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Abstract 

    We study composition operators between higher orders weighted Bergman spaces. Certain growth conditions for 

generalized Nevanlinna counting functions of the inducing map are shown to be necessary and sufficient for such 

operators to be bounded or compact. Under a mind condition we show that a composition operators  C  is compact 

on the higher order weighted Bergman spaces and Hardy spaces of the open unit ball in 
nC  if and only if 

      

    ( )  
  0    as  |z|  1-. 

 

Keywords: Hardy Spaces, Bergman Spaces, composition operators, boundedness, Compactness, Nevanlinna 

counting functions. 

 

1. Introduction 

Let D be the open unit disk in the complex plane and denote Lebesgue measure on D by dA, normalized so that 

A(D) = 1. The Hardy space H
p
 is the space of functions f that are analytic on D and satisfy 

‖ ‖
  
 

     
   

 

  
∫ | (    )|

  

 

 

      

and the Bergman space    consists of those analytic functions such that 

‖ ‖
  
 

  ∫     

 

      

Let  : DD  be an analytic self-map of D. It is a well-known consequence of Littlewood’s subordination principle 

[1], [2] that  induces through composition a bounded linear operator on the classic hardy and Bergman spaces (see 

for example [3], [4] , [5] ,[6] or [7]. That is, if we define Cby  C ( f ) = f, then   C :  H
p
H

q
   and C:  A

p
A

p
are 

bounded operators. Such operators are called composition operators.  

 The open unit ball in n- dimensional complex Euclidean Spaces  
nC C C C      is the set  

Bn = { z∈ℂn
 : |z| < 1 }. 

The space of holomorphic functions in Bn will be denoted by H (Bn).  Let  dv  be Lebesque volume measure on Bn , 

normalized so that  v (Bn) = 1.  For any > -1  we let  dv (z) = C (1 - |z|
2
 )

dv (z),where C is a positive constant 

chosen so that v (Bn) = 1. The Weighted Bergman space   
 
   , where p> 0, consists of functions f∈H (Bn) such that 

∫   ( )     ( )   
  

. 

The space  
   is a Hilbert space with inner product 〈   〉  ∫  ( ) ( )̅̅ ̅̅ ̅̅    ( )

  
. Every holomorphic  : BnBn 

induces a composition operator C: H (Bn) H (Bn) namely, C  f  = f . When n = 1, it is well known that C is 

always bounded on  
 

 ; and C is compact on  
 
  if and only if         

      

    ( )  
   = 0 . See [8], [9],[10] and 

[11].When n> 1, not every composition operator is bounded on 
 
 . 

 

Theorem1.1.Suppose  p> 0 and > -1   . If the composition operator  C is bounded on   
 

  for some  q> 0 and 

  -1<   , then C is compact on   
 

  if and only if  : 

   
    

 
      

    ( )  
     (1) 

 

Theorem1.2. Let 0 <p q and suppose    is an analytic self-map of D. Then  
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a) C:  A
p
A

q
   is bounded if and only if N ,2 (w) = O ([log (1/|w|)]

2q/p
)         (|w|  1); 

b) C :  A
p
H

q
   is bounded if and only ifN ,1 (w) = O ([log (1/|w|)]

2q/p
 )        (|w|  1); 

c) C :  H
p
A

q
  is bounded if and only ifN ,2 (w) = O ([log (1/|w|)]

q/p
 )         (|w|  1); 

 

Theorem1.3. [R, Theorem IV.3 and Theorem IV.4].Let 0 <pq and suppose   is an analytic self-map of D. Then C 

:  H
p
H

q
  is bounded if and only if 

N ,1 (w) = O ([log (1/|w|)]
q/p

 ), 

and moreover  C  is compact if and only if  

N ,1 (w) = O (log (1/|w|)
q/p

) 

where|w|  1. 

 

Corollary1.4.  Let 2 and suppose  is an analytic self-map of D. Then the following are equivalent. 

a)  There exists  p> 0  such that  C :  H
p
H

q
   is bounded; 

 b)  C :  H
p
H

p
   is bounded for all p > 0; 

 c)  There exists  p> 0  such that  C :  A
p
H

p/2
   is bounded; 

 d)  C:  A
p
H

p/2
   is bounded for all p> 0. 

Moreover, these four statements remain equipment when “bounded” is replaced by “compact”  

 

Corollary1.5.  Let 1 and suppose   is an analytic self-map of D. Then the following are equivalent. 

 a)  There exists  p> 0  such that  C :A
p
H

p
   is bounded; 

 b)  C :  A
p
A

p
  is bounded for all p > 0; 

 c)  There exists  p> 0  such that  C:  H
p
A

2p
  is bounded; 

 d)  C :  H
p
A

2p
   is bounded for all p> 0. 

Moreover, these four statements remain equipment when “bounded” is replaced by “compact” . 

 

Corollary1.6.  Let 1 and suppose  is an analytic self-map of D.  

If  C :  H
p
H

p
   is bounded for some (and hence all) p> 0, then C :  A

p
A

p
   is bounded for all  p> 0 . Moreover, 

this remains true when “bounded” is replaced by “compact”. 

 

2.  Background 

Definition2.1  We introduce a family of weighted Bergman type spaces that allows us to handle the classical 

Bergman and Hardy spaces in a unified manner. For  > -1  define the measure dA  on D by dA (w) = [log 

(1/|w|)]

dA (w).  For  0<p<  and > -1  we define the weighted Bergman space   

 
 to be those functions  f  analytic 

on D and satisfying.  

‖ ‖
  

 
 

  ∫   ( )     ( )
 

    

In this definition, the measure dA can be replaced by the measure(1 - |w|)

dA(w), as in [3], [12] and [13] . This result 

in the same space of functions and an equivalent norm, since  (1 - |w|)

 and  [log (1/|w|)]


 are comparable for ½ ≤ |w| 

< 1, and the singularity of dA at the origin is integrable. 

Definition2.2  LetdA (z) be the area measure on D normalized so that area of D is 1.  For each ∈ (-1,) , we 

setdA(z)= (+1) (1 - |z|)
2
)

dA(z), z∈D. Then dA is a probability measure on D. For 0 <p< the weighted Bergman 

space    
 

 is defined as 

  
 

 {   ( ) |   |
  

  (∫   ( )    ( )
 

)

   

  }  

Note that |   |
  

    is a true norm only if  1p<   and in this case    
 

  is   a Branch space.  
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Definition2.3 For any > 0, the space A
-

 consists of Analytic functions f in D such that 

             (      )   ( )          

Each A
-

 is a non-separable Branch space with the norm defined above and contains all bounded analytic functions 

on D. The closure in A
-

 of the set of polynomials will be denoted by   
   , which is a separable Banach space and 

consists of exactly those functions f in A
-

  with 

   
    

(      )   ( )     

For general background on weighted Berman spaces  
 

and Bergman type spaces, A
-

and   
   , one may consult [14] 

and [15] and the references therein.  

Lemma2.4.If  0<p < , then ‖ ‖
  

 
 

   ( )   ∫   ( ) 
 

      ( )       ( )  

Here the symbol “” means that the left hand side is bounded above and below by constant multiples of the right 

hand side, where the constants are positive and independent of f.  

Proposition2.5.    Let    be an analytic self-map of D and let f be analytic on D. Then, for     -1, ‖   ‖
  

 
 

 

  ( ( ))   ∫    
 

                 . 

Lemma2.6.Let  0<p<  and   -1 .  If  f   
 

  and      , then | f(w)| C‖ ‖
  

 (     )
 (   )

 ⁄ . 

Lemma2.7.Suppose p>0  and> -1 . Then the following conditions are equivalent for any positive Borel measure  

on Bn . 

(i)   is a Carleson measure for  
 

 , that is, there exists a constant C > 0  such that 

∫         
  

∫   ( )       
      for all  f  ϵ  

 
 

(ii) For some (or each) R > 0  there exists a constant C> 0 (depending on R and    but independent of a) such 

that (D (a,R)) Cv  (D (a,R))For all a∈Bn where D (a,R)  is the Bergman metric ball at a with radius R.  

Proof.See [14] for example.  

 

Corollary 2.8.Suppose p>0 ,q > 0  , and> -1 . Then C is compact on  
 
   if and only if   C is compact on  

 
      

We need two more technical lemmas. The first of which is called Schur’s test and concerns the boundedness of 

integral operators on L
p
 spaces. Thus we consider a measure space (X , ) and an integral operator 

   ( )  ∫  (   ) ( )  ( ) 
 

 (2) 

whereH  is a nonnegative measurable function on  X×X.  

Lemma 2.9.Suppose there exist a positive measurable function  h  on  X  such that∫  (   ) ( )  ( )    ( )
 

 

for almost all x and ∫  (   ) ( )  ( )    ( )
 

for almost all y , where C is a positive constant. Then the integral 

operator T defined in (2) is bounded on L
2 
(X ,d). Moreover, the norm of T on L

2 
(X ,d) is less than or equal to the 

constant C.  

Proof. See [16], [17]and [18].  

 

Lemma 2.10.Suppose > -1 and t > 0. Then there exists a constant C> 0 such that 

∫
   ( )

   〈   〉        
  

 
 

(      ) 
 

for all  z∈Bn . 

Proof. See [2]. 

 

Theorem 2.11.Suppose  p> 0 , > -1 and t > 0. Then the composition operator C is bounded on   
 
  if and only if  
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(        ) ∫
   ( )

   〈   ( )〉        
 

  

 (3) 

Proof. It follows from Lemma2.10 that the boundedness of C on  
 

 implies condition (3).Next we assume that 

condition (3) holds. Then by the change of variables formula there exists a constant C>0  such that 

(        ) ∫
  ( )

   〈   〉          
  

,   for all  a ∈Bn . 

For any fixed positive radius R we have 

(        ) ∫
  ( )

   〈   〉         (   )
  , for all  a∈Bn . 

It is well known that    〈   〉        ,  forz∈D (a,R), and it is also well known that  

 (      )          ( (   ))  

See [14]. It follows that there exists another positive constant C (independent of a) such that 

    ( (   ))     ( (   ))for all a∈Bn. 

By Lemma 2.7, the measure       is Carleson for 
 
  and so the composition operator C is bounded on  

 
  . 

 

Theorem 2.12.Suppose  p> 0 , > -1 , and t> 0. Then  C is compact o 
 
n    if and only if  

   
      

(        ) ∫
   ( )

   〈   ( )〉        
  

    (4) 

 

3. Necessary and Sufficient Conditions for Bounded 

 In this section we justify Necessary and sufficient conditions for C :   (   ) 
 

 
(   ) 
 

    to be bounded(see [2]and 

[10]).For any holomorphic  : BnBn we can define a positive Borel measure ,(+1)
2   on Bnas follows. Given a 

Borel set E in Bn  , we set  

,(+1)
2  (E) = v(+1)

2  (
1

(E)) = C 1 ( )E  (1 -  ( )  )(   )
2

  ( )   

Obviously, ,(+1)
2  is the pullback measure of  dv(+1)

2  under the map  . Therefore, we have the following change 

of variables formula: 

2 2( 1) ,( 1)
( )

n nB B

f dv fd
  

 
 

  , 

where  is either nonnegative or belongs to  L
1
 (Bn , d,(+1)

2 ). 

 

3.1 A sufficient condition for C :   (   ) 
 

 
(   ) 
 

to be bounded. 

Theorem3.1.Let 0 < p q  suppose   is an analytic self-map of D satisfying.  

 (   )    (w) = O ([log (1/|w|)]
((+1)

2
+2)q/p

)          (|w|  1). 

Then  C :   (   ) 
 

 
(   ) 
 

is bounded . 

Proof. By the Closed Graph Theorem, it suffices to show that  C( f  )   
(   ) 
 

  if   f  
(   ) 
 

.Let  f  
(   ) 
 

. 

Then, by Proposition 2.5, 

‖   ‖
 

(   ) 
 

 
    ( ( ))   ∫    

 

         (   )       

 

and it is clear that C ( f  )   
(   ) 
 

   if and only if there is  r  (0,1) such that  

∫   
    

          (   )          
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By our hypothesis on the growth of (   )     there is a constant  K< and  r0  (0,1) such that 

 (   )    (w) K (log (1/|w|))
((+1)

2
+2)q/p

  ,  w       

Using this and the growth estimate for | f | from Lemma 2.6,  

∫   
     

          (   )        

  ‖  ‖
 

(   ) 
 

   
∫   ( )     
     

  ( )  (     )
(   )(  (  )

2
)

  ((   )
2

  )   ( )  

We may assume r0½ , so that log (1/|w|)  2(1 - |w|). Using this estimate in our upper bound above, we see that 

∫   
     

          
(   )

2
  

      ‖ ‖
 

(   ) 
 

   
∫   ( )     
     

  ( )     ((+1)
2

+2)(w)     ‖ ‖
 

(   ) 
 

 
 

which completes the proof. 

 

Theorem3.2.Let 0 <qpand  suppose   is an analytic self-map of  D satisfying  (   )    (w) = O ([log (1/|w|)]

)          

(|w|  1),for some 

  ((   )   )
 

 
   

Then C :   (   ) 
 

 
(   ) 
 

is bounded. 

Proof.Let   f   
(   ) 
 

. As in the proof of Theorem 3.1, it suffices to show that f  ( )   
(   ) 
 

   and for this it 

suffices to show there is  r  (0,1)  such that 

∫   
    

          
(   )

2
  

      

By our hypothesis on the growth of  (   )   , there is a constant K< and  r0  (0,1) such that (   )    (w) K (log 

(1/|w|))

,    w      where 

  ((   )   )
 

 
   

Now,  (   )    0 and so  >1 . Thus, by Lemma 2.4, it suffices to show that 

∫   
     

( )  (     )     ( )     

By Hölder’s inequality, this integral is bounded by 

(∫    ( )  

 

(     )(  )        )

   

(∫  (     )
   

(  )  

 

 

 
 

     ( ))

(   )  

 

The first factor is bounded by ‖ ‖
 

(   ) 
 

 
 and so is finite, while the second factor is finite because the assumed lower 

bound for  is equivalent to the exponent in the integral being strictly greater than -1. Thus the proof is complete. 

 

3.2 A necessary condition for C :   (   ) 
 

 
(   ) 
 

    to be bounded. 

Lemma3.3.[5, Corollary 6,7]. Let  be an analytic self-map of D and let   1. If  (0)  0 and 0 <r< |  (0)|, then  

  ( )  
 

  
∫      
  

 

The next lemma shows how the counting functions transform under composition. The case = 1 of this lemma can be 

found in [5]. 

Lemma3.4.Let  be an analytic self-map of D let  D and let   ( )   
   

    
 

 

By the Möbius self-map of D that interchanges 0 and a. Then 
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(  )         

Theorem3.5.suppose that     is an analytic self-map of D that induces a bounded composition operator C :  

 
(   ) 
 

 
(   ) 
 

 .   Then (   )    (w) = O ((log (1/|w|))
((+1)

2
+2)q/p

)          (|w|  1). 

Proof: By Proposition 2.5, there is a constant C1 such that  

C1  C (ka)   
(   ) 
 

 
∫  

 
ka(w)|

q-2   
 ( )   (   )    (w) dA (w) 

= 
 ((  )

2
  ) 

   |a|
2
 (1 - |a|

2
)

 ((+1)
2

+2)q/p
∫

 (   )   
( )

         ((  )
2

  )   
 

dA(w) 

= 
 ((  )

2
  ) 

   |a|
2
 (1 - |a|

2
)

((+1)
2

+2)q/p-2 
∫

 (   )   
( )

       ((  )
2

  )     
 

   
 ( ) 2 

dA(w) 

= 
 ((  )

2
  ) 

   |a|
2
 (1 - |a|

2
)

 ((+1)
2

+2)q/p-2 
∫

 (   )   
(  ( ))

      ( )  ((  )
2

  )     
 

dA(z) 

 

Here      
  is the Möbius self-map of D that interchanges 0 and a, as in Lemma 3.4 and the change of variable z = 

   (w) was made in the last line. Now,  

 

      ( ) 
  

      

      
  

 

 

 

      
        

 

 
 

and so  

C1  C (ka)   
(   ) 
 

 


   ((  )   )   ((  )   )     

  (      )((  )   )   ∫  (   )   (  ( ))  ( )   

 
 

 

We now apply first Lemma 3.4, then Lemma 3.3 and then Lemma 3.4 again to see, provided that     (0) > ½, the 

integral in the line above is at least 
 

 
 (   )   , a (0) = 

 

 
 (   )     (a). 

Since    (0) >½  if |a| is sufficiently close to 1, this provides the estimate that 

 (   )   ( )         (  )   
 

(   ) 
 

  ((  )   )       

((   )   )     
 (       )((  )   )       (5) 

for all such a. Since          
(   ) 
 1  and log  (1/|a|)  is comparable to (1-|a|

2
)  for  ½ < |a| < 1, the assumption that 

C  is bounded provides the asserted bound for  (   )   and the proof is complete. 

As noted at the beginning of this section, the necessary condition in Theorem 3.5 for C  to be pounded agrees with 

the sufficient condition from Theorem 3.1 that holds for qp, and so the following corollary results. 

 

Corollary3.6. Let 0 <pq  and let  be an analytic self-map of D. Then C :   (   ) 
 

 
(   ) 
 

is bounded if and only 

if  

 (   )    (w) = O ((log (1/|w|))
((+1)

2
+2)q/p

)          (|w|  1). 

4. Compatness of C 

A bounded linear operator  T  from a Branch space  X  to a Branch space  Y  is said to be compact provided the 

closure of  T (B) is a compact subset of  Y, where B is the unit ball of  X. Equivalently, T is compact if and only if 

some subsequence of {T (xn)} converges in Y, whenever {xn} is a bounded sequence in X.Our goal here is to 

characterize those analytic functions  : DD  that induce bounded composition operators from one  higher order  

weighted Bergman to another such spaces (see [2]and [4]). 

Theorem4.1.Let 0 <pq and let be  an  an analytic self-map of  D . ThenC :   (   ) 
 

 
(   ) 
 

is compact  if and 

only if 
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 (   )    (w) = O ((log (1/|w|))
((+1)

2
+2)q/p

)          (|w|  1). 

Proof.  We first show that C  is compact, assuming that  (   )    satisfying the given growth condition. Let 

       
(   ) 
  1 for n 1. We must show that {fn} has a subsequence that converges in  

(   ) 
 

 . By Lemma 2.6, 

the fn  are uniformly bounded on compact subsets of D, and hence { fn } is a normal family there. Thus there is a 

subsequence, which for simplicity we continue to denote by { fn } , that converges uniformly on compact subsets of  

D  to an analytic function f. Now, for each   r  (0,1), 

∫           
 
    (   )   

  
 =     

  
∫      

    
  

  
 
    (   )       

  
 sup        

(   ) 
 C , 

by Lemma 2.4. It follows that     
(   ) 
 

 , and so       
(   ) 
 

 by Theorem 3.1.  

To complete the proof, it suffices to show              
(   ) 
    as .To establish this, note that from 

Proposition 2.5 it suffices to show that 

     (( )    ( ( ))   ∫  
  

               
 
       (   )      

  ∫  
    

              
 
        (   )         

(6) 

 

can be made arbitrarily small by choosing n large. For any fixed r   (0,1), the uniform convergence of fn to f on 

compact subsets of D shows that the first two terms in the display above converge to 0 as  n . Thus it suffices to 

show that the third term in (6) tends to zero, uniformly of n, as r  0. To this end, let > 0, and note that by 

hypothesis we can choose r  (0,1) so that 

∫  
    

              
 
        (   )     ∫  

    
              

 
         ((  )   )    

We are now in exactly the same situation that occurred at the end of the proof of Theorem 3.1. Without providing all 

the details from that proof, the bound for  |fn – f | from Lemma 2.6 leads to the estimate 

∫  
    

fn – f |
q-2

|  
 

 –   |
2 (   )   dA C||fn – f  

 
(   ) 
 

 
 C ( ||f ||  

(   ) 
 

  +1)
q
. 

Since > 0 was arbitrary ,C  is compact and the first part of the proof is complete. 

 

We now finish the proof by assuming that C is compact and proving that  (   )    satisfies the stated growth 

conditions. For a D, let Ka be as defined in  3, 

  ( )   
(       

 
)
((  )

 
  )  

(      )
 ((  )

 
  )  

 

and recall that        
(   ) 
  1. Let {an} ⊂D satisfy | an | 1  asn. From the definition of ka, it is clear that this 

implies ( )
nak z   converges uninformly to 0 on compact subsets of D as n. Hence the zero element of 

(   ) 
 

   is 

the only possible limit point of { ( )o
nak z  }. The compactness of C  therefore yields 

that    
     

     (  )    
(   ) 
    

The required growth condition for  (   )     is an immediate consequence of this and (5), the bound for 

 (   )   that was derived in the proof of theorem 3.5, and the proof is complete. 

 

Theorem4.2. Let 0 <q<p  and suppose   is an analytic self-map of  D  satisfying the conditions of Theorem 3.3. 

ThenC :   (   ) 
 

 
(   ) 
 

is compact. 
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5. Applications of Compactness on the higher order weighted Bergman spaces and Hardy spaces 

we show the conditions that a composition operators  C  is compact on the higher order weighted Bergman spaces 

and Hardy spaces of the open unit ball in 
nC (see [18] and [19] . 

5.1. Applications of Compactness on the higher order weighted Bergman spaces 

Theorem5.1. Suppose p> 0 and  (   )      . If C is bounded on  
(   ) 
 

 for some  q> 0 and -1 <(   )  

(   ) , then C is compact on  
(   ) 
 

 if and only if 

   
       

  
      

    ( )  
     (7) 

Proof. According to Corollary 2.8, we may assume that p=2.The normalized reproducing kernels of  (   ) 
  are given 

by 

  ( )  
(       )((   )     )  

   〈   〉 (   )     
 . 

Each kz  is a unit vector in (   ) 
   and it is clear that    

      
  ( )   ,w Bn 

Furthermore, the coverage is uniform when w is restricted to any compact subset of  Bn. A standard computation 

shows that 

∫    
    

   (   )  (
      

    ( )  
)

(   )     

  

 

So the compactness of C on  (   ) 
  (which is the same as the compactness of   

 on  (   ) 
 ) implies condition (7). 

We proceed to show that condition (7) implies the compactness of Con  (   ) 
  , provided that C is bounded on 

 
(   ) 
 

 for som(   ) e   (-1,(   ) ).An easy computation shows that the operator 

    
    (   ) 

    (   ) 
  

admits the following integral representation: 

    
  ( )  ∫

 ( )  (   ) ( )

(  〈 ( )  ( )〉)(   )      
     (   ) 

 

  

 (8) 

We will actually prove the compactness of     
 on  (   ) 

  , which is equivalent to the compactness of    on 

 (   ) 
 . In fact, our arguments will prove the compactness of the following integral operator on L

2
 (Bn,  (   ) ): 

  ( )  ∫
 ( )  (   ) ( )

(  〈 ( )  ( )〉)(   )     
  

 (9) 

For any r  (0,1) let Xrdenote the characteristic function of the set {z ℂn
: r< |z| < 1}. Consider the following integral 

operator on L
2
 (Bn,  (   ) ): 

   ( )  ∫   (   ) ( )  (   ) ( ) 
  

 (10) 

where 

  (   )  
 

 
( ) 

 
( )

(  〈 ( )  ( )〉)(   )     
 

is a nonnegative integral kernel. We are going to estimate the norm of Tr on L
2
 (Bn,  (   ) ) in terms of the quantity. 

      
       

       

    ( )  
 

We do this with the help of Schur’s test. 

Let (   )  = (   )  + , where  > 0, and consider the function ( )  (       )  ,     z  Bn . We have 
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∫   (   ) ( )  (   ) ( )
  

 
 (   ) 

 (   ) 
∫

 
 
( ) 

 
( )  (   ) ( )

(  〈 ( )  ( )〉)(   )       
  

 

 

 
 (   ) 

 (   ) 
∫

 
 
( )  (   ) ( )

(  〈 ( )  ( )〉)(   )       
  

 

 

By the boundedness of   on  
(   ) 
 

 , there exists a constant C1> 0, independent of r and z , such that 

∫   (   ) ( )  (   ) ( )      
( ) ∫

  (   ) ( )

   〈 ( )  〉 (   )       
    

 

 

We apply Lemma 2.10 to find another positive constant    , independent of r and z, such that 

∫   (   ) ( )  (   ) ( )  
    ( )

(   ( )  )   
=     

( ) (
      

    ( )  
)
 

 ( )    
  ( ) 

 

For all z Bn. By the symmetry of ( , )rH z w , we also have 

∫   (   ) ( )  (   ) ( )      
  ( ) 

  

 

 

for all  w   Bn.  It follows from Lemma 2.9 that the operator Tr is bounded on L
2
 (Bn,  (   ) ) and the norm of  Tron 

L
2
 (Bn,  (   ) )  does not exceed the constant     

 . 

Now fix some r  (0,1) and fix a bounded sequence  {fk}  in  (   ) 
  that converges to 0 uniformly on every compact 

subset of  Bn. In particular, {fk}  converges uniformly to 0 on |z| r. We use (8) to write 

   
   ( )    ( )    ( )          , 

where 

  ( )  ∫
  ( )  (   ) ( )

(  〈 ( )  ( )〉)(   )     
     

  

and 

  ( )  ∫
 

 
( )  ( )  (   ) ( )

(  〈 ( )  ( )〉)(   )     
  

 

 

Since {   ( ) } converges to 0 uniformly for |w| r , we have 

   
  

∫    (( ) 
   (   ) ( )

  

     

For any fixed  z Bn, the weak convergence of {fk}  to 0 in L
2
 (Bn,  (   ) )  implies that   Gk(z)  0 as k . In fact, 

by splitting the ball into |z|  and< |z| < 1, it is easy to show that    
  

  ( )     uniformly for z in any 

compact subset of Bn.It follows from the definition of Tr that 

∫     
   (   )   

  

∫     
   (   )  ∫    (    ) 

   (   ) 

       

  

Since {fk} is bounded in  L
2
 (Bn,  (   ) ),  and since the norm of the operator  Tron   L

2
 (Bn,  (   ) ) does not 

exceed     
  we can find a constant C3> 0, independent of   r and k, such that∫    (    ) 

   (   )      
  

  
 , for 

all k. Combining this with    
  

∫     
   (   ) ( )     

   , we obtain 

      
  

∫     
   (   )      
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This along with the estimates for  Fk in the previous paragraph gives 

      
  

∫     
    

   (   )      
  

  

  

Since r is arbitrary and  Mr 0 as  r  1-  (which is equivalent to the condition in (7)), we conclude that 

   
  

    
    

    (   )     

So C is compact on  (   ) 
  , and the proof of the theorem is complete. 

 

5.2. Applications of Compactness on the Hardy spaces 

Theorem5.2. Suppose p >0  . If C is bounded on  qH  for some  q> 0 , then C is compact on pH  if and only if     

   
       

  
      

    ( )  
     

Proof. According to Corollary 2.8, we may assume that p=2. The normalized reproducing kernels of 2H  are given by 

  ( )  
(      

i
  )(   )  

   〈  
i

  〉    

 . 

Eachkz  is a unit vector in 2H  and it is clear that 

   
       

  (  
i

)                 

Furthermore, the coverage is uniform when   is restricted to any compact subset of  Bn. A standard computation 

shows that 

 

  
∫    

    
    (

      

    ( )  
)

   

  

 

So the compactness of C on 2H  (which is the same as the compactness of   
 on 2H ) implies condition (7). We 

proceed to show that condition (7) implies the compactness of Con 2H  , provided that C is bounded on qH  . An 

easy computation shows that the operator 

    
   2H   2H  

admits the following integral representation: 

    
  ( )  

 

  
∫

 (  
i

)   

(  〈 ( )  (  
i

)〉)    

    2H
  

 (11) 

We will actually prove the compactness of     
 on 2H  , which is equivalent to the compactness of    on 2H . In 

fact, our arguments will prove the compactness of the following integral operator on L
2
 (Bn,  ): 

  ( )  
 

  
∫

 (  
i

)   

(  〈 ( )  (  
i

)〉)     

 (12) 

For any r  (0,1) let Xrdenote the characteristic function of the set  {z ℂn
: r< |z| < 1}. Consider the following integral 

operator on L
2
 (Bn,  ): 

   ( )  
 

  
∫   (    

i
)  (  

i
)    

  

 (13) 

where 

  (    
i

)  
 

 
( ) 

 
(  

i
)

(  〈 ( )  (  
i

)〉)   

 

is a nonnegative integral kernel. We are going to estimate the norm of Tr on L
2
 (Bn,   ) in terms of the quantity.  

        
        

       

    ( )  
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We do this with the help of Schur’s test.Let  > 0, and consider the function  ( )  (       )  ,     z Bn . We have  

∫   (    
i

)  (  
i

)      ∫
 

 
( ) 

 
(  

i
)   

(  〈 ( )  (  
i

)〉)         

 

  ∫
 

 
( )  

(  〈 ( )  (  
i

)〉)       

 

By the boundedness of   on 
qH  , there exists a constant C1> 0, independent of r and z , such that  

∫   (    
i

)  (  
i

)        
( ) ∫

  

   〈 ( )   
i 〉           

 

We apply Lemma 2.10 to find another positive constant    , independent of r and z, such that  

 

  
∫   (    

i
)  (  

i
)    

    
( )

(   ( )  )   

 

            =     
( ) (

      

    ( )  
)
 

 ( )    
  ( ) 

For all z Bn. By the symmetry of ( , re )i

rH z  , we also have
 

  
∫   (    

i
)  ( )       

  (  
i

) 
  

for all  

  
i

 Bn.  It follows from Lemma 2.9 that the operator Tr is bounded on  L
2
 (Bn,   ) and the norm of  Tr on L

2
 

(Bn,   )  does not exceed the constant     
 . 

Now fix some r  (0,1) and fix a bounded sequence  {fk}  in 2H  that converges to 0 uniformly on every compact 

subset of  Bn. In particular, {fk}  converges uniformly to 0 on |z| r. We use (11) to write 

   
   ( )    ( )    ( )          , 

where 

  ( )  
 

  
∫

  (  
i

)   

(  〈 ( )  (  
i

)〉)     
i

   

  

and 

  ( )  
 

  
∫

 
 
(  

i
)   (  

i
)  

(  〈 ( )  (  
i

)〉)     

 

Since {   (  
i

) } converges to 0 uniformly for |  
i

|  1 , we have  

   
  

 

  
∫    (( ) 

   
  

    

For any fixed  z Bn , the weak convergence of {fk}  to 0 in L
2
 (Bn,  )  implies that   Gk (z)  0 as k . In fact, by 

splitting the ball into |z|  and< |z| < 1, it is easy to show that  

   
  

  ( )      

uniformly for z in any compact subset of Bn.   It follows from the definition of Trthat  

∫     
     

  

∫     
    ∫    (    ) 

   
       

  

Since {fk} is bounded in  L
2
 (Bn,  ),  and since the norm of the operator  Tron   L

2
 (Bn,   ) does not exceed     

  we 

can find a constant C3> 0, independent of   r and k, such that  

 

  
∫    (    ) 

        
  

  

 

for all k. Combining this with    
  

 

  
∫     

   
     

     . we obtain 
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  

 

  
∫     

        
  

  

 

This along with the estimates for  Fk in the previous paragraph gives  

      
  

 

  
∫     

    
        

  

  

 

Since r is arbitrary and  Mr 0 as  r 1-  (which is equivalent to the condition in (7)), we conclude that  

   
  

 

  
∫     

    
   

  

     

So C is compact on 2H , and the proof of the theorem is complete. 
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