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Abstract

The local business environment of telecom industry in Manipur supports network reliability of wireless telecom
at the expense of high input costs. The network reliability is a quality of service highly demanded by telecom
users and it is regarded as business success parameter of the telecom firm. The production theory predicts that
cost-benefit analysis becomes difficult in an environment where prices of input resources are rising at high and
the firm is led to postpone the production or reduce the production investment. Production of reliable service at
the expense of heavy cash outlays has resulted production uncertainty on the concept of negative return on
investment. This paper is inspired by the mismatch between demand and supply of network reliability in the
context of local business environment. This paper examines the behavior of wireless telecom network and
employs a production function of a model network to study the economic growth behavior of the network under
varying sets of input resources. In this paper, I make a simulation approach to generate empirical data for the
traffic and other decision variables of the production function. The simulation model is trained to investigate
network traffic as function of input resources such as diesel fuel, grid energy and network uptime and the
information obtained from simulation is used in cost-benefit analysis of the production system. I find that there
is meaningful revenue growth in the existing environment at 100 percent network uptime, which is desired for
the highest level of network reliability.
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1. Introduction

Business environment of telecom service providers differs over space and the firm, which undertake economic
activities with motivational objective of profit maximization by following uniform economic process irrespective
of differing environments sometimes face challenges of production uncertainty. The production uncertainty,
which leads to poor economic growth of the firm, is also influenced by lack of technological and market
knowledge. In an environment where prices of the input resources are rising at high, cost-benefit analysis
becomes difficult and consequently, the firm is led to postpone or reduce its investment on production of the
service. However, it is indeed a paradox that high price in input resources often makes product differentiation
that values the product and profit in long run in the market, which has attained oligopoly. From the neoclassical
perspective on the firms’ objective of profit maximization, the firms under any circumstances including
production uncertainty must be profitable enough to cover cash outlays. Under this concept the firm has to take
account of its cash flows and outlays in deciding how much to produce and supply. Researchers adopt various
approaches to examine and analyze production processes in their effort to explore efficient techniques of
production and overcome the uncertainty. Although extensive research has been done on uniform economic
processes common to all business environments of the firm, there is lack of focus on the economic process that
could yield substantial economic growth in the context of local environment. To help illustrate the necessity of
undertaking such economic process and assist the firm’s management in assessment of the cash flows and
outlays under production uncertainty, a brief background of the wireless telecom service of Bharat Sanchar
Nigam Limited Manipur is outlined, the context, which inspired this work. In managing uncertainty, Allan
Afuah (2003) observes that whenever there is uncertainty, there is usually possibility of reducing it by
acquisition of information and indeed, information is merely negative of uncertainty. In this paper, I construct a
production function of a model wireless telecom network and describe approach for developing models for the
decision variables with the help of which we could generate simulated data output of the model network. This
simulated data provides flexible scope for examining changes in behavior of economic growth of the network
under varying sets of input resources.

2. Background and Problem Definition

Economic growth of wireless network is the increase in production of traffic that is increase in the minutes of
usage of the network. This traffic growth is characterized and stimulated by an important parameter called
network reliability. Network reliability is a unique service quality of wireless network, which is regarded as key
parameter for business success of telecom service providers (Meetei & Singh, 2014). In other sense, network
reliability is assumed to have network availability as its foundation. This parameter however is often under threat
as it is influenced by factors associated with internal management or external environment of the firm. In
Manipur, the network availability of the wireless network is highly influenced by the environment in which the
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telecom industry operates. There is acute shortage of electrical grid supply at the base station sites of the wireless
networks of the service providers. Although power supply is one of the critical challenges confronted by telecom
operators worldwide, the situation differs over space. For example, non-availability of regular grid supply at the
sites accounted for 70 percent of downtime in Nigeria (Ani & Emetu, 2013), while on average, 70 percent of the
approximately 4,00,000 mobile towers in India face electrical grid outages in excess of 8 hours a day (Intelligent
Energy, 2012). According to 2011 Economic Survey Manipur, published by Government of Manipur, there was
a shortfall of 60 Megawatts when demand was 170 Megawatts in the year 2009-10 indicating electrical grid
outage of 9 hours a day. However, the grid power availability at the base stations of the wireless network in
Manipur was on average within four to six hours a day in the year 2012-13 (Meetei & Singh, 2014). This
electrical grid outage of 18 hours a day has far exceeded the national average value of 8 hours a day. In the
context of BSNL Manipur, 60 percent of the total network outage was due to inadequate power supply at the
base stations (Meetei & Singh, 2014). According to primary sources obtained from base station sites and mobile
switching center of BSNL, on average the wireless network registered 45 percent downtime in urban area while
the figure was 55 percent in rural. The annual financial report 2011-12 of BSNL Manipur stated that in the
financial year 2011-12, BSNL could get 73 percent of its total revenue from its wireless sector. Thus, wireless
service sector is the major revenue-earning sector of BSNL Manipur, which has potential for further revenue
growth as the present revenue of the network pertains to input resource of only 55 percent network availability.
It has been suggested that non-availability of adequate electrical grid at the base stations is the main factor
behind this high percentage of network outages. The diesel generators deployed at the base station sites are in
fact incur large amount of fuel and operating expenses. Additionally, total monthly cash outflow is also
influenced by other factors such as fuel losses and pilferage for which Intelligent Energy (2012) estimated a loss
of 15 to 20 percent of the total diesel fuel consumption. Shutting down of the entire base stations during low
traffic load is an approach being practiced by service providers to reduce energy consumption under the concept
of dynamic management of network resources (Jossip, Tonko, & Goran, 2012). Various justifications have been
put forth for the high percentage of downtime including a claim that high input cost on energy from diesel fuel in
the absence of adequate electrical grid supply could lead to negative return on investment. This claim however
appears to be less reasoning from standpoint of network reliability. The above discussions reveal that there is
large capacity under-utilisation in the network as only 45 to 55 percent of the network’s resource is used to
generate major share of the revenue and further suggests that this resource under-utilisation is mainly because of
production uncertainty. To examine the claimed justifications which prompted the uncertainty, this work uses
the following questions: (i) Is there increase in return on investment with increase in network uptime using
energy from diesel fuel? (ii) What is the production output of the wireless network at 100 percent network
uptime? To answer these questions, we need experiments on the real network with large quantity of diesel fuel
and other associated input resources however, due to fear of poor return on investement, this practice was not
encouraged by the firm and as such, it had not opted for supply of adequate quantity of diesel fuel at base-
stations. Gogg & Mott (1992) asserts, “Ideas which can produce considerable improvements are often never tried
because of an employee’s fear of failure” (as cited in Robinson, 2004). Many important managerial decision
problems are too intricate to be solved by mathematical programming and experimentation with the actual
system, even if possible, it is too costly and risky (Gupta & Hira, 2009).Simulation can be viewed as solution to
both the off-line design and on-line operational management problems. Morris (1967) asserts, “Modeling is
the enterprise of devising a simplified representation of a complex system with the goal of providing predictions
of the system’s performance measures of interest. Such a simplified representation is called a model. A model is
designed to capture certain behavioral aspects of the modeled systems- those that are of interest to the
analyst/modeler — in order to gain knowledge and insight into the system’s behavior” (as cited in Benjamin &
Tayfur, 2007). With a simulation, ideas can be tried in an environment that is free of risk. This can only help to
encourage creativity in tackling problem situations (Robinson, 2004). Under the conditions of high input costs,
risk and fear of poor return on investment, it is felt that modeling and simulation is an appropriate tool for
solving the uncertainty since simulation offers the solution by allowing experimentation with the model of the
system without interfering with the real system. In order to acquire information pertaining to cost-benefit
analysis in the absence of real live data, the model introduced in this study uses network traffic as function of
network availability in the process of production while various empirical data of the wireless network of BSNL
Manipur set design aspects for the relevant parameters of the model.

3. Literature Review

This work draws on two distinct streams of literature. First, a brief review on economic growth of the wireless
network is introduced. The economic growth concept, which forms conceptual idea of this study, is used to
design a production function of the telecom network. Second, I describe the design aspects of the mathematical
models of the decision variables of the production function. The logic applied in development of software for
simulation is however discussed in the section- research concept and model formulation.
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3.1 Economic Growth and Production Function
The inputs or resources called factors of production of the economic units are any commodities or services used
to produce outputs such as goods or services. The way in which the inputs are combined in the process of
making output is called technology and it can be depicted mathematically by the production function. The
economic growth of a firm can be described with the help of production function, which is a relationship
between inputs and output such that the inputs are combined in the most efficient way. Economic growth is
generally derived from greater amount of inputs or from increase in productivity. Thus, increase in production
input and increase in productivity are factors of economic growth. In addition to the increase in volume and
productivity, other variables such as price and profitability are also widely used in productivity models where
profitability is expressed as function of productivity, prices and volume such that Profitability = f (Productivity,
Prices, Volume). The firm is said to be operating inefficiently if it is possible to produce more of the output with
the same amount of inputs or if it is possible to produce same amount of output employing less of at least one
input. When these situations are ruled out, we are left with only the efficient technique of production. The
production function consists of only those techniques, which are efficient (Sen Anindya, 2014). The model of
production function of the wireless network employed in this study has been widely used in the operations
management and economics literatures. The production function that has been employed in this study for the
network is the Cobb-Douglas production function and it is represented mathematically as

0=4xK* <Ll xL, (D)
where, Q is network traffic, K is diesel fuel consumption, L; is grid energy consumption and L, is network
uptime. The decision variables such as O, K, L; and L, are functions of network uptime and A4, a, f5, J are
constant parameters. This study uses simulated data output of the decision variables as empirical data to derive
these constant parameters and consequently to construct a production function of the wireless telecom network.

3.2 Network Traffic

Probability plays an important role in simulation just as it does in real life. Models of reasonable size and
complexity exhibit a set of possible behaviors that, in general, are unknown unless the model is simulated.
Models also have validity constraints that identify when they are good representations of the real world and
when they contradict or incompletely describe the real system. In order to understand the range of possible
behaviors, it would be useful to simulate the model under all possible conditions. However, this is impractical,
except for the simplest model. Instead, practitioners use techniques such as Monte Carlo analysis (Barnett,
2003). This study uses Monte Carlo method of simulation where decision variables are represented by
probabilistic distribution and random samples are drawn from the probability distribution using random
numbers. The network traffic, which represents an important decision variable, is defined as ratio of the system
occupation period to the total period of observation and it is expressed in erlangs. The average number of calls in
progress on a network depends on both the number of calls that has arrived to the network and durations of the
calls. The duration of a call is called its holding time. Therefore, traffic by a group of trunk is given by 4 = Ch/T,
where 4 is traffic in erlangs, C is average number of call arrivals during time 7" and / is average holding time.
The mathematical model of telecommunication traffic is assumed to have built up primarily from two major
aspects of assumptions such as (a) pure-change traffic and (b) statistical equilibrium. In telecommunications, the
call arrivals and call terminations are taken as random events under the assumption of the pure-chance traffic.
Though the individual user does not make calls at random, the traffic in a telecommunications network however
is the aggregate of the traffic generated by a large number of individual users connected to the network and such
traffic in total generated by a large number of users is observed to behave as if calls were generated at random.
Thus, the telecommunications traffic is characterized as a random process. The telecommunications traffic is
also sometimes known as memoryless traffic as the call arrivals are independent random events and their
occurrence is not affected by previous calls. Thus, the assumption of random call arrivals and terminations leads
to the following results (Flood, 2011):

1. The number of calls arrivals in a given time has a Poisson distribution, i.e.:

() = B o . o 0. . o .
wh[e%,J x 18 the number of call arrivals in time T 4nd 4 is the mean number of call arrivals in time 7. For this reason, pure ch

2. The intervals, T, between the call arrivals are the intervals between independent random events and these
intervals have a negative exponential distribution, i.e.:

P(T=1)=etT (%)

where, T is the mean interval between call arrivals.
3. Since the arrival of each call and its termination are independent random events and have a negative
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exponential distributions, i.e.:
P(Tzt)=e"V" . (4)

where, h is the mean call duration (holding time).

The assumption of statistical equilibrium means that the generation of traffic is a stationary random process, i.e.
probabilities do not change during the period being considered. Consequently, the mean number of calls in
progress remains constant.

4. Research Concept and Model Formulation

Bharat Sanchar Nigam Limited Manipur launched its second-generation GSM (Global System for Mobile
Communication) wireless telecom service in the year 2004. Since second-generation GSM sets the foundation
for wireless network, this study considers the 2G GSM architecture. This network, which claims 75 percent stake
of the total base-transceiver stations of BSNL Manipur, extends its service across the state including remote rural
areas. The base station controller is housed in a central location where MSC is installed. The abis-interface is the
communication link between BTS and BSC. BSNL uses either optical fiber or mini-link that is microwave radio
media for connectivity between BTS and BSC. The base-transceiver station of the base station subsystem is one
among the most energy-consumed units of the system and in addition, it has high outage probability.
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Figure 1: Architecture of 2G GSM Network

The network outage arises primarily from combination of lack of sufficient electrical energy at base
stations, base-transceiver equipment fault, transmission equipment fault, mini-link fault, optical-fiber cable
breakdown, poor supply chain system of diesel fuel, diesel generator fault, and power plant system fault. This
work considers a network of 52 contiguous 2G GSM base-transceiver stations of Imphal city, the model
production function of which is described in equation (1). This function has decision variables— namely O, K, L,
and L,. The outage characteristics of the base-transceiver stations and the network’s call handling behavior are
two behavioral resources, which characterize conceptual idea as to how to develop models for the decision
variables. The purpose of this function is to examine the behavior of economic growth of the network under
varying sets of input resources.

4.1 Modeling Call Arrivals

One of the basic objectives of this study is to make a framework for modeling the network traffic at 100 percent
of network uptime. The number of call arrivals and holding times (expressed in minute) of the calls are two
parameters, which can represent the network traffic in terms of either minutes of usage or erlangs. The real-live
traffic data in terms of number of call arrivals and holding times obtained from the network of 52 base
transceiver stations is related to network uptime of only 45 to 55 percent. Although no attempt was made in real
live situation to measure network traffic at 100 percent network uptime by providing large quantity of diesel fuel
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because of fear of possible heavy cash outlays on diesel fuel and negative return on investment, equation (2) and
(3) however provide simulation design concept for the number of call arrivals and holding times.

I ficl oes “ipected 2 (8] Sik e Expected a 8]
BIS  Ouage  BTS  Outage '”I';:;"J Affected Outage 'J:d'y _U':;z_’:m In‘::’ﬁ A :];::’J Affected  Outage L\ﬂ:ﬂt ﬂ1 N'.f;_“l't i n:;j:
Merme Bagumncs’  Nema - Bequence Station ,B:!w () Calls Calls Factor Statiom _H“_w ) Calls Calls Fach
Stations Stations
A B A B A Ii [ B E ] A [ [ 5] E (D
o7 | 40 27 o7 | 2 K i] 0.00 40 27 52 i) 48 0.5
04 2 48 28 04 2 4 f 0 0.00 48 28 54 84 51 0.6
19 3 52 24 19 3 [ 9 0 0.00 52 29 3 87 56 0.6
08 4 a0 a0 08 4 2 12 2 0.17 30 a0 58 a0 1] 0.6
16 5 a8 31 I 5 10 15 2 0.13 IR il 50 93 2 0.6
10 f EX] 32 10 f 12 18 2 011 i3 12 62 96 4T 0.7
24 7 4 33 24 i 13 21 2 0.10 46 13 X a9g o) 0.6
21 b 36 34 21 B 15 24 4 0.17 a6 34 635 102 73 0.7
25 9 13 35 25 Q 17 27 6 0.22 13 a5 a7 105 7 0.7
0] 10 14 34 09 10 19 a0 12 040 14 36 A0 108 3 0.7
|5 [l 30 37 15 [ 2] 33 15 0435 39 7 71 111 & Iy
18 12 42 In |8 12 23 36 17 0.47 42 18 73 114 &0 0.7
23 13 43 39 23 13 25 39 19 0.49 43 19 75 117 a2 0.7
0l 14 4 40 il 14 27 42 19 045 44 40 77 120 Q7 0.8
17 |5 il 41 17 |5 29 45 23 0.5] K] 41 79 123 [0 08
37 I& 47 42 37 I 31 4% 24 0.50 47 42 Y| 126 |06 0.8
11 17 49 43 11 17 33 51 28 0.55 49 43 83 129 112 08
22 |8 S0 44 22 |& 35 54 32 0.59 50 44 835 132 [le 08
28 19 51 45 29 19 37 57 32 0.56 51 45 87 135 121 0.9
26 20 41 4 26 20 RE] el 34 0.57 41 4 B8 138 126 09
34 21 03 47 34 21 40 a3 36 057 3 47 a0 141 120 049
32 22 05 48 32 22 42 i 36 0.55 03 48 2 144 133 049
45 23 02 49 45 23 44 (9 37 0.54 02 49 a4 147 |38 0.8
2 24 0 S0 12 24 46 72 30 0.54 06 S0 96 150 [44 0.9
28 25 20 51 28 25 48 75 3 057 20 51 98 153 150 09
35 2 2 52 35 26 S0 T8 46 .50 27 52 1 00 156 |56 1.
Table 1: BTS Outage Sequence Table 2: Outage hmpact Factor

The two variables of the equations— namely mean number of call arrivals and mean holding time could
demonstrate as good parameters for estimation of number of call arrivals and holding times. The network model
shown in figure 2, which consists of 52 BTSs (2G GSM) is used in this work to deduce mean number of call
arrivals and outage impact factor. Table 1 provides the base-station outage probability sequence from highest to
lowest that has been prepared from the base-station outage probability distribution depicted from the empirical
outage data of the 52 base stations. The characteristic of the network is such that calls pertaining to the failed or
down base stations are handled by the neighboring active base stations and calls are affected only when there is
concurrent outage among the contiguous base stations. Therefore, the algebraic sum of the average number of
expected call arrivals of the down base stations does not provide value for the average affected number of calls.
In order to determine accurate value of the average number of call arrivals per base-transceiver station per hour,
the network behavior and outage characteristic of the network is considered in this study. In computing average
number of call arrivals, we consider all the base stations of the network whether the base station is active or not
and thus, the average number of call arrivals is the average number of calls, which is expected to arrive in any of
the base stations of the network including non-active base stations. From the behavior of the network, it is
understood that during outage the number of affected calls is influenced by the number of down base stations,
geographical locations of the base stations, base-station outage probability and average number of call arrivals.
To deduce outage impact factors, each sector of the base station is assumed to have an average traffic of one call.
Since there are three sectors in a base station, the average traffic per base station is three calls. In order to
demonstrate how the calls are affected during outage, we may consider an example in which we assume that
BTS08 and BTS21 fail to radiate in time duration of one hour. Under such outage condition, the affected number
of calls is two and not six. This is due to non-radiation of the neighboring sectors 0821 and 2108. The traffic
belonging to other affected sectors 0807, 0809, 2122 and 2120 are handled by neighboring active BTS and as
such, there is no outage impact on the number of call arrivals. Now, if we assume that first 20 base stations of
Table 1 fail to radiate then by virtue of the behavior of the network and outage probability characteristics of the
base stations, the number of affected calls in real sense under this condition is 34. However, normally an outage
impact of 60 calls was expected as number of affected call arrivals. The ratio of the real number of affected call
arrivals to the expected number of affected call arrivals is termed in this work as outage impact factor. Thus, the
outage impact factor at 38 percent of network outage (20 BTSs down) is 0.57. The outage impact factor of the
network estimated according to the base stations outage probability is shown in Table 2. This outage impact
factor together with number of call arrivals obtained from the empirical real live traffic data of the network is
used in this work to deduce values of mean number of call arrivals. If y is total number of calls, which could
arrive to the network in the time duration of one-hour, then from the following equation we can derive the real
mean number of call arrivals.
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Table 3: Uptime Impact Factor

where, A is the total number down BTSs, u is mean number of call arrivals per base station per hour, &
is outage impact factor and B is the number of serving base stations. Thus, by substituting real-live values of y,
A, B and the outage impact factor, ¢ (corresponding to number of down/failed base stations) in equation (5), we
can derive the value of the mean number of call arrivals for the time of one-hour duration. In simulation, we use
this mean number of call arrivals together with random numbers to determine number of call arrivals of the base
stations. Due to random nature of the calls as characterized by random numbers the values of the number of call
arrivals of the base stations may differ from base station to base station. We may get the total number of call
arrivals of the network by adding the expected number of simulated call arrivals of the individual serving base
stations. However, in the event of outage of some base stations, the real number of simulated call arrivals of the
network is not equal to the sum of the expected number of simulated call arrivals of serving base stations. This
is because of the behavior of network and the outage characteristics of the base stations. To illustrate this, let us
assume that 32 base stations of the network each carrying an average traffic of 3 calls radiate during a time of
one hour duration. The expected total number of normal call arrivals under such uptime condition is 96 calls
however, as per Table 3 the number of call arrivals is 122. This is due to network’s call handling behavior and
outage characteristics. So in order to make accounting of additional number of call arrivals in computing the real
number of simulated call arrivals of the network at different uptimes, a new parameter called uptime impact
factor is introduced. Table 3 shows values of the uptime impact factors, which are at different uptimes of the
network. The number of call arrivals, P of a serving base station is therefore estimated as

pP= Pactlve X (1 +k) (6)

where, k is the uptime impact factor, P, is expected number of simulated call arrivals of the serving base
station.
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Rl e b 0000 0003 0012 0032 0272 0471 0762 1163 1682 2317 3052 3860 4707 5554 6364
No. of Call Arrivals (x 100) 024 025 026 027 028 020 030 031 032 033 034 035 03 037 038 039 040

5365 7107 7760 8313 8763 0117 0385 0582 0721 D817 OS] 9922 0948 0063 0072 0077 U950

Random No. [ntervals

7106 7759 R312 8762 9116 9384 9581 9720 0816 ORR0O 9921 9947 9962 9971 9976 9979 9999
Table 7: No. of Call Arrivals and Random No. Intervals for Mean No. of Call Arrivals= 22{x100) { Poizson Distribution)

The network traffic is expressed as function of network uptime as described in equation (1). The real
live traffic data that is total number of call arrivals of the wireless network, which were at different uptimes in
the past 330 days of period ending 31/03/2013, is used as value of y in equation (5) to estimate value of mean
number of call arrivals and mean holding time. The number of call arrivals varies over time, for example,
number of calls arrivals during 4am to Sam may not necessarily equal to the number of calls arrivals during 1pm
to 2pm. Therefore, in this work a day is divided into 24 time slots, each having a time of one-hour duration.
Table 4 shows the values of the mean number of call arrivals of the network which have registered in the 24
different time slots. These mean number of call arrivals are derived from the real live empirical traffic data of
the network using equation (5). As described in equation (2), the number of call arrivals follows Poisson
distribution and as such, the random number intervals derived from the Poisson probability distribution of the
mean number of call arrivals is assigned against the number of call arrivals for future use and reference during
simulation. For example, the number of call arrivals and random number intervals correspondence in respect of
mean number of arrivals of value 22 is illustrated in Table 7. Table 4 shows the values of real mean holding
times of the calls registered in the 24 time slots. The value of the mean holding time is computed from the real-
live holding times of the network. As stated in equation (4), holding times follow negative exponential
distribution and therefore exponential probability distribution is used in preparation of holding time-random
number intervals correspondence from the mean holding time. The network and base station outage is viewed in
this study from two aspects— (a) the outage durations of the base stations during same observed time may not
necessarily equal to each other (b) the number of down base stations vary over time. Mean time to restore
(MTTR) is an important decision variable in simulation and according to Chen Yachuan (2006), restore time is a
random variable and it is often assumed to have an exponential distribution. MTTR is average fault restoration
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time. The value of MTTR is computed as 4 hours from the real live outage data of the network. The restore times
and random number intervals correspondence in respect of the mean time to restore of value 4 is shown in Table
5. Another important parameter is network outage distribution and this outage distribution does not follow any
standard probability distribution that is number of down base stations vary over time. In Monte Carlo
Simulation, according to Jaisankar (2006), decision variables may not explicitly follow any standard probability
distribution such as Normal, Poisson, Exponential etc. and as such, distribution can be obtained by direct
observation or from past records. Therefore, an empirical outage probability distribution is constructed from the
past real live outage data of the network. This outage probability distribution is shown in Table 6.

4.3 Mathematical Model for Base Station Energy Consumption

The base stations get energy from three sources— namely grid distribution, diesel fuel and energy conserved in
the battery bank. Telecom service providers install one or more base-transceivers at the base station sites. The
base station and network switching system of the respective base-transceivers installed at the base station sites
generate outage event reports of the base-transceivers. Meetei & Singh (2014) used these outage events in
management of base-station energy consumption and deduced the following equations to measure quantity of
diesel fuel consumption at the base station sites.

Py, P3, Pcoma Pwivax, Prrans, and Ppagic are average power consumption rates of 2G BTS, 3G BTS, CDMA
Total power consumption, Peg -

¥ = i ] il

P Puioan + P
e . 3 m i) . i) ¥ 3 . 3 Tim B R 3
where, Pwroan= Xitq Pacit Pict Pepma + Pwmax: Pruera )_,|=1 Prransj T Ppasic

BTS, WiMax, Transmission equipments and Landline exchange respectively; n represents numbers of 2G BTS,
m represents number of transmission equipment.

Backup factor,
q
_Ep—Preme ~ Psite .
PeiTe ¥ 100

o

where, Pppy is power supply capacity in Ampere of the individual SMPS (switched mode power supply)
modules, ¢ is the number of SMPS modules and p is a energy conservation factor.

Energy obtained from grid power supply, Egpgeriin AH):

Egeer = (Poe % tgecr) o X Poge X tgeer X f
where, tg ger 1s the total hours of grid power availability. If there is no charging of battery, p = 0 else f = 1.
Total energy consumption, Egrg (in AH):

Esmr= Ponx % fangax + Pio X g + 20 P % e + Pooya % teones T Prvera % fogsa

Energy obtained from Diesel Generator, Epg:
EsiTe-EELECT

if Epg<0, Epg=0
e ,|J ['DG U"-['DG

Eng

DG run hour, g

b = Epg
file P
SITE
Total diesel fuel consumption. Fepg:
Fsime=tpe * Fpe
wihere, Fg is the hourly diesel fuel consumption rate (in litres) of the diesel generator.

where ’tWIMAX, t3G’ tCDMA, t and tiNFRA AT€ total uptime hours of WiMaX, 3G-BTS, CDMA-BTS, 2G-BTS and
landline exchange/transmission equipment respectively..

4.4 Research Process and Data Flow

This study considers network availability as broader concept of network reliability. Network reliability is a
service quality of the network, which is regarded as key parameter for business success of the wireless sector of
the telecom service providers. Since network uptime sets foundation for network availability all the decision
variables— namely O, K, L; and L, of the production function are modeled as functions of the network uptime.
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Figure 3: Research Process and Data Flow

In this section, I describe the steps of research process and subsequently logics applied in development
of the research process and simulation software. In broad sense, this approach is based on development of
software, which is trained to investigate network traffic (Q) as a function of diesel fuel (K), grid energy (L;) and
network uptime (L,). Figure 3 shows the schematic block diagram of the research process. Using equation (6) we
can compute the number of call arrivals, P which would arrive to the network at different times. The holding
times of the number of calls arrivals are not same and as such the simulated traffic in terms of minutes of usage
(MOU) of the time slots described in the figure 3 is the sum of the holding times of all the individual calls
computed using equation (6). Thus, the simulated traffic is the sum of the traffics in minutes of usage carried by
the network in its 24 different time slots of a day. The simulated mean number of call arrivals is validated with
the real-live mean number of call arrivals using Chi-square test. Figure 4 shows a part of the schematic block
diagram of the traffic generation process. The number of serving base stations that determines network
availability over the 24 time slots of the day is computed using network outage probability distribution shown in
Table 6 and the downtime percent.
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Figure 4: Traffic Generation Process

The different types of equipments such as base-transceiver station, transmission equipment, landline
etc. housed in the base-station sites have different energy consumption rates. With the help of energy
consumption database and the mathematical model for base-station energy consumption discussed in section 4.3,
we could compute the quantity of diesel fuel consumption in litres and grid energy consumption in kWh
(kilowatt- hour) at the base station site during network availability period of the day.

5. Data Analysis and Estimation of Production Function

5.1 Traffic Validation

The network traffic per base station per hour expressed in erlangs is used in this study as parameter for validation
of the simulated traffic. Chi-square test is employed as main verification technique to validate the traffic.
Simulation runs are conducted with the input variables such as simulation count, mean call arrivals, mean time to
restore, mean holding time, uptime percent etc. to generate empirical traffic data for construction of the
production function. The simulated traffic output of the 24 time slots of the day is taken as observed/ predicted
value for the Chi-Square test. The Chi-square test is employed either to reject or to accept the hypothesis—
“predicted value of traffic (simulation) is equal to expected value of the traffic (real)”. The expected value of the
traffic, 4 in erlangs is computed analytically from the real number of call arrivals and holding times using the
equation, 4 = Ch/3600 where, C is number of call arrivals during 3600 seconds (one hour) and 4 is the holding
time in seconds. The expected value of traffic is compared with the value of traffic generated from 51 simulation
runs under the Null and Alternate hypotheses given below.

Ho: The predicted value of traffic (simulation) is equal to expected value of traffic. (Null
Hypothesis)

Hi. The predicted value of traffic (simulation) is not equal to expected value of traffic. (4lternate
Hypothesis)

a = (.05 level of significance for testing these hypotheses
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Table 7: Chi- Square for Hourly Traffic

If Chi-Square value of traffic of the individual time slot is less than the table value of Chi-Square at
0.05 levels of significance with (n-1) degree of freedom where #n is the number simulation runs (i.e. simulation
count =51 in this case), then the hypothesis is accepted else it is rejected. The result as shown in Table 7 supports
the null hypothesis.

5.2 Production Function of the Model Network

In this study, we conduct 30 simulation runs for each of the input uptime percentage and the average value of
these simulation runs is used as simulation output of the production day. This process is conducted for 18
different uptime inputs to get simulation outputs for 18 production days. The values of simulation output of the
18 different production days are illustrated in the Table 8. Kendrick method of total factor productivity (TFP)
described by the equation TFP = Q/(rK+wL;+yL,) where r, w, and y are the unit price values of K (diesel
consumption in litre), L; (grid energy in kilowatt-hour, kWh), and L, (uptime in hour) respectively is employed
to estimate total factor productivity of the network. The unit prices of diesel fuel per litre and grid energy per
kilowatt-hour (kWh) are assumed as INR 50 and INR 6 respectively. The unit operating cost per uptime hour per
base station denoted by y in the equation is estimated from the operational expenditure of the firm. Purchase of
diesel generator, battery bank, PIU (Power Interface Unit) and SMPS constitute the capital expenses, CAPEX
and therefore, any kind of capital expenses is not considered in estimation of total factor productivity in this
study. The operating expenses, OPEX is the monthly expenses incurred in running and maintaining equipments
and other infrastructures housed in the telecom sites. Costs involved in some units of the infrastructure of the
network such as (a) repair costs of diesel generator, (b) repair costs of power plant, (c) maintenance costs of
battery bank, (d) transportation costs for refilling the diesel oil at the site, and (e¢) Optical fibre cable maintenance
& repair costs are considered as OPEX. From the OPEX made by the firm during January 2013 to June 2013, the
maintenance cost per hour per base station is estimated as INR 22. Using unit prices of diesel, grid energy and
operating cost as INR 50, INR 6 and INR 22 respectively, we can calculate TFPs of the 18 production days as
illustrated in Table 8.
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Table 9: Input and Output Costs of the Network
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Table 10: Economic Growth and Return on Investment

The values of the total factor productivity (TFP) of different production days having different network
uptime hours show high degree of closeness and this indicates feasibility for single production function.
Therefore, the values of simulation outputs such as traffic (column L), diesel consumption (column H), grid
energy (column F), and uptime hour (column I) shown in Table 8 provide themselves as empirical data for
estimation of the production function of the network. Thus, using this empirical data the constant parameters of
Cobb-Douglas production function of equation (1) are estimated as 4=0.6711, a=0.4143, [=0.9401 and
0=0.0721. Now, the production function is as follows-

0= 0.6711 x K" x 1,091 x 1,271 R?=0.9961 (D
The regression equations in respect of Diesel (K) & Uptime (L;) and Grid energy (L;) & Uptime (L,) are
estimated as follows-
K =-851+0.716 L, R*<99.7 .. (8)
L, = 766 +0.678 L, R’=98 4 ... (9

This study uses INR 0.55 as cost of network usage per minute. Table 9 shows the output of the
production function and total factor productivity of the network, which have been estimated using equation (7).
Table 10 shows the economic growth of the network when the uptime is increased from 55 percent to 100
percent. The above input and output characteristics of the network shown in Table 9 and Table 10 reveal that
there is considerable economic growth with the increase in production input however, there is no increase in
productivity since there is no involvement of any new engineering or technology which could convert the input
resources to desired output efficiently.

6. Conclusion

The basic concept behind this study is to provide a reliable telecom service to the network users. This study
considers network reliability as function of network availability. The demand of network reliability is under
threat in the local business environment of telecom industry in Manipur. This is because of involvement of heavy
cash outlays in producing the desired network reliability in the local context and this has resulted production
uncertainty. In this paper, I examine the characteristics of the wireless telecom network and design a model
network based on the behavior of the network. In the production function model designed for the wireless
network, network traffic is used as output of the production function. This study applies mathematical models of
network traffic and energy consumption in designing simulation models for the traffic and other input decision
variables such as network uptime and energy consumption. The software developed for simulation is trained to
investigate network traffic as a function of input resources such as diesel fuel, grid energy and network uptime.
The information obtained from simulation experiments is then used as empirical data for deducing constant
parameters of the production function and in estimation of the production function of the wireless network. The
result of the cost-benefit analysis supports for meaningful economic growth with the increase in the uptime of
the network. This study reveals that certain business problems of telecom are highly influenced by local
environment and to address this, the telecom management must try to understand the industry fully within local
context and identify business success parameters even on short-term outlook besides its well-structured day-to-
day operations. The simulation approach introduced in this paper will help telecom management solve the
problem of production uncertainty associated to high production costs.
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