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Abstract 

The local business environment of telecom industry in Manipur supports network reliability of wireless telecom 

at the expense of high input costs. The network reliability is a quality of service highly demanded by telecom 

users and it is regarded as business success parameter of the telecom firm. The production theory predicts that 

cost-benefit analysis becomes difficult in an environment where prices of input resources are rising at high and 

the firm is led to postpone the production or reduce the production investment. Production of reliable service at 

the expense of heavy cash outlays has resulted production uncertainty on the concept of negative return on 

investment.  This paper is inspired by the mismatch between demand and supply of network reliability in the 

context of local business environment. This paper examines the behavior of wireless telecom network and 

employs a production function of a model network to study the economic growth behavior of the network under 

varying sets of input resources. In this paper, I make a simulation approach to generate empirical data for the 

traffic and other decision variables of the production function. The simulation model is trained to investigate 

network traffic as function of input resources such as diesel fuel, grid energy and network uptime and the 

information obtained from simulation is used in cost-benefit analysis of the production system.  I find that there 

is meaningful revenue growth in the existing environment at 100 percent network uptime, which is desired for 

the highest level of network reliability. 
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1. Introduction 

Business environment of telecom service providers differs over space and the firm, which undertake economic 

activities with motivational objective of profit maximization by following uniform economic process irrespective 

of differing environments sometimes face challenges of production uncertainty. The production uncertainty, 

which leads to poor economic growth of the firm, is also influenced by lack of technological and market 

knowledge. In an environment where prices of the input resources are rising at high, cost-benefit analysis 

becomes difficult and consequently, the firm is led to postpone or reduce its investment on production of the 

service. However, it is indeed  a paradox that high price in input resources often makes product differentiation 

that values the product and profit in long run in the market, which has attained oligopoly. From the neoclassical 

perspective on the firms’ objective of profit maximization, the firms under any circumstances including 

production uncertainty must be profitable enough to cover cash outlays. Under this concept the firm has to take 

account of its cash flows and outlays in deciding how much to produce and supply. Researchers adopt various 

approaches to examine and analyze production processes in their effort to explore efficient techniques of 

production and overcome the uncertainty. Although extensive research has been done on uniform economic 

processes common to all business environments of the firm, there is lack of focus on the economic process that 

could yield substantial economic growth in the context of local environment. To help illustrate the necessity of 

undertaking such economic process and assist the firm’s management in assessment of the cash flows and 

outlays under production uncertainty, a brief background of the wireless telecom service of Bharat Sanchar 

Nigam Limited Manipur is outlined, the context, which inspired this work.  In managing uncertainty, Allan 

Afuah (2003) observes that whenever there is uncertainty, there is usually possibility of reducing it by 

acquisition of information and indeed, information is merely negative of uncertainty. In this paper, I construct a 

production function of a model wireless telecom network and describe approach for developing models for the 

decision variables with the help of which we could generate simulated data output  of the model network.  This 

simulated data provides flexible scope for examining changes in behavior of economic growth of the network 

under varying sets of input resources.  

 

2. Background and Problem Definition   

Economic growth of wireless network is the increase in production of traffic that is increase in the minutes of 

usage of the network. This traffic growth is characterized and stimulated by an important parameter called 

network reliability. Network reliability is a unique service quality of wireless network, which is regarded as key 

parameter for business success of telecom service providers (Meetei & Singh, 2014).  In other sense, network 

reliability is assumed to have network availability as its foundation. This parameter however is often under threat 

as it is influenced by factors associated with internal management or external environment of the firm. In 

Manipur, the network availability of the wireless network is highly influenced by the environment in which the 
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telecom industry operates. There is acute shortage of electrical grid supply at the base station sites of the wireless 

networks of the service providers. Although power supply is one of the critical challenges confronted by telecom 

operators worldwide, the situation differs over space. For example, non-availability of regular grid supply at the 

sites accounted for 70 percent of downtime in Nigeria (Ani & Emetu, 2013), while on average, 70 percent of the 

approximately 4,00,000 mobile towers in India face electrical grid outages in excess of 8 hours a day (Intelligent 

Energy, 2012). According to 2011 Economic Survey Manipur, published by Government of Manipur, there was 

a shortfall of 60 Megawatts when demand was 170 Megawatts in the year 2009-10 indicating electrical grid 

outage of 9 hours a day. However, the grid power availability at the base stations of the wireless network in 

Manipur was on average within four to six hours a day in the year 2012-13 (Meetei & Singh, 2014). This 

electrical grid outage of 18 hours a day has far exceeded the national average value of 8 hours a day. In the 

context of BSNL Manipur, 60 percent of the total network outage was due to inadequate power supply at the 

base stations (Meetei & Singh, 2014). According to primary sources obtained from base station sites and mobile 

switching center of BSNL, on average the wireless network registered 45 percent downtime in urban area while 

the figure was 55 percent in rural. The annual financial report 2011-12 of BSNL Manipur stated that in the 

financial year 2011-12, BSNL could get 73 percent of its total revenue from its wireless sector. Thus, wireless 

service sector is the major revenue-earning sector of BSNL Manipur, which has potential for further revenue 

growth as the present revenue of the network pertains to input resource of only 55 percent network availability.  

It has been suggested that non-availability of adequate electrical grid at the base stations is the main factor 

behind this high percentage of network outages. The diesel generators deployed at the base station sites are in 

fact incur large amount of fuel and operating expenses. Additionally, total monthly cash outflow is also 

influenced by other factors such as fuel losses and pilferage for which Intelligent Energy (2012) estimated a loss 

of 15 to 20 percent of the total diesel fuel consumption. Shutting down of the entire base stations during low 

traffic load is an approach being practiced by service providers to reduce energy consumption under the concept 

of dynamic management of network resources (Jossip, Tonko, & Goran, 2012). Various justifications have been 

put forth for the high percentage of downtime including a claim that high input cost on energy from diesel fuel in 

the absence of adequate electrical grid supply could lead to negative return on investment. This claim however 

appears to be less reasoning from standpoint of network reliability. The above discussions reveal that there is 

large capacity under-utilisation in the network as only 45 to 55 percent of the network’s resource is used to 

generate major share of the revenue and further suggests that this resource under-utilisation is mainly because of 

production uncertainty.  To examine the claimed justifications which prompted the uncertainty, this work uses 

the following questions: (i) Is there increase in return on investment with increase in network uptime using 

energy from diesel fuel? (ii) What is the production output of the wireless network at 100 percent network 

uptime? To answer these questions, we need experiments on the real network with large quantity of diesel fuel 

and other associated input resources however, due to fear of poor return on investement, this practice was not 

encouraged by the firm and as such, it had not opted for supply of adequate quantity of diesel fuel at base-

stations. Gogg & Mott (1992) asserts, “Ideas which can produce considerable improvements are often never tried 

because of an employee’s fear of failure” (as cited in Robinson, 2004).  Many important managerial decision 

problems are too intricate to be solved by mathematical programming and experimentation with the actual 

system, even if possible, it is too costly and risky (Gupta & Hira, 2009).Simulation can be viewed as solution to 

both the off-line design and on-line   operational   management   problems.  Morris (1967) asserts, “Modeling is 

the enterprise of devising a simplified representation of a complex system with the goal of providing predictions 

of the system’s performance measures of interest. Such a simplified representation is called a model. A model is 

designed to capture certain behavioral aspects of the modeled systems- those that are of interest to the 

analyst/modeler – in order to gain knowledge and insight into the system’s behavior” (as cited in Benjamin & 

Tayfur, 2007). With a simulation, ideas can be tried in an environment that is free of risk. This can only help to 

encourage creativity in tackling problem situations (Robinson, 2004). Under the conditions of high input costs, 

risk and fear of poor return on investment, it is felt that modeling and simulation is an appropriate tool for 

solving the uncertainty since simulation offers the solution by allowing experimentation with the model of the 

system without interfering with the real system. In order to acquire information pertaining to cost-benefit 

analysis in the absence of real live data, the model introduced in this study uses network traffic as function of 

network availability in the process of production while various empirical data of the wireless network of BSNL 

Manipur set design aspects for the relevant parameters of the model. 

 

3. Literature Review 

This work draws on two distinct streams of literature. First, a brief review on economic growth of the wireless 

network is introduced. The economic growth concept, which forms conceptual idea of this study, is used to 

design a production function of the telecom network.  Second, I describe the design aspects of the mathematical 

models of the decision variables of the production function. The logic applied in development of software for 

simulation is however discussed in the section- research concept and model formulation.  
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3.1 Economic Growth and Production Function 

The inputs or resources called factors of production of the economic units are any commodities or services used 

to produce outputs such as goods or services. The way in which the inputs are combined in the process of 

making output is called technology and it can be depicted mathematically by the production function. The 

economic growth of a firm can be described with the help of production function, which is a relationship 

between inputs and output such that the inputs are combined in the most efficient way. Economic growth is 

generally derived from greater amount of inputs or from increase in productivity. Thus, increase in production 

input and increase in productivity are factors of economic growth. In addition to the increase in volume and 

productivity, other variables such as price and profitability are also widely used in productivity models where 

profitability is expressed as function of productivity, prices and volume such that Profitability = f (Productivity, 

Prices, Volume). The firm is said to be operating inefficiently if it is possible to produce more of the output with 

the same amount of inputs or if it is possible to produce same amount of output employing less of at least one 

input. When these situations are ruled out, we are left with only the efficient technique of production. The 

production function consists of only those techniques, which are efficient (Sen Anindya, 2014). The model of 

production function of the wireless network employed in this study has been widely used in the operations 

management and economics literatures. The production function that has been employed in this study for the 

network is the Cobb-Douglas production function and it is represented mathematically as 

     Q = A × K
α  

× L1
β  

× L2
δ
                                      … (1) 

where,  Q is network traffic,  K is diesel fuel consumption,  L1 is grid energy consumption and  L2 is network 

uptime. The decision variables such as Q, K, L1 and L2 are functions of network uptime and  A, α, β, δ are 

constant parameters. This study uses simulated data output of the decision variables as empirical data to derive 

these constant parameters and consequently to construct a production function of the wireless telecom network.     

 

3.2 Network Traffic 

Probability plays an important role in simulation just as it does in real life. Models of reasonable size and 

complexity exhibit a set of possible behaviors that, in general, are unknown unless the model is simulated. 

Models also have validity constraints that identify when they are good representations of the real world and 

when they contradict or incompletely describe the real system. In order to understand the range of possible 

behaviors, it would be useful to simulate the model under all possible conditions. However, this is impractical, 

except for the simplest model. Instead, practitioners use techniques such as Monte Carlo analysis (Barnett, 

2003). This study uses Monte Carlo method of simulation where decision variables are represented by 

probabilistic distribution and random samples are drawn from the probability distribution using random 

numbers. The network traffic, which represents an important decision variable, is defined as ratio of the system 

occupation period to the total period of observation and it is expressed in erlangs. The average number of calls in 

progress on a network depends on both the number of calls that has arrived to the network and durations of the 

calls. The duration of a call is called its holding time. Therefore, traffic by a group of trunk is given by A = Ch/T, 

where A is traffic in erlangs, C is average number of call arrivals during time T and h is average holding time. 

The mathematical model of telecommunication traffic is assumed to have built up primarily from two major 

aspects of assumptions such as (a) pure-change traffic and (b) statistical equilibrium. In telecommunications, the 

call arrivals and call terminations are taken as random events under the assumption of the pure-chance traffic. 

Though the individual user does not make calls at random, the traffic in a telecommunications network however 

is the aggregate of the traffic generated by a large number of individual users connected to the network and such 

traffic in total generated by a large number of users is observed to behave as if calls were generated at random. 

Thus, the telecommunications traffic is characterized as a random process. The telecommunications traffic is 

also sometimes known as memoryless traffic as the call arrivals are independent random events and their 

occurrence is not affected by previous calls.  Thus, the assumption of random call arrivals and terminations leads 

to the following results (Flood, 2011): 

1. The number of calls arrivals in a given time has a Poisson distribution, i.e.: 

 

 where, x is the number of call arrivals in time T and µ is the mean number of call arrivals in time T.  For this reason, pure chance traffic is also called 

2. The intervals, T, between the call arrivals are the intervals between independent random events and these 

intervals have a negative exponential distribution, i.e.: 

 

          

where,  is the mean interval between call arrivals. 

3. Since the arrival of each call and its termination are independent random events and have a negative 
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exponential distributions, i.e.: 

 

           

where, h is the mean call duration (holding time). 

The assumption of statistical equilibrium means that the generation of traffic is a stationary random process, i.e. 

probabilities do not change during the period being considered. Consequently, the mean number of calls in 

progress remains constant.  

 

4. Research Concept and Model Formulation 

Bharat Sanchar Nigam Limited Manipur launched its second-generation GSM (Global System for Mobile 

Communication) wireless telecom service in the year 2004. Since second-generation GSM sets the foundation 

for wireless network, this study considers the 2G GSM architecture. This network, which claims 75 percent stake 

of the total base-transceiver stations of BSNL Manipur, extends its service across the state including remote rural 

areas. The base station controller is housed in a central location where MSC is installed. The abis-interface is the 

communication link between BTS and BSC. BSNL uses either optical fiber or mini-link that is microwave radio 

media for connectivity between BTS and BSC. The base-transceiver station of the base station subsystem is one 

among the most energy-consumed units of the system and in addition, it has high outage probability. 

 
The network outage arises primarily from combination of lack of sufficient electrical energy at base 

stations, base-transceiver equipment fault, transmission equipment fault, mini-link fault, optical-fiber cable 

breakdown, poor supply chain system of diesel fuel, diesel generator fault, and power plant system fault. This 

work considers a network of 52 contiguous 2G GSM base-transceiver stations of Imphal city, the model 

production function of which is described in equation (1).  This function has decision variables– namely Q, K, L1 

and L2. The outage characteristics of the base-transceiver stations and the network’s call handling behavior are 

two behavioral resources, which characterize conceptual idea as to how to develop models for the decision 

variables. The purpose of this function is to examine the behavior of economic growth of the network under 

varying sets of input resources. 

 

4.1 Modeling Call Arrivals  

One of the basic objectives of this study is to make a framework for modeling the network traffic at 100 percent 

of network uptime. The number of call arrivals and holding times (expressed in minute) of the calls are two 

parameters, which can represent the network traffic in terms of either minutes of usage or erlangs. The real-live 

traffic data in terms of number of call arrivals and holding times obtained from the network of 52 base 

transceiver stations is related to network uptime of only 45 to 55 percent. Although no attempt was made in real 

live situation to measure network traffic at 100 percent network uptime by providing large quantity of diesel fuel 
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because of fear of possible heavy cash outlays on diesel fuel and negative return on investment, equation (2) and 

(3) however provide simulation design concept for the number of call arrivals and holding times.  

 
The two variables of the equations– namely mean number of call arrivals and mean holding time could 

demonstrate as good parameters for estimation of number of call arrivals and holding times. The network model 

shown in figure 2, which consists of 52 BTSs (2G GSM) is used in this work to deduce mean number of call 

arrivals and outage impact factor. Table 1 provides the base-station outage probability sequence from highest to 

lowest that has been prepared from the base-station outage probability distribution depicted from the empirical 

outage data of the 52 base stations.  The characteristic of the network is such that calls pertaining to the failed or 

down base stations are handled by the neighboring active base stations and calls are affected only when there is 

concurrent outage among the contiguous base stations. Therefore, the algebraic sum of the average number of 

expected call arrivals of the down base stations does not provide value for the average affected number of calls. 

In order to determine accurate value of the average number of call arrivals per base-transceiver station per hour, 

the network behavior and outage characteristic of the network is considered in this study. In computing average 

number of call arrivals, we consider all the base stations of the network whether the base station is active or not 

and thus, the average number of call arrivals is the average number of calls, which is expected to arrive in any of 

the base stations of the network including non-active base stations. From the behavior of the network, it is 

understood that during outage the number of affected calls is influenced by the number of down base stations, 

geographical locations of the base stations, base-station outage probability and average number of call arrivals.  

To deduce outage impact factors, each sector of the base station is assumed to have an average traffic of one call. 

Since there are three sectors in a base station, the average traffic per base station is three calls.  In order to 

demonstrate how the calls are affected during outage, we may consider an example in which we assume that 

BTS08 and BTS21 fail to radiate in time duration of one hour. Under such outage condition, the affected number 

of calls is two and not six. This is due to non-radiation of the neighboring sectors 0821 and 2108. The traffic 

belonging to other affected sectors 0807, 0809, 2122 and 2120 are handled by neighboring active BTS and as 

such, there is no outage impact on the number of call arrivals. Now, if we assume that first 20 base stations of 

Table 1 fail to radiate then by virtue of the behavior of the network and outage probability characteristics of the 

base stations, the number of affected calls in real sense under this condition is 34. However, normally an outage 

impact of 60 calls was expected as number of affected call arrivals. The ratio of the real number of affected call 

arrivals to the expected number of affected call arrivals is termed in this work as outage impact factor. Thus, the 

outage impact factor at 38 percent of network outage (20 BTSs down) is 0.57. The outage impact factor of the 

network estimated according to the base stations outage probability is shown in Table 2.  This outage impact 

factor together with number of call arrivals obtained from the empirical real live traffic data of the network is 

used in this work to deduce values of mean number of call arrivals. If y is total number of calls, which could 

arrive to the network in the time duration of one-hour, then from the following equation we can derive the real 

mean number of call arrivals.  
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     y = A (1-σ) µ + Bµ                                              … (5) 

 
where, A is the total number down BTSs, µ is mean number of call arrivals per base station per hour, σ 

is outage impact factor and B is the number of serving base stations. Thus, by substituting real-live values of y, 

A, B and the outage impact factor, σ (corresponding to number of down/failed base stations) in equation (5), we 

can derive the value of the mean number of call arrivals for the time of one-hour duration. In simulation, we use 

this mean number of call arrivals together with random numbers to determine number of call arrivals of the base 

stations.  Due to random nature of the calls as characterized by random numbers the values of the number of call 

arrivals of the base stations may differ from base station to base station. We may get the total number of call 

arrivals of the network by adding the expected number of simulated call arrivals of the individual serving base 

stations. However, in the event of outage of some base stations, the real number of simulated call arrivals of the 

network is not equal to the sum of the expected  number of simulated call arrivals of serving base stations. This 

is because of the behavior of network and the outage characteristics of the base stations. To illustrate this, let us 

assume that 32 base stations of the network each carrying an average traffic of 3 calls radiate during a time of 

one hour duration. The expected total number of normal call arrivals under such uptime condition is 96 calls 

however, as per Table 3 the number of call arrivals is 122. This is due to network’s call handling behavior and 

outage characteristics. So in order to make accounting of additional number of call arrivals in computing the real 

number of simulated call arrivals of the network at different uptimes, a new parameter called uptime impact 

factor is introduced. Table 3 shows values of the uptime impact factors, which are at different uptimes of the 

network. The number of call arrivals, P of a serving base station is therefore estimated as 

      P =  Pactive  × (1+k)                                    … (6) 

where, k is the uptime impact factor, Pactive is expected number of simulated call arrivals of the serving base 

station.  
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4.2  Traffic and Outage Data Gathering  

 
 

The network traffic is expressed as function of network uptime as described in equation (1). The real 

live traffic data that is total number of call arrivals of the wireless network, which were at different uptimes in 

the past 330 days of period ending 31/03/2013, is used as value of y in equation (5) to estimate value of mean 

number of call arrivals and mean holding time. The number of call arrivals varies over time, for example, 

number of calls arrivals during 4am to 5am may not necessarily equal to the number of calls arrivals during 1pm 

to 2pm. Therefore, in this work a day is divided into 24 time slots, each having a time of one-hour duration. 

Table 4 shows the values of the mean number of call arrivals of the network which have registered in the 24 

different time slots. These mean number of call arrivals are derived from the real live empirical traffic data of 

the network using equation (5). As described in equation (2), the number of call arrivals follows Poisson 

distribution and as such, the random number intervals derived from the Poisson probability distribution of the 

mean number of call arrivals is assigned against the number of call arrivals for future use and reference during 

simulation. For example, the number of call arrivals and random number intervals correspondence in respect of 

mean number of arrivals of value 22 is illustrated in Table 7. Table 4 shows the values of real mean holding 

times of the calls registered  in the 24 time slots. The value of the mean holding time is computed from the real-

live holding times of the network.  As stated in equation (4), holding times follow negative exponential 

distribution and therefore exponential probability distribution is used in preparation of holding time-random 

number intervals correspondence from the mean holding time. The network and base station outage is viewed in 

this study from two aspects– (a) the outage durations of the base stations during same observed time may not 

necessarily equal to each other (b) the number of down base stations vary over time. Mean time to restore 

(MTTR) is an important decision variable in simulation and according to Chen Yachuan (2006), restore time is a 

random variable and it is often assumed to have an exponential distribution. MTTR is average fault restoration 
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time. The value of MTTR is computed as 4 hours from the real live outage data of the network. The restore times 

and random number intervals correspondence in respect of the mean time to restore of value 4 is shown in Table 

5. Another important parameter is network outage distribution and this outage distribution does not follow any 

standard probability distribution that is number of down base stations vary over time. In Monte Carlo 

Simulation, according to Jaisankar (2006), decision variables may not explicitly follow any standard probability 

distribution such as Normal, Poisson, Exponential etc. and as such, distribution can be obtained by direct 

observation or from past records. Therefore, an empirical outage probability distribution is constructed from the 

past real live outage data of the network. This outage probability distribution is shown in Table 6. 

  

4.3 Mathematical Model for Base Station Energy Consumption 

The base stations get energy from three sources– namely grid distribution, diesel fuel and energy conserved in 

the battery bank. Telecom service providers install one or more base-transceivers at the base station sites.  The 

base station and network switching system of the respective base-transceivers installed at the base station sites 

generate outage event reports of the base-transceivers. Meetei & Singh (2014) used these outage events in 

management of base-station energy consumption and deduced the following equations to measure quantity of 

diesel fuel consumption at the base station sites.  

P2G, P3G, PCDMA,PWIMAX, PTRANS,  and PBASIC  are average  power consumption rates of 2G BTS, 3G BTS, CDMA 

BTS, WiMax, Transmission equipments and Landline exchange  respectively; n represents numbers of 2G BTS, 

m represents number of transmission equipment.  

 

where, PPPM is power supply capacity in Ampere of the individual SMPS (switched mode power supply) 

modules, q is the number of SMPS modules and ρ is a energy conservation factor.  

 

where, tELECT is the total hours of grid power availability. If there is no charging of battery, β = 0 else β = 1. 

Total energy consumption, ESITE (in AH): 

 

where ,tWIMAX, t3G, tCDMA, t2G and tINFRA are total uptime hours of  WiMax, 3G-BTS, CDMA-BTS, 2G-BTS and 

landline exchange/transmission equipment respectively..  

 

4.4 Research Process and Data Flow 

This study considers network availability as broader concept of network reliability. Network reliability is a 

service quality of the network, which is regarded as key parameter for business success of the wireless sector of 

the telecom service providers. Since network uptime sets foundation for network availability all the decision 

variables– namely Q, K, L1 and L2 of the production function are modeled as functions of the network uptime. 
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 Figure 3:  Research Process and Data Flow  

In this section, I describe the steps of research process and subsequently logics applied in development 

of the research process and simulation software. In broad sense, this approach is based on development of 

software, which is trained to investigate network traffic (Q) as a function of diesel fuel (K), grid energy (L1) and 

network uptime (L2). Figure 3 shows the schematic block diagram of the research process. Using equation (6) we 

can compute the number of call arrivals, P which would arrive to the network at different times. The holding 

times of the number of calls arrivals are not same and as such the simulated traffic in terms of minutes of usage 

(MOU) of the time slots described in the figure 3 is the sum of the holding times of all the individual calls 

computed using equation (6). Thus, the simulated traffic is the sum of the traffics in minutes of usage carried by 

the network in its 24 different time slots of a day. The simulated mean number of call arrivals is validated with 

the real-live mean number of call arrivals using Chi-square test. Figure 4 shows a part of the schematic block 

diagram of the traffic generation process.  The number of serving base stations that determines network 

availability over the 24 time slots of the day is computed using network outage probability distribution shown in 

Table 6 and the downtime percent.  
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Poisson distribution 
Mean No. of  

Call Arrivals of the Time Slot 

No. of Call Arrivals and Random 
No. Intervals Database 

Time Event (Slot) 1 to 24 

Holding Times and Random No. 

Intervals Database 

Mean Holding Time of the Time 
Slot 

Exponential Distribution 

Generate Random Number 

No. of Call Arrivals, N; 
i=1; THT=0; Check=.T. 

i ≤ N 

Generate Random Number 

Total Holding Time, 

THT=THT+HT 

Holding Time, HT 

i = i+1 

MHT=THT/N 
MOU=MHT*N/60 

Check=.F. 

No 

Yes 

Check=.T. 

Yes No 

Traffic in Erlangs of the respective 

Time Slot, ERL=MOU/60 

Revenue = 

MOU × Usage Charge per Minute  

   Figure 4: Traffic Generation Process  

 

The different types of equipments such as base-transceiver station, transmission equipment, landline 

etc. housed in the base-station sites have different energy consumption rates.  With the help of energy 

consumption database and the mathematical model for base-station energy consumption discussed in section 4.3, 

we could compute the quantity of diesel fuel consumption in litres and grid energy consumption in kWh 

(kilowatt- hour) at the base station site during network availability period of the day.   

 

5.   Data Analysis and Estimation of Production Function 

5.1 Traffic Validation 

The network traffic per base station per hour expressed in erlangs is used in this study as parameter for validation 

of the simulated traffic. Chi-square test is employed as main verification technique to validate the traffic. 

Simulation runs are conducted with the input variables such as simulation count, mean call arrivals, mean time to 

restore, mean holding time, uptime percent etc. to generate empirical traffic data for construction of the 

production function. The simulated traffic output of the 24 time slots of the day is taken as observed/ predicted 

value for the Chi-Square test. The Chi-square test is employed either to reject or to accept the hypothesis– 

“predicted value of traffic (simulation) is equal to expected value of the traffic (real)”. The expected value of the 

traffic, A in erlangs is computed analytically from the real number of call arrivals and holding times using the 

equation,  A = Ch/3600 where, C is number of call arrivals during 3600 seconds (one hour)  and h is the holding 

time in seconds. The expected value of traffic is compared with the value of traffic generated from 51 simulation 

runs under the Null and Alternate hypotheses given below. 

 H0: The predicted value of traffic (simulation) is equal to expected value of traffic. (Null 

Hypothesis) 

 H1: The predicted value of traffic (simulation) is not equal to expected value of traffic. (Alternate 

Hypothesis) 

 α = 0.05 level of significance for testing these hypotheses 
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If Chi-Square value of traffic of the individual time slot is less than the  table value of Chi-Square  at 

0.05 levels of significance with (n-1) degree of freedom where n is the number simulation runs (i.e. simulation 

count =51 in this case), then the hypothesis is accepted else it is rejected. The result as shown in Table 7 supports 

the null hypothesis.  

 

5.2 Production Function of the Model Network 

In this study, we conduct 30 simulation runs for each of the input uptime percentage and the average value of 

these simulation runs is used as simulation output of the production day. This process is conducted for 18 

different uptime inputs to get simulation outputs for 18 production days. The values of simulation output of the 

18 different production days are illustrated in the Table 8. Kendrick method of total factor productivity (TFP) 

described by the equation   TFP = Q/(rK+wL1+yL2)  where r, w, and y are the unit price values of K (diesel 

consumption in litre), L1 (grid energy in kilowatt-hour, kWh), and L2 (uptime in hour) respectively is employed 

to estimate total factor productivity of the network.  The unit prices of diesel fuel per litre and grid energy per 

kilowatt-hour (kWh) are assumed as INR 50 and INR 6 respectively. The unit operating cost per uptime hour per 

base station denoted by y in the equation is estimated from the operational expenditure of the firm. Purchase of 

diesel generator, battery bank, PIU (Power Interface Unit) and SMPS constitute the capital expenses, CAPEX 

and therefore, any kind of capital expenses is not considered in estimation of total factor productivity in this 

study. The operating expenses, OPEX is the monthly expenses incurred in running and maintaining equipments 

and other infrastructures housed in the telecom sites. Costs involved in some units of the infrastructure of the 

network such as (a) repair costs of diesel generator, (b) repair costs of power plant, (c) maintenance costs of 

battery bank, (d) transportation costs for refilling the diesel oil at the site, and (e) Optical fibre cable maintenance 

& repair costs are considered as OPEX. From the OPEX made by the firm during January 2013 to June 2013, the 

maintenance cost per hour per base station is estimated as INR 22.  Using unit prices of diesel, grid energy and 

operating cost as INR 50, INR 6 and INR 22 respectively, we can calculate TFPs of the 18 production days as 

illustrated in Table 8. 
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A B C D=B+C E F=(E×48)/1000 G H I J K=(I×100)/(I+J) L M

1 13743.00 13754.00 27497.00 19542.70 938.05 3608.80 169.10 329.00 919.00 26.36 5571.00 15.68

2 14819.00 13732.00 28551.00 20740.86 995.56 3635.10 166.20 340.00 908.00 27.24 5752.00 15.86

3 13683.00 13799.00 27482.00 20920.94 1004.21 3027.41 142.30 324.00 924.00 25.96 5166.00 15.29

4 14112.00 13776.00 27888.00 19757.96 948.38 3733.76 170.10 330.00 918.00 26.44 5068.00 14.17

5 15976.00 13951.00 29927.00 21779.04 1045.39 3716.24 177.20 381.00 867.00 30.53 6091.00 15.54

6 17541.00 14118.00 31659.00 21540.86 1033.96 4655.11 219.30 417.00 831.00 33.41 6635.00 15.11

7 22025.00 14388.00 36413.00 23480.94 1127.09 6008.35 280.70 520.00 728.00 41.67 8355.00 15.55

8 24127.00 14611.00 38738.00 24302.94 1166.54 6720.15 318.80 572.00 676.00 45.83 8777.00 14.82

9 26304.00 14796.00 41100.00 25125.12 1206.01 7447.08 354.40 624.00 624.00 50.00 9299.00 14.42

10 28496.00 14981.00 43477.00 25903.12 1243.35 8200.87 390.30 676.00 572.00 54.17 10066.00 14.43

11 30688.00 15166.00 45854.00 26681.12 1280.69 8954.63 426.40 728.00 520.00 58.33 10901.00 14.53

12 35072.00 15536.00 50608.00 28226.89 1354.89 10467.14 500.50 832.00 416.00 66.67 12436.00 14.5

13 37264.00 15721.00 52985.00 28898.78 1387.14 11273.64 538.20 884.00 364.00 70.83 13428.00 14.73

14 39456.00 15906.00 55362.00 29515.78 1416.76 12110.08 578.80 936.00 312.00 75.00 14602.00 15.1

15 41648.00 16091.00 57739.00 30079.98 1443.84 12970.42 619.00 988.00 260.00 79.17 15036.00 14.71

16 43840.00 16276.00 60116.00 30564.98 1467.12 13866.81 663.30 1040.00 208.00 83.33 15440.00 14.29

17 48224.00 16646.00 64870.00 31534.98 1513.68 15659.61 748.00 1144.00 104.00 91.67 16884.00 14.14

18 50416.00 16831.00 67247.00 31992.22 1535.63 16572.27 790.50 1196.00 52.00 95.83 17336.00 13.86

Table 8: Simulation Output of the Model Network                                     
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K L1 L2 rK wL1 yL2 rK+wL1+yL2 Q Q×60 (MOU × 55)/100 TFP

52 40 272.33 1104.46 499.20 13616.36 2995.20 10982.40 27593.96 7781.36 466881.55 256784.85 14.95

52 50 361.68 1189.07 624.00 18084.20 3744.00 13728.00 35556.20 9533.21 571992.47 314595.86 14.69

52 55 406.36 1231.38 686.40 20318.12 4118.40 15100.80 39537.32 10410.09 624605.68 343533.12 14.59

52 60 451.18 1273.82 749.00 22559.20 4494.00 16478.00 43531.20 11294.03 677641.66 372702.91 14.52

52 70 540.68 1358.57 874.00 27034.20 5244.00 19228.00 51506.20 13077.95 784677.09 431572.40 14.42

52 80 630.18 1443.32 999.00 31509.20 5994.00 21978.00 59481.20 14893.36 893601.46 491480.80 14.38

52 90 719.68 1528.07 1124.00 35984.20 6744.00 24728.00 67456.20 16744.61 1004676.43 552572.03 14.38

52 100 808.47 1612.14 1248.00 40423.40 7488.00 27456.00 75367.40 18618.70 1117122.02 614417.11 14.40

Table 9: Input and Output Costs of the Network 
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at Initial 

Uptime

at  100% 

Uptime
Increase in 

Input Costs 

(INR)

52 BTS:24 Production 

Hours per Day
55% 39537 75367 35830 270884 235054 656% 14.40

Table 10: Economic Growth and Return on Investment

Productivity 

at 100% 

Uptime

Network Model
Initial 

Uptime

Input Costs (INR)

Economic 

Growth 

(INR)

Profitability       

(Surplus Value) 

INR

Return on 

Investment 

(ROI)

 
The values of the total factor productivity (TFP) of different production days having different network 

uptime hours show high degree of closeness and this indicates feasibility for single production function. 

Therefore, the values of simulation outputs such as traffic (column L), diesel consumption (column H), grid 

energy (column F), and uptime hour (column I) shown in Table 8 provide themselves as empirical data for 

estimation of the production function of the network. Thus, using this empirical data the constant parameters of 

Cobb-Douglas production function of equation (1) are estimated as A=0.6711,  α=0.4143,  β=0.9401 and 

δ=0.0721. Now, the production function is as follows- 

    Q= 0.6711 × K
0.4143

 × L1
0.9401 

× L2
0.0721

       R
2
= 0.9961           … (7) 

The regression equations in respect of Diesel (K) & Uptime (L2) and Grid energy (L1) & Uptime (L2) are 

estimated as follows- 

      K  = - 85.1 + 0.716  L2       R
2
=99.7                      … (8) 

      L1 =  766  + 0.678 L2        R
2
=98.4                       … (9) 

This study uses INR 0.55 as cost of network usage per minute. Table 9 shows the output of the 

production function and total factor productivity of the network, which have been estimated using equation (7). 

Table 10 shows the economic growth of the network when the uptime is increased from 55 percent to 100 

percent. The above input and output characteristics of the network shown in Table 9 and Table 10 reveal that 

there is considerable economic growth with the increase in production input however, there is no increase in 

productivity since there is no involvement of any new engineering or technology which could convert the input 

resources to desired output efficiently.   

 

6.  Conclusion 

The basic concept behind this study is to provide a reliable telecom service to the network users. This study 

considers network reliability as function of network availability. The demand of network reliability is under 

threat in the local business environment of telecom industry in Manipur. This is because of involvement of heavy 

cash outlays in producing the desired network reliability in the local context and this has resulted production 

uncertainty. In this paper, I examine the characteristics of the wireless telecom network and design a model 

network based on the behavior of the network. In the production function model designed for the wireless 

network, network traffic is used as output of the production function. This study applies mathematical models of 

network traffic and energy consumption in designing simulation models for the traffic and other input decision 

variables such as network uptime and energy consumption. The software developed for simulation is trained to 

investigate network traffic as a function of input resources such as diesel fuel, grid energy and network uptime. 

The information obtained from simulation experiments is then used as empirical data for deducing constant 

parameters of the production function and in estimation of the production function of the wireless network. The 

result of the cost-benefit analysis supports for meaningful economic growth with the increase in the uptime of 

the network. This study reveals that certain business problems of telecom are highly influenced by local 

environment and to address this, the telecom management must try to understand the industry fully within local 

context and identify business success parameters even on short-term outlook besides its well-structured day-to-

day operations. The simulation approach introduced in this paper will help telecom management solve the 

problem of production uncertainty associated to high production costs.  
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