the tourist arrivals grew by 
3 per cent and reached 5 per cent of the world total in 2009. 

 

In the Tanzania’s case, tourism is a good source of foreign exchange and employment as well, 
as the country enjoys large endowments of world-class tourism assets such as natural, cultural, 
historic and archeological, that are in high demand in international tourism markets. The 
contribution of tourism in the country’s export has been increasing, for example, in 1995 the 
number of tourist arrivals was 285,000 and receipts stood at USD 502 million while in 2013 
the number of tourist arrivals reached 1,063,000 and tourism receipt was USD 1,939 million. 
The tourism industry also generates forward and backward linkages with other sectors. The 
linkages can enhance or reduce the economic returns to tourism and exert an influence on the 
markets. Hotels, for example, require many inputs which can be produced locally, the extent 
that these inputs are produced locally can enhance value added and when are imported, they 
generate leakages of money flowing out of the economy. But the forward linkages exist when 
products and services are value added outside hotels. Handicrafts and shopping are good 
examples. In the modern tourism sector, the way in which these opportunities add value, or 
differentiate the product, has an important impact on tourism’s overall success (MIGA, 2006). 
The reports indicate that the international tourism demand is growing quickly in Tanzania 
with around 9 percent (2008-2012. The tourist arrivals is characterized by seasonality, 
whereby certain months register relatively higher number of arrivals than others, for instance 
in 2014, February and August had the highest number of arrivals (124,264 and 120536) while 
April and May recorded the lowest (80,519 and 81,421), a period which normally coincides 
with the main rainy season. 

 

On the other hand, the tourism sector is fraught with some challenges which are related to 
infrastructural problems such as access roads, poor air transport connectivity; limited support 
services such as hotels/restaurants facilities; few local and foreign investment in provision of 
infrastructure and tourist services and shortage of skills of the range of officials and 
employees with which tourist come into contact. However, according to World Bank report 
(2013), when compared with other Sub Saharan African countries, Tanzania has placed itself 
in a position to sustain and deepen tourism sector successes so far achieved; this can be 
achieved where possible by distributing tourist arrivals more evenly during the calendar year 
across the country. The report states that the northern circuit is overloaded and the country is 
trying to create new areas for tourism growth in the south, in Pemba and Mafia Islands, the 
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Sealous reserve and Zanzibar. Therefore, along with the initiatives in place to augment the 
performance of the tourism sector, this paper is set to explore the appropriate tourist arrivals 
forecasting model/tool which would aid planning processes in the tourism industry as the 
World Bank report (2013) states that the scale of development in the sector will determine the 
extent of the transformation that the investment can achieve, if the development exceeds the 
absorptive capacity of the assets and resources available to manage the sector, negative 
consequences will ensue. Thus, accurate tourist arrivals forecasting is important in order to 
provide for adequate planning for tourism infrastructure and facilities to capture tourism 
growth, and avoid shortages or surpluses in tourism goods and services (Grundy, 2011) 
 

2. Literature Review 
Various studies have suggested that ARIMA and Exponential Smoothing methods are better 
forecasting models than either econometric or other time-series models. The studies include, 
Dharmaratne (1995) who compares a number of ARIMA-type models to forecast tourist 
arrivals in Barbados. The study concludes that ARIMA-type models are capable of producing 
valid forecasts, but specifically the ARIMA (2,1,1) is the best performing model. A study by 
Kulendran and Wong (2005) suggests that ARIMA provides more accurate forecasts for a 
time series that has fewer seasonal variations, whereas SARIMA provides more accurate 
forecasts for a time series that has a strong seasonal variation. 
  
Further, Chen (2000) examined different forecasting techniques for domestic tourism demand 
forecasting, the study concluded that the ARIMA method was more accurate than other 
approaches to predict the future visitation figures in both annual and seasonal data forms. In 
addition, Lin et al. (2011) tried to build the forecasting model of visitors in Taiwan using three 
models which are ARIMA, Artificial Neural Networks (ANNs), and multivariate adaptive 
regression splines (MARS) methods. Their experimental results demonstrated that ARIMA 
outperformed ANNs and MARS approaches in terms of RMSE, MAD, and MAPE and 
provided effective alternatives for forecasting tourism demand. However, Wong et al. (2007) 
compared the ARIMA models with several other time-series and econometric models, such as 
the ADLM, ECM and VAR. The authors did not confirm the superiority of the ARIMA 
models or any other model over the others, for all sample countries instead the authors 
suggest that in some cases the best forecasting accuracy can be obtained with combined 
forecast models. 
  
The other popular and widely used forecasting model in time series analysis is exponential 
smoothing. Ostertagova and Ostertag (2012) argue that exponential smoothing is 
characterized by simplicity, computational efficiency, ease of adjusting its responsiveness to 
changes in the process of forecasting, and it is reasonable accuracy. Ravinda (2013) in his 
study on Forecasting with Exponential Smoothing argues that when there is no trend in the 
data, simple exponential smoothing will yield a minimum error when α value is small, in the 
range 0.0 – 0.3. This is true to small series (n=12) as well as large (n=60) and when there is a 
linear trend in the data, the performance of double exponential smoothing depending on the 
initial estimates of the level and trend components is good. Dimitrov (2008) explains also the 
primacy of exponential smoothing in forecasting, as the name suggests the weights attached to 
past time periods in forming the forecast decline exponentially. That is, the weights decrease 
rapidly at first and then less and less and so as the time period becomes older. The weight 
attached to a particular value approaches, but never quite reaches zero. This method generates 
accurate forecasts for many time series variables, recognizing the decreasing impact of past 
time periods as they faded further into the past. There are several types of exponential 
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smoothing models which can be applied in forecasting depending on the nature of data in 
consideration for instance single exponential smoothing smoothes data by computing 
exponentially weighted averages and provides short-term forecasts. Double exponential 
smoothing provides short-term forecasts as previous methods. This procedure can work well 
when a trend is present, but it can also serve as a general smoothing method. This method is 
found using two dynamic estimates, α and β (with values between 0 and 1). Whereas Winter’s 
Method smoothes data by Holt-Winters exponential smoothing and provides short to medium-
range forecasting. This can be used when both trend and seasonality are present, with these 
two components being either additive or multiplicative. Winters' Method calculates dynamic 
estimates for three components; level, trend and seasonal denoted by α, β and γ (with values 
between 0 and 1) (Holt, 1957). However, the literature shows that there is no single model 
that consistently outperforms other models in all situations; therefore, this paper attempts to 
compare the two approaches in order to arrive to the best method that can be used in 
forecasting tourist arrivals in Tanzania. 
 

3.0 Data and Methodology 
This paper uses monthly tourist arrivals data from January, 2000 to December, 2009 due to 
data availability. The data were sourced from Tanzania Tourist Board (TTB) and the Ministry 
of Natural Resources and Tourism (MNT). 
 

3.1 Methodology 
3.1.1 Seasonal ARIMA 
 ARIMA models depend on a statistical modeling theory known as the Box–Jenkins 
methodology. This methodology is concerned with iteratively building a parsimonious model 
that accurately represents the past and future patterns of a time series (Louvieris, 2002). The 
ARIMA modeling approach expresses the current time series value as a linear function of past 
time series values (AR) and current lagged values of a white noise process (MA). The 
ARIMA model, which can be fitted to seasonal time series (quarterly or monthly 
observations), consists of seasonal and non seasonal parts; the seasonal part of the model has 
its own autoregressive and moving average parameters with orders P and Q while the non 
seasonal part has orders p and q (Kulendran and Shan, 2002). The AR, MA, or ARMA models 
are often viewed as stationary processes, that is, their means and covariances are stationary 
with respect to time. Since we are using monthly data with seasonal pattern we use ARIMA 
(p,d,q), (P,D,Q)s. 
 
Where 
(p,d,q) = Non-seasonal part of the model 
 
(P,D,Q) = Seasonal part of the model 
  
( S)= Number of period per season 

( )(1 )(1 ) ( ) ( )qr s p Q
t p t q QB B f B c eq B Q B+− − Υ = +  

Where 

(1 )rB− = The regular difference of order r 

(1 )sB− = The tourist arrival data 

( )
P

p Bf = The regular autoregressive terms 
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( )
P

P BF = The seasonal autoregressive terms 

C= Constant term 
tε = The error of residuals  

( )
q

q Bq = The regular moving average terms 

( )
Q

Q BQ = The seasonal moving average terms 

Then, we create a catalog of autocorrelation Function (ACF) and Partial Autocorrelation 
Function (PACF) to determine whether or not seasonal difference is needed. The graph of the 
sample of autocorrelation function (ACF) and partial autocorrelation function (PACF) are 
drawn. The ACF measures the amount of linear dependence between observations in a time 
series that are separated by a lag q. The PACF helps to determine how many autoregressive 
terms in p are necessary (Chang, 2012). The general features of theoretical ACFs and PACFs 
are shown in table 1.  

Table 1: Characteristics of ACF and PACF in Seasonal ARIMA Model  

Model ACF PACF 
AR Spikes decay towards zero Spikes cutoff to zero 
MA Spikes cutoff to zero Spikes decay to zero 
ARMA Spikes decay to zero Spikes decay to zero 

Source: Pankratz (1983) 
 

Seasonal ARIMA model requires diagnostic checking (or modal validation); before can be 
used for forecasting application. This is done by checking for normality of the residuals or by 
using a quantile-quantile (Q-Q) plot. The check of model adequacy is provided by the Ljung-
Box Q statistic. The test statistic Q is given by 
 

2

1

' ( 2) ( )
P

K

pk
Q T T

T k=

= +
−∑

 
Where pk is the sample autocorrelation at lag k 

 

3.1.2 Exponential Smoothing 

While in seasonal ARIMA the past observations are weighted equally, on the other hand, 
exponential smoothing produces a smoothed time series. Exponential Smoothing assigns 
exponentially decreasing weights as the observation get older where as there are one or more 
smoothing parameters to be determined (or estimated) and these choices determine the 
weights assigned to the observations (Dimitrov, 2008). With regard to exponential smoothing, 
this paper uses two exponential smoothing techniques which are Holt-Winters additive and 
Holt-Winters multiplicative exponential smoothing to determine the appropriate forecasting 
model. Holt (1957 and Winters (1960) extended Holt’s method to capture seasonality. The 
holt-winters seasonal method comprises the forecast equation and three smoothing equations, 
one for the level, one for trend and the other for the seasonal component. There are two 
variations to this method that differ in the nature of the seasonal component. The additive 
method is preferred when the seasonal variations are roughly constant through the series while 
the multiplicative method is preferred when the seasonal variations are changing proportional 
to the level of the series. With additive method, the seasonal component is expressed in 
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absolute terms in the scale of the of the observed series and in the level of equation, the series 
is seasonally adjusted by subtracting the seasonal component. With multiplicative method, the 
seasonal component will add up to approximately zero. The seasonal component is expressed 
in relative terms (percentage) and the series is seasonally adjusted by dividing through by the 
seasonal component. According to Hyndman and Athanasopoulos (2013), both multiplicative 
and additive models give the same point forecasts with varying prediction intervals. Here we 
report the most favorable results for ETS by evaluating between point forecasts and prediction 
intervals. 
 

(i) Holt-Winters Additive Method  

The Holt-Winters methods include estimates of the seasonal factors for periods (denoted by S). 
The parameters p, states the number of seasonal periods in a year. For example, p = 12 would 
correspond to monthly seasonal adjustments and p = 4 would correspond to quarterly seasonal 
adjustments. In the additive version, the forecast for period t+n (n periods after the current 
period) is given by 
 

)()1()( 11 −−− +−+−= ttpttt TESAE αα
 

11 )1()( −− −+−= tttt TEET ββ  

ptttt SEAS −−+−= )1()( γγ
 

pntttnt SnTEF −++ ++=
 

α and β smooth base and trend while the parameter γ (0 < γ < 1) is used to smooth trend. 
 

(ii) Holt-Winters Multiplicative method  

The multiplicative version of the Holt-Winters method uses seasonal factors as multipliers 
rather than additive constants.  The forecast for period t+n is given by 
 

)()1( 11 −−
−

+−+= tt
pt

t
t TE

S

A
E αα

 
  

11 )1()( −− −+−= tttt TEET ββ   

pntttnt SnTEF −++ += )(
  

 

3.2 Comparative Analysis between Seasonal ARIMA and Exponential Smoothing Models 
When making comparison between Seasonal ARIMA and Exponential smoothing methods, 
forecasting was carried out for a period of 6 months. We use Mean Absolute Percentage Error 
(MAPE), Root Mean Squared Error (RMSE), the Bayesian Information Criterion (BIC), and 
Mean Absolute Deviation (MAD) to determine the most effective model in forecasting tourist 
arrivals. While MAPE is useful for purposes of reporting, it expresses accuracy as a 
percentage of the error, RMSE’s value is minimized during the parameter estimation process, 
and it is the statistic that determines the width of the confidence interval for prediction. On the 
other hand, MAD gives the relative measure of error that is applicable to time series data, it 
expresses accuracy in the same unit as the data, which becomes easier to conceptualize the 
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amount of error and BIC is preferred by statisticians because it has the feature that if there is a 
true underlying model, then with enough data BIC will select that model. We use the 
following measures of accuracy to identify the best model 
 

(i) MAPE 

1

1
*100

n
t

tt

e

n A=
∑

 
(ii) RMSE 

 

2

1

1 n

t

t

e
n =
∑

 
(iii) MAD 

1

1 n

t t
t

MAD A F
n =

= −∑
 

(iv) BIC 

2ln( ) ln( )BIC L N k= − +  
Where 

te  Is the forecast error and it is calculated by subtracting the forecast value from the actual 
value in the series.tA  and tF  represent actual and forecast values respectively. L is the value 
of the likelihood function evaluated at the parameter estimates, N is the number of 
observations, and k is the number of estimated parameters. Minimum values of these accuracy 
measures provide best fitting models. 
 

4. Data Analysis and Results Presentation 
Figure 1 below presents the time series plot of tourist arrivals in Tanzania from January, 2000 
to December, 2009. According to Song and Li (2010), seasonality is a notable characteristic 
of tourism demand and cannot be ignored in the modeling process when monthly or quarterly 
data are used. In determining whether tourist arrivals data portrays some seasonality features 
or not, we use time series plot, descriptive statistics and seasonal factors to examine the 
pattern of data. 
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Figure 1: Plot of Monthly Time series Data from January, 2000 to December, 2009 
 

 
 
 
 Table 2: Descriptive Statistics of tourist arrivals (January, 2000 to December, 2009) 
 

Mean 51847.2583 
N 120 
Std. Deviation 12754.80275 
Maximum 82048.00 
Minimum 22722.00 
Skewness 0.229 
Kurtosis -.416 
Sum 6221671.00 

 
    Table 3:  Seasonal Factors  

Period (Months) Seasonal Factor (%) 

1 103.1 

2 94.1 

3 89.9 

4 76.8 

5 73.3 

6 95.7 

7 123.6 

8 126.8 

9 104.7 

10 99.7 

11 97.8 

12 114.5 
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According to time series plot, descriptive statistics and seasonal factors results, there is the 
presence of seasonal effects on the tourist arrivals data. Seasonal factors are expressed in 
percentage, from table 2, it is clear that July, August, December and January recorded 
relatively higher factors (123.6%, 126.8%, 114.5% and 103.1%), while March, April and May 
recorded relatively lower factors (89.9%, 76.8%, and 73.3%). This suggests that July, August, 
December and January are months of high tourism demand while months of March, April and 
May record relatively lower demand. 
 
4.1 ARIMA Models 
The Box-Jenkins methodology was used in the selection of the appropriate Seasonal ARIMA 
model. The first stage of the Seasonal ARIMA model building is to identify whether the 
variable which is being forecasted is stationary in time series or not. By stationary we mean, 
the values of variables over time varies around a constant mean and variance. The time plot of 
the tourist arrivals data in figure1 above clearly shows that the data is not stationary. We 
further, examine the Auto correlation Function (ACF) and Partial Autocorrelation Function 
(PACF).  
 
Figure 2: Plots for Autocorrelation Function (ACF) and Partial Autocorrelation 
Function (PACF) 
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The plots for ACF and PACF show the presence of spikes outside the insignificant zones. 
ACF shows higher spikes at lag 1, 12 and 24 while PACF indicates spikes at lag 1 and 12. 
This suggests the seasonal structure of the data and its non-stationarity. Hence, differencing of 
the data was carried out in order to make the data stationary. 
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           Figure 3: Plot of Differenced Tourist Arrivals Data 
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Figure 3 above indicates the differenced tourist arrivals data, after introducing the first 
difference of monthly tourist arrivals data it became stationary. The next step is to identify the 
non-seasonal and seasonal values in form of (p,d,q) (P,D,Q) and then the selection of best 
ARIMA model using measures of the accuracy. Only those models with all significant 
parameters of estimates and with no serial correlation were selected. 
 

Table 4: The Results of MAPE, RMSE, BIC and MAD values of fitted Seasonal ARIMA  
 

ARIMA Models MAPE RMSE BIC MAD 
ARIMA (3,13) (3,1,3) 12.686 9541.222 18.894 6457.106 
ARIMA (4,1,4) (3,1,4) 11.037 8138.441 18.707 5562.089 
ARIMA (3,1,3) (4,1,3) 11.383 8555.550 18.720 5833.759 
ARIMA (3,1,4) (3,1,3) 12.556 9595.836 18.950 6393.920 
ARIMA (3,1,2) (4,1,3) 11.878 8838.017 18.741 6027.864 
ARIMA (2,1,3) (2,1,3) 11.343 8226.648 18.511 5774.019 
ARIMA (3,1,3) (2,1,3) 11.603 8348.704 18.584 5913.829 
ARIMA (3,1,3) (2,1,2) 11.860 8414.080 18.556 6069.586 
ARIMA (2,1,3) (2,1,2) 11.792 8330.152 18.492 6031.634 

 
 
Table 3 above, shows the performance of Seasonal ARIMA, several seasonal models were 
identified. It was observed that out four measures of accuracy, the performance of 
ARIMA(4,1,4)(3,1,4)12 was relatively better in three measures of accuracy which are MAPE 
(11.037), RMSE (8138.441) and MAD (5562.089) when compared with other ARIMA models. 
The Ljung-Box (Q) statistics were computed for checking residuals in seasonal lags of 12, 24, 
and 36. The Ljung-Box Q statistics is a diagnostic measure of white noise for a time series, 
assessing whether there are patterns in a group of autocorrelations under the hypotheses with 
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(kp-q-P-Q) degree of freedom (Çuhadar, 2014). 
 

H0: ACFs are not significantly different than white noise ACFs (i.e., ACFs = 0). 
H1: ACFs are statistically different than white noise ACFs (i.e., ACFs ≠ 0). 
 
   Table 5: Box-Ljung Test Statistics 
 
Lag ACF (k) SE X2 

(α=0.005) 
Df Q Sign 

12 -0.012001 0.090252 36.38 7 16.05990 
 

0.188577 
 

24 0.013399 0.084359 66.77 19 30.14704 0.180051 
36 -0.024394 0.078023 79.40 31 34.73165 0.528865 
 
Table 5 above shows Box-Ljung test statistics, since Q is less than chi-square (Q< X2) at the 
seasonal lags (12, 24 and 36) the null hypothesis is accepted at the 5% level of significance. 
The Ljung-Box (Q) statistics for diagnosing white noise confirms that the residual ACFs are 
not significantly different than white noise ACFs. 
 
 

Figure 4: Normal Q-Q Plot of Residuals (Forecast Errors) 
ARIMA (4,1,4)(3,1,4) residuals;
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Based on the Ljung-Box (Q) statistics results and normal Q-Q Plot, we can conclude that 
ARIMA (4,1,4)(3,1,4)12 is fit for forecasting tourist arrivals in Tanzania having passed the 
diagnostic checking tests. 
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4.2 Exponential Smoothing Models 

In examining exponential smoothing models we use the Sum of the Squared Error (SSE) and 

the Mean Squared Error (MSE). The minimum values of SSE and MSE are preferred. The 

parameters of Alpha (α), Gamma (β) and Delta (γ) which minimizes the values of SSE and 

MSE were identified through an iteration process. 

 

  Table 6: Exponential Smoothing Parameters 
  
Model α (level) β (Growth) γ (Seasonal) SSE MSE 
Holt-Winter’s 
Multiplicative model 

0.01 0.11 0.11 3.476E+09 3.218E+07 

Holt-Winter’s 
Additive model 

0.10 0.12 0.11 3.537E+09 3.275E+07 

 

Table 6 above shows that Holt-Winter’s Multiplicative exponential smoothing recorded 
relatively lower SSE and MSE values, this suggests that Holt-Winter’s Multiplicative 
exponential smoothing is appropriate for forecasting tourist arrivals in similar structure model 
setting (exponential smoothing models). However, to identify the best model, the performance 
of Holt-Winter’s Multiplicative was compared with that of ARIMA(4,1,4)(3,1,4)12 using  the 
results of MAPE, RMSE, BIC and MAD. 
 

Table 7: Comparative Analysis of Seasonal ARIMA(4,1,4)(3,1,4)12 and Holt-Winter’s 
Multiplicative Exponential Smoothing 
 

Models MAPE RMSE BIC MAD 
Holt-Winter’s Multiplicative  9.0 3973.528 -60 4529.42 
ARIMA (4,1,4) (3,1,4) 11.037 8138.441 18.707 5562.089 

 

In comparative analysis between Seasonal ARIMA and exponential smoothing models, the 
results in table 7 indicate that Holt-Winter’s Multiplicative exponential smoothing model 
recorded relatively lower values in terms of MAPE  (9.0), RMSE (3973.528), BIC(-60) and 
MAD (4529.42). This shows that Holt-Winter’s Multiplicative has outperformed other 
Seasonal ARIMA models. Based on these results, we can conclude that Holt-Winter’s 
Multiplicative model is the best model for forecasting tourist arrivals in the short run. 
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Figure 5: Tourist Arrivals Fitted with Holt-Winters  Multiplicative (January, 2000 to 
June, 2010) 

 
 
 
5. Discussion and Conclusion 
The objective of this paper was to compare the appropriateness of two models in forecasting 
tourist arrivals in the short run in Tanzania. In order to capture the seasonality pattern of the 
data, the performance of Seasonal ARIMA, Holt-Winters Additive and Holt-Winters 
multiplicative exponential smoothing were examined. The findings show that Holt–Winters’ 
multiplicative exponential smoothing model with alpha (0.01), Delta (0.11) and Gamma (0.11) 
is the more accurate model for forecasting tourist arrivals in the short run when a comparative 
analysis was carried out using measures of accuracy such as MAPE, RMSE, BIC and MAD. 
This finding suggests that the seasonal variations of the tourist arrivals data are changing in 
proportional to the level of the series in Tanzania. This result corroborates with the study of 
Nisantha and Lelwala who concluded that Holt–Winter’s Exponential Smoothing model with 
multiplicative seasonality is the more accurate model for forecasting six – month – ahead 
tourist arrivals to SriLanka. Similarly, studies of Law (2000), Burger et al., (2001), Lim and 
McAleer (2001) and Cho (2001, 2003) have confirmed the superiority of exponential 
smoothing methods in forecasting tourism demand. However, Cuhadar (2014), reported that 
forecasts by the seasonal exponential smoothing models have provided quite good results but 
SARIMA (2,0,0)(1,1,0)12 model has showed best forecast accuracy with lowest deviation 
(MAPE 3.42%) among the all applied models in forecasting inbound tourism demand in 
Istanbul. Further, Cho (2003) investigated three different techniques (exponential smoothing, 
univariate ARIMA and artificial neural networks) to forecast tourist arrivals in Hong Kong, 
the findings show that artificial neural networks forecasts to be the most accurate. In the 
context of Tanzania, it would therefore be interesting if future research explores more the 
effectiveness of new and emerging models in forecasting such as Artificial Neural Network, 
Singular Spectrum Analysis (SSA), and Time Varying Parameter (TVP) etc. 
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