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Abstract

Horizontal Directional Drilling (HDD) is a growing method for installation of pipes in urban areas and
where trenching is impossible or undesirable; such as in crossing rivers, lakes, railways, and runways in airports.
This technique utilizes down-hole cutting heads to create a pilot borehole before it is enlarged with back reamers
to allow pulling back of a product pipe. The utilization of HDD for the installation of underground infrastructure
(i.e., water, wastewater, oil and gas pipes, telecommunication, and power conduits), has shown a rapid growth
compared to other trenchless technologies. HDD can install a range of pipe diameters from 2 to 60 inches
utilizing different pipe materials including steel, high density polyethylene (HDPE), polyvinyl chloride (PVC),
and ductile iron pipe (DIP) with minimum surface and daily life disruptions. Estimation of HDD productivity,
project duration, and quantity of materials required, is a difficult task due to variable productivity conditions
such soil, project, contractor, and machine conditions involved in operation. This paper aims to introduce HDD
productivity prediction model, and to present the HDD user interface as a planning tool for operation.

Introduction

Trenchless technology (TT) or No-Dig refers to the techniques for underground pipeline and utility
construction, replacement, rehabilitation, renovation (renewal), repair, inspection, and leak detection with
minimum or no excavation from the ground surface (Najafi, 2010). Over the years, TT methods have become
more sophisticated (specialized) and more widely used in many fields and applications. Mainly, due to its
environmental and social benefits, TT is considered to be one of the fastest growing technologies affecting the
world’s underground infrastructure installation and replacement (Liu et al. 2009).

Among TT techniques, Horizontal Directional Drilling (HDD) is the most versatile trenchless procedure
available that can be widely used for underground telecommunications, electrical conduits, gas and oil pipeline
installation, and public infrastructure (water and sewer) construction (Lawson and Najafi, 2003).HDD technique
provides significant benefits for urban environments by decreasing disruption caused by streets excavations
(Manacorda et al. 2010). In difficult situations such as deep pipeline laying or in case of crossing highways,
rivers, or lakes, HDD can be not only more cost effective, but also more feasible and applicable than any other
trenchless method (Atalah, 2009).

Horizontal Directional Drilling (HDD) is a steerable or a guided boring system for installation of pipes,
conduits, and cables involving a surface drilling rig in digging operation. Generally, HDD is divided into three
main divisions: large-diameter HDD (Maxi-HDD) in the range of 24-60 inches, medium-diameter HDD (Midi-
HDD) in the range of 12-24 inches, and small-diameter HDD (Mini-HDD) in the range of 2-12 inches as
presented in Table 1.

Table 1 HDD Main Features (Najafi. 2005)

HDD Diameter Depth Drive Torque Thrust Machine
Size (in.) (ft) Length (ft) (ft-Ib) (Ib) Weight (ton)
Maxi 24-60 <200 <6,000 < 80,000 100,000-1000,000 <30
Midi 12-24 <75 < 1,000 900-7,000 20,000-100,000 <18
Mini 2-12 <15 <600 <950 <20,000 <9

HDD is used to install different types of product pipes including Steel, HDPE, PVC, conduits, and
flexible cables considering service type, soil type and severity, and pipeline diameter and depth (Barras and
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Mayo, 1995). HDD involves at least two stages and can include multi stages of preream/ream operations
depending on the final diameter of product pipe. The first stage involves drilling a pilot borehole using cutting
head approximately of 2-6 inches in diameter in hard soils, but it can also be selected to start drilling at 12-16
inches in diameter in soft soils utilizing Midi- to Maxi-HDD rig size. Figure 1 illustrates drilling of pilot hole in
HDD operation.

PILOT HOLE DRILLING

Figure 1 HDD Pilot-hole Stage (Najafi, 2010)

The second stage involves prereaming/reaming or enlarging of borehole using larger reamer diameter.
The increments or jumps in diameters in soft soil are very large. While in hard soil, the increments are very
small; in hard rock increments range from 2-4 inches, in medium rock increments range from 2-6 inches, in soft
rock increment can be more. Prereaming/reaming stage continues until bore-hole diameter becomes 1.25 to 1.5
times the size of product pipe. Figure 2 illustrates prereaming/reaming stage in HDD operation. The last stage is
the pulling back of product pipe in borehole and is shown in Figure 3.

Figure 2 HDD Prereaming Stage (Najafi, 2010)

PIPELINE PULLBACK ‘

Figure 3 HDD Pullback Stage (Najafi, 2010)

Among trenchless technologies, HDD has a standing applicability in most of underground applications
(Burman, 2009). Figure 4 illustrates utilization of HDD technique in installation of underground infrastructure
utilities. HDD has a big share in underground construction including telecommunications, sewer and water, gas,
and electric projects, in addition to environmental wells’ projects.
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Figure 4 HDD Applications in Utilities Installations (Carpenter, 2010)
Background

Allouche et al. (2000) provided a study on HDD to consider company profile, type of project
performed, duration, product pipe installed, bidding and estimating practices, and planning and operation
control. The study concluded that HDD is favorable to most contractors, design engineers, and consultants in for
the following reasons:

e No surface shafts required as drilling can commence from surface.

e  HDD has relatively the shortest setup time.

e  Straight alignment is not required, since HDD has the ability to change direction and grade.
e The long drive length installed using HDD compared to other trenchless technologies.

The most important results of the study were the productivity of HDD (ft/hr) associated to specific pipe
diameters presented in Table 2, in clayey, rock, and sandy soils.

Table 2 HDD Productivity vs. Soil Type and Diameter (Allouche et al., 2000)

Diameter Range (in.) Clay SolllloTcipe s
24 74 42 35
68 53 28 41
10-12 42 19 37
>12 28 9.5 27

Allouche et al. (2001) studied HDD among other trenchless technologies including microtunneling,
auger boring, pipe ramming, pipe jacking (hand excavation), tunneling (TBM), and tunneling (hand excavation).
It was declared that HDD drillability in boulders, cemented soil, and in high specific weight soil is moderate. In
flowing sand and in buried structure, HDD drillability is moderate to severe. In gravel and/or cobbles and in
artesian aquifers is severe. Therefore, HDD has a standing drilling-ability compared to other TT methods in
different soil conditions. In another study (Allouche et al., 2003), HDD operation was studied in terms of product
pipe material, size, and applications.

Willoughby (2005) introduced prereaming values for HDD productivity (ft/hr) in clay, rock, and sand
as presented in Table 3; it showed that sand and clay have large productivity compared to rock in different
ranges of prereaming diameter.
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Table 3 HDD Productivity in Soil Conditions (Willoughby, 2005)

HDD Productivity (ft/hr)
Preream Diameter (in.)
Clay Rock Sand
<24 180 30-60 180
24-32 150 30 150
>32 120 18 120

According to Mahmoud (2009), HDD productivity factors were classified into managerial, mechanical
as well as environmental and pipe physical conditions. Analytical hierarchy process (AHP) was utilized to rank
factors according to their importance. Then, a Neurofuzzy Model was employed to develop HDD productivity
values for clay, rock, and sand. The decision of neuron is based upon the sum of weights associated to the factors
considered in operation. Management conditions include managerial skills, safety regulations, mechanical
conditions, and operator skills, while environmental conditions include unseen soil obstacles, water table level,
soil conditions, and site conditions, and physical conditions include pipe type, pipe usage, pipe length, and pipe
depth. Activity duration such as drilling time was considered as the major activity duration in HDD operation,
while durations of other activities such as pipe layout and connection, changing reamer, and setting of drilling
angles were considered minor durations for auxiliary activities as they usually managed during site preparation
in small projects. In large projects, the duration of auxiliary activities becomes major compared to the drilling
time that considered minor activity.

In clayey soil, HDD productivity was found to average 51.35 ft/hr, while HDD productivity predicted
was 44.85 ft/hr with a validation of 87.34%. In rock, HDD productivity was found to average 35.01 ft/hr, while
HDD productivity predicted was 31.07 ft/hr with a validation of 88.75%. In sandy soil, HDD productivity was
found to average 37.5 ft/hr, while HDD productivity predicted was 33.5 ft/hr with a validation of 89.32%.

Factors such as pipe diameter, soil type, and drilling rig capabilities were considered the most important
factors that can affect productivity of HDD operation. While, factors such as site, weather, and fluid properties
were considered minor factors in operation. Simply, because seasonal changes (i.e., weather) does not have
direct effect on HDD productivity, groundwater table is said to have no effect on HDD productivity. Also, slurry
pumping rate and mixing ratio are functions of soil type. Although pipe material (HDPE, PVC, and steel) affect
productivity of pipe connection, during pull back, pipe material has no direct effects on HDD operation as most
of pipe materials are floating in borehole. Therefore, HDD productivity can be modeled using HDD rig
capabilities, soil type, pipe diameter, and depth.

HDD Productivity

Productivity of HDD rig is defined as the distance drilled, prereamed, or pulled back by HDD machine
during a unit of time, denoted as (ft/hr) or (ft/day). Measuring productivity on hourly basis is more accurate than
on daily basis. An hourly record allows considering subsurface conditions and changes as well as machine and
worker efficiency in different time periods during operation.

HDD is utilized with multi- and interrelated-conditions including management, site, and product pipe
(Ali et al., 2007), all of which affect HDD productivity and make HDD operation more critical and specific
(Gelinas et al., 2000). Therefore, estimating of operation productivity, duration of project, and cost becomes all
critical and specific too. Because the common practice in estimating these project parameters relied on previous
project cases without considering significant subconditions in operation, a productivity prediction model is
needed for more accurate results and calculations (Mahmoud, 2009).

HDD bore-path alignment usually continues in different soil conditions within the same project. These
changes make the mission of the design engineer difficult when it comes to selecting cutting head, reamer,
machine operational conditions including forces, slurry flow rate and mixing ratio. Therefore, considering
project conditions, including soil investigations, and HDD machine abilities help engineers to design and
implement HDD operation successfully (Royal et al. 2010).

Drilling using HDD is similar to any engineering operation, starts usually with preconstruction services
including surface and subsurface survey or investigation, design, planning, drawings preparation, and specifying
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of materials to be used in operation (Najafi, 2005). The design and planning of HDD operation is performed to
evaluate applicability of proposed work and to avoid or moderate problems such as instability of soil or
potentiality of collapse of bore-hole during drilling, as well as to evaluate the opportunity of “frac-out”
occurrence (Hair et al., 2005). Significant subconditions should be represented in HDD productivity prediction
model to be acceptable and satisfying to contractors, consultants, and engineers. The outcomes of this study will
help project parties estimate project parameters such as productivity in order to determine duration, planning,
and scheduling. It will also help to bid the project successfully.

The productivity of HDD operation is very critical for contractors, engineers, and machine operators,
also very important for owners and pipelines operators. According to the HDD operation conditions, contractor
and/or engineer decide to select the size of HDD machine suitable to the type of soil encountered, the size of job.
There are several challenges associated with HDD in marine environment and river installations. These
challenges include construction restrictions such as mud control, expected frac-out, limited working area,
seasonal restriction for aquatic habitats, and minimizing of disturbance for wet lands in project site and other
adjacent sites expected to be affected. To prevent frac-out problems, lower pressure should be utilized and deep
lay down of pipeline should be applied in alignment selection. An emergency plan must be in place if frac-out
expected to happen. Also, casing is usually required for product pipe. Effective construction management will
improve site accessibility and provision for material storage and fabrication.

HDD Productivity Data

For the purpose of this paper, data was collected through a questionnaire included HDD market (type of
HDD rigs, size of HDD rigs, product pipes installed, soil information, and operational factors and conditions).
The HDD data collected also included data related to HDD productivity (ft/hr) and factors expected to have an
effect on productivity.

HDD Productivity Data in Clayey Conditions
As a mother of fact, HDD productivity data was sorted into three groups: data collected in clayey soil
(condition), rocky soil (condition), and sandy soil (condition). Table 4 presents data collected in clayey soil.

Table 4 HDD Productivity Data in Clayey Conditions

. . Drilling Rod Thrust Force Torque Force Productivit
Diameter (in.) | Depth (ft) Leng ﬂgl (ft) (kip) (%t—kip) (ft/hr) y
9 30 30 280 45 22
9.875 150 30 1200 100 56
12 6 10 25 11 120
16 70 30 130 25 76
20 22 30 215 25 77
22 30 30 280 45 276
24 120 30 230 25 183
26 148 10 260 35 27
26 125 30 40 4 238
28 22 30 215 25 79
28 70 30 130 25 76
34 150 30 1200 100 42
36 120 30 230 25 183
36 30 30 280 45 28
38 147 10 260 35 23
42 30 30 280 45 24

Figure 5 through Figure 10 illustrate HDD productivity data vs. prereaming diameter, pipeline depth, pipeline
length, drilling rod length, thrust force, and torque force.
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Figure S HDD Productivity vs. Diameter of Prereaming in Clayey Conditions

As it is illustrated in Figure 5, HDD productivity (ft/hr) decreases with the increase in prereaming
diameter (in.), no matter the relation type (linear, power, or quadratic) used to describe this function.

Figure 6 illustrates HDD productivity in clayey conditions vs. depth of pipeline (ft). It is shown from
the figure that HDD productivity shows a tendency to decrease with the increase of pipeline depth.
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Figure 6 HDD Productivity vs. Pipeline Depth in Clayey Conditions

Figure 7 illustrates HDD productivity vs. length of bore-hole in clayey conditions. This figure shows
that HDD productivity decreases as the length of bore-hole increases.
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Figure 7 HDD Productivity vs. Borehole Length in Clayey Conditions

Figure 8 illustrates HDD productivity vs. drilling rod length. It shows that if contractors use short drilling rods
(10-15 ft), HDD productivity will be in the range of 20-55 ft/hr. However, if full length of 30 ft drilling rod is
used, productivity will be in the range of 20-180 ft/hr, considering the 3—4 minutes needed to remove or to add

one drilling rod.
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Figure 8 HDD Productivity vs. Length of Drilling Rod in Clayey Conditions

Figure 9 illustrates HDD productivity vs. thrust force (kip). This figure shows that as the thrust force increases,
the productivity will decrease as Midi- and Maxi-HDD with large thrust force are used to drill or preream in hard

clayey conditions.
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Figure 9 HDD Productivity vs. Thrust Force in Clayey Conditions

Figure 10 illustrates HDD productivity vs. torque force (ft-kip), confirming that torque force provides similar
indication about HDD productivity in clayey conditions.
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Figure 10 HDD Productivity vs. Torque Force in Clayey Conditions

A HDD productivity model was developed using data presented in Table 4 for clayey conditions considering
significant factors as indicated and tested by the analysis of variance (ANOV A) model as presented in Table 5.

Table 5 ANOVA Significance for HDD Productivity in Clayey Conditions (Sarireh and Najafi, 2011)

HDD Conditions Main Group HDD Sub Condition Significance
Soil Type Yes
Soil Conditions
Groundwater Level (ft) No
Prereaming Diameter (in.) Yes
Project Conditions Pipeline Depth (ft)
Material (Pullback) No
. Contractor Experience (yr)
Contractor Conditions - No
Operator Experience (yr)
Thrust Force (kip)
Machine Conditions Torque Force (ft-kip) Yes
Drilling Rod Length (ft)
Machine Variables Slurry Mixing Ratio (Ib/100 gal) No

Slurry Pumping Rate (gpm)
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After applying SPSS regression analysis, HDD productivity model has the following equation:
HDD PC=110.68 — 0.315 (Diam.) + 0.309 (Depth) + 3.148 (DRL) + 0.408 (Th.F.) - 6.83 (Trq.F.)

Where: HDD PC is HDD productivity in clayey conditions (ft/hr), Diam. is prereaming diameter (in.), Depth is
depth of borehole at midpoint (ft), DRL is drilling rod length (ft), Th.F. is thrust force (kip), and Trq.F. is torque
force (ft-kip)

Appendix Al through A2 represent for HDD productivity in clayey conditions the data sheet in SPSS,
model summary, ANOVA analysis for sum of squared errors, mean squares, significance, and model
coefficients.

HDD Productivity Model in Rocky Conditions

Table 5 presents data used for modeling HDD productivity in rocky conditions including reported HDD
productivity and significant subconditions. The values of HDD productivity in rocky conditions are very low
compared to clayey conditions. For example, at 24-in. prereaming diameter, productivity in rocky conditions is
equal to 27 (ft/hr) at 30-ft depth, while HDD productivity is equal to 183 (ft/hr) for clayey conditions at depth of
120-ft. Another major difference between clayey and rocky conditions is that HDD machine force in rocky
conditions including thrust and torque is very high especially in hard rock conditions compared to that used in
clayey conditions.

Table 6 HDD Productivity Data in Rocky Conditions

Dia.meter Depth (ft) Drilling Rod Thrus? Force | Torque F orce Productivity
(in.) Length (ft) (kip) (ft-kip) (ft/hr)
8.75 30 30 70 5 40

9 14 14 35 9 18
10 25 15 70 9 67
12 25 15 35 5 75
13 14 14 35 9 18
14 25 15 70 9 33
16 25 15 70 9 33
18 14 14 35 9 18
18 25 15 70 9 33
18 30 30 70 5 33
22 25 15 70 9 33
24 30 30 70 5 27
30 30 30 70 5 25
36 30 30 70 5 20

Figure 11 illustrates HDD productivity (ft/hr) for rocky conditions vs. diameter of prereaming (in.).
This figure shows that HDD productivity decreases with the increase of reamer diameter as the contact surface
between reamer and bore-hole increases.
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Figure 11 HDD Productivity vs. Prereaming Diameter

Figure 12 illustrates HDD productivity vs. depth of bore-hole, and shows that HDD productivity
increases with the increase of depth. But, does not have good correlation, as the depth takes the value from 14-ft
to 30-ft, which is a close range. Deeper bore-holes of installations, may cause HDD productivity to decrease.
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Figure 12 HDD Productivity vs. Borehole Depth in Rocky Conditions

Figure 13 illustrates HDD productivity vs. length of borehole. It shows that HDD decreases with the
increase of the borehole length. Obviously, the increase in length increases friction force exerted by the bore-
hole sides on the reamer. It should be noted that HDD productivity outlier of 75 (ft/hr) is achieved by a Midi-
HDD rig with a 70 kip of thrust force, this case will be discussed in details in validation of research results.

10
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Figure 13 HDD Productivity vs. Borehole Length in Rocky Conditions

Figure 14 illustrates HDD productivity vs. drilling rod length. It seems that drilling rod length is
inversely related to HDD productivity in rocky conditions, or at least it has some of constant value as drilling rod
length takes the values of 15 ft and 30 ft. Also, productivity can be lower in more problematic soil conditions,
such as hard rock. Preream in hard soil conditions such as rock, is detrimental to drilling bit, because large force
must be used to maintain productivity.
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Figure 14 HDD Productivity vs. Drilling Rod Length in Rocky Conditions

Figure 15 shows that HDD productivity increases with increase of thrust force (kip).

11
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Figure 15 HDD Productivity vs. Thrust Force in Rocky Conditions

Figure 16 illustrates HDD productivity vs. torque force (ft-kip). It shows that HDD productivity in
rocky conditions for torque force has similar trend as for thrust force. This is simply because thrust force and
torque force are related in HDD machine size and design, job size, and soil type.
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Figure 16 HDD Productivity vs. Torque Force in Rocky Conditions

The developed model for HDD productivity in rocky conditions includes prereaming diameter (in.),
thrust force (kip), torque force (ft-kip), and drilling rod length (ft) and has the following equation:

HDD PR = 197.48 — 0.669 (Diam.) — 4.313 (DRL) + 0.755 (Th.F.) — 15.238 (Trq.F.)

Where: HDD PR is HDD productivity in rocky conditions (ft/hr), Diam. is prereaming diameter (in.), DRL is
drilling rod length (ft), Th.F. is thrust force (kip), Trq.F. is torque force (ft-kip).

Appendix B1 to B2 represent SPSS analysis, model summary and significance.
HDD Productivity in Sandy Conditions

HDD productivity in sandy conditions comes in high values when sandy layers -that contains HDD
pipelines- found at shallow depths, this results because sandy layers are loose. While values of HDD
productivity comes in low values when goes through deep sandy layers because of the consolidation of the over
burden and compaction weight make these layers dense. Table 7 presents HDD productivity data collected in
sandy conditions. The minimum value was 54 ft/hr which happened at 30-in. diameter of prereaming, 35-ft

12
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depth, and 750-ft length. The maximum value of 220-ft/hr occurred at 16-in. diameter, 6-ft. depth, and 220-ft
length. The average productivity value was 100 ft/hr. Although sandy conditions provides good drilling ability,
but it may face bore-hole collapse that consumes more drilling fluid to remove cuttings and holding sides of
borehole wall.

Table 7 HDD Productivity Data Collected in Sandy Conditions

Prereaming s . Drilling Thrust Torque HDD
. Pipeline Pipeline Reported
Diameter | 1, oh (f6) | Length (ft) Rod Force Force | b oductivity

(in.) Length (ft) (kip) (ft-kip) (ft/hr)

16 6 220 14 25 2.5 220

18 35 750 30 35 3 94

22 35 750 30 35 3 63

30 35 750 30 35 3 54

56 100 4,300 30 30 35 72

Average HDD Productivity in Sandy Conditions 100

HDD Productivity Model Prediction and Validation

In this section, developed HDD productivity model for clayey and rocky conditions shown above, are
tested and validated using the whole set of collected data.
HDD Clayey Conditions Productivity Model
Table 8 presents the validation of HDD productivity model in clayey conditions by comparing reported
and predicted HDD productivity values. Figure 17 shows a comparison between reported and predicted HDD
productivity.
Table 8 Validation of HDD Productivity Model in Clayey Conditions

Reported Predicted . ey .
Productli)vity (ft/hr) | Productivity (fhr) | 0 Difference | Validation Factor
22 19 16.16 1.19
56 55 1.08 1.01
120 75 37.25 1.59
76 104 137.49 0.73
77 12 5891 0.63
28 14 47.82 1.92
183 158 13.96 1.16
27 47 7417 0.57
238 225 5.69 1.06
79 120 51.19 0.66
76 100 32.49 0.76
4 47 -13.66 0.88
183 154 16.03 1.19
28 10 63.85 2.77
23 43 -86.73 0.54
24 8 66.34 2.97
20 40 9771 051
4 43 3.08 0.97
Average (74.57) Average (76.87) ?Ygrj%f)’ Average (1.17)

13
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Figure 17 HDD Reported and Predicted Productivity for Clayey Conditions
HDD Rocky Conditions Productivity Model
Table 9 presents validation of HDD productivity model in rocky conditions. It is shown that validation
factor is still high in this model averaging 105%, and the model is able to predict HDD productivity in rocky
conditions. Figure 18 shows a comparison between reported and predicted HDD productivity.
Table 9 HDD Productivity Model Validation in Rocky Conditions

Reported Predicted
Productivity Productivity % Difference Validation Factor
(ft/hr) (ft/hr)
40 39 0.03 1.03
18 19 -0.05 0.95
67 42 0.4 1.6
75 75 0.00 1.00
18 17 0.09 1.10
33 39 -0.18 0.85
33 38 -0.13 0.88
18 13 0.28 1.38
33 37 -0.09 0.91
33 33 0.02 1.02
33 34 -0.01 0.99
25 25 0.013 1.013
20 21 -0.03 0.97
27 29 -0.05 0.95
Average (34) Average (32.77) Average (0.02) Average (1.05)
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Figure 18 HDD Reported Productivity vs. Predicted in Rocky Conditions
Reality Validation for HDD productivity Models

Table 10 presents a comparison and summary of HDD productivity results obtained in the literature
search and results obtained in current research.
Table 10 Comparison of Results for HDD Productivity Models (Sarireh and Najfi, 2011)

. Allouche Willoughby Zayed Current
TS""e (2000) (2005) (2007) Mahmoud (2009) | . carch 2011)
YP® TActual | Model | Actual | Model | Actual | Model | Actual | Model | Actual | Model
Clay 44 NA 150 NA NA NA 51 45 75 77
Rock 25 NA 31 NA NA NA 35 31 34 33
Sand 40 NA 150 NA uégnd NA 375 34 100 NA

Another reality check comes with the results of previous studies in considering significant subconditions in HDD
productivity operation and other trenchless operations. Table 11 and 12 present the results obtained by previous
studies conducted on HDD and other trenchless construction operations regarding HDD’s significant

subconditions.

Table 11 Significant Conditions in Trenchless Operations (Sarireh and Najafi, 2011)

Study

Significant Subconditions

Tunneling, Touran (1997)

Soil type, job environment, and equipment abilities (force)

TBM, Arachchige (2001)

Soil Type

Auger Boring, Salem (2003)

Soil type, length, obstruction, and diameter

Microtunneling Soil type and conditions, drive length, diameter, no. of driven
Hegab and Salem (2004) pipes, and jacking force

Continuous Flight Auger (CFA) Soil type, obstructions, depth, diameter, and machine abilities
Zayed (2005) (force)

Microtunneling . . i, .

Hegab and Salem (2010) Soil type and soil conditions, diameter, length, and shear force

Table 12 Significant Conditions in HDD Operations (Sarireh and Najafi, 2011)

Zayed et al. (2007)

Study Significant Subconditions
HDD HDD rig capabilities (thrust and torque), soil type and unseen
Adel and Zayed (2009) conditions, pipe diameter, length, and depth
HDD

Soil type, pipeline diameter, and machine size

HDD Significant Factors

Soil type, pipeline diameter, and machine capabilities (thrust and
torque)

Mahmoud (2009) Insignificant Factors

Season, weather, groundwater level, fluid ratios, and fluid
pumping rate
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Application of HDD Model in HDD User Interface

By estimating productivity using developed models’ in clayey, rocky and sandy conditions, a HDD user
interface is developed as a planning tool for HDD prereaming operations. During the research, also modified
productivity model is introduced. The following formula provides modified productivity by factoring non-
productive time in model productivity:

HDD Modified Productivity (ft/hr) = HDD Model Productivity (ft/hr) x (1 — Non-productive time %).
Table 13 shows some parameters in HDD operation such as HDD crew cost ($/hr), bentonite mixing ratio,
polymer mixing ratio, fluid pumping rate, and non-productive time for clayey projects, rocky projects, and in

sandy projects.
Table 13 HDD Prereaming Operation Parameters (Sarireh and Najafi, 2011)
Data Collected by HDD Questionnaire (Average)
Soil HDD Crew Bentonite Polymer Fluid Non-
Conditions Rate Mixing Ratio | Mixing Ratio | Pumping Rate Productive
($/hr) (1b/100 gal) (1b/100 gal) (gpm) Time %
Clayey
Conditions 12 2.5 180 13
Rocky %
Conditions 169.7 29 40 145 10
Sandy
Conditions 20 3.2 62 15
* Details of HDD crew cost ($/hr) presented in Table 14
Table 14 shows calculations of HDD crew cost ($/hr) for a crew of 7 workers including foreman.
Table 14 HDD Crew Cost Rate ($/hr), (Sarireh and Najafi, 2011)
HDD Crew Description | Crew Rate ($/hr) No. Rate Sum ($/hr) Total g::vev§$/hr )
Foreman 30 1 30
HDD Diriller 23 1 23
Backhoe Operator 19.5 1 19.5
Mechanical Operator 19 1 19 169.7
Mud Recycling Worker 16.2 1 16.2
Pump Worker 16 2 32
HDD Worker 15 2 30

A HDD user interface is developed by Java application. The HDD user interface is able to conduct HDD
productivity calculations in clayey, rocky, and sandy conditions. Figure 19 illustrates the screen of HDD user

interface.

Reaming Diameter (in)

Depth of Pipeline (ft)
Length of Pipeline (ft)

Thrust Force (Kip)
Torgue Force (ft-Kip)
Drill Rod Length  (ft)

Select the Soil Type:

[EntervalueHere

[EntervalueHere

| | CalculateAll | | BentoniteReq. |

:E”Ier:a:”e:ere : | Clear All | | PoymerReq. |

- | HDDRawProd. | |  LaborCost |
[EntervalueHere |

— | | ModifiedProd. | | Duration Reaming |

| | | |

SoilType | b
So0ilType

HDD MODEL
MOHMD SARIREH
Ph.D. Candidate

Department of Civil Engineermg
The University of Texas at Arlington

Drilling Fluid Req.

Print Parameters

Clay
Rock
Sand

Figure 19 HDD Productivity User Interface (Sarireh and Najafi, 2011)
The calculations of the HDD user interface are organized as follow:

conditions.
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e Calculating HDD modified productivity considering non-productive time percentage using aforementioned
formula.
e Calculating duration of preream operations (hr) using the following formula:
HDD Prereaming Duration (ft/hr) = Drive Length of Project (ft) / HDD Modified Productivity (ft/hr)
e Calculating drilling fluid required for total prereaming pass (gal) using the following formula:
Fluid (gal) = [Fluid Pumping Rate (gpm) x 60 (min/hr) x Drive Length (ft)] / Modified Productivity (ft/hr)
e  (alculating required bentonite quantity (Ib) using the following formula:
Bentonite (Ib) = Drilling Fluid Required (gal) x [1/Bentonite Mixing Ratio (1b/100 gal)]
e Calculating quantity of polymer required (Ib) using the following formula:
Polymer (Ib) = Drilling Fluid Require (gal) x [1/Polymer Mixing Ratio (Ib/100 gal)]
e Calculating labor cost ($) using the following formula:
Labor Cost ($) = Labor Rate ($/hr) x [Drive Length (ft) / Modified Productivity (ft/hr)]
Figure 20 illustrates an example of HDD user interface calculations for prereaming operation using a 30
inch reamer. Clayey subconditions inputs, as well as all calculation output are shown in Java screen.

Reaming Diameter (in) [30 | | lcaiculateai | [ BentoniteReq. |
Depth of Pipeline (ft) [40 | | —— | | o r——— |
Length of Pipeline (ft) [1500 |

| HDDRawProd. | | Labor Cost |
Thrust Force (Kip) |50 |
o S B | |  Modified Prod. | | Duration Reaming |
Drill Rod Length  (ft) [30 | | Drilling Fluid Req. | | Print Parameters |
Select the Soil Type: =
HDD MODEL

MOHMD SARIREH

Ph.D. Candidate

Department of Civil Engineering
The University of Texas at Arlington

HDD RAW PRODUCTIVITY : 99.169(ft\hr)
MODIFIED PRODUCTIVITY :86.277(ft\hr)
DRILLING FLUID REQUIRED :187767.242(gal)
BENTONITE REQUIRED :22532.069(Ib/ 100gal)
POLYMER REQUIRED :4694.181(1b/ 100gal)
LABOR COST :2955.595(%)

DURATION OF REAMING STAGE :17.386(hr)

Figure 20 Example on HDD User Interface Calculations (Sarireh and Najafi, 2011)

Conclusions and Discussion

The main target of this paper was achieved in modeling HDD productivity for clayey and rocky
conditions. For sandy conditions, only 5 cases are available to be used specifically for the related pipeline
diameter, depth, length, and HDD machine force (thrust and torque). Modeling process was extended on two
levels, the pilot project level and HDD questionnaire level, which resulted in a detailed analysis to refine
subconditions that have significance to be used in HDD model. Mainly, five subconditions showed significant
effect on HDD productivity. These subconditions included diameter of prereaming (in.), depth of borehole (ft),
drilling rod length (ft), thrust force (kip), and torque (ft-kip).

Predicted HDD productivity for clayey conditions was found to be 77 ft/hr compared to average reported
HDD productivity of 75 ft/hr with a validation factor of 117%. Predicted HDD productivity in rocky conditions
was found to be 33 ft/hr compared to average reported productivity of 34 ft/hr with a validation factor of 105%.
Average HDD productivity reported in the questionnaire in sandy conditions was calculated to be 100 ft/hr.

Modified productivity is calculated using non-productive time percent as reported in projects visited or
information collected by questionnaire or interviews.

Soil conditions have the largest impact on the HDD productivity. Therefore, HDD productivity operation
was first modeled on soil conditions, in addition to other subconditions.

HDD user interface is a good screen for productivity calculations using models developed for clayey and
rocky conditions, and the average value for sandy conditions.
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HDD PRODUCTIVITY DATA — CLAYEY CONDITIONS
Eﬂ_';_ *HDD Ciaig}f_h"lodel Data.zav [DataSetd] - SPSS Dataﬂur

File  Edit “iew Data Transform  &nalyze  Graphs  UWilities  Add-ons Window  Help

CHA B 00 L8k # Bl E4H 09

EQD D ARDOOO | &2 of 82 Yariables
| VARDODO! | ARODODDZ | WARDODO3 | VARDOOD4 | ARODODS | ARODODB | 00D15 | WA
1 2.00 30.00 30.00 280.00 45.00 22.00 : =3
2 9.83 150.00 30.00 1200.00 100.00 5556
3 12.00 B.00 10.00 25.00 11.00 120.00
4 16.00 70.00 30.00 130.00 25.00 75.64
g 20.00 22.00 30.00 215.00 25.00 7704
G 2200 30.00 30.00 280 .00 4500 2780
7 24.00 120.00 30.00 230.00 25.00 183.33
8 26.00 147 B4 10.00 260.00 35.00 2877
9 26.00 125.00 30.00 40.00 4.00 238.10
10 2800 22.00 30.00 215.00 2500 7941
11 28.00 70.00 30.00 130.00 25.00 7564 B
12 34.00 150.00 30.00 1200.00 100.00 41.67
13 36.00 120.00 30.00 230.00 25.00 1683.33
14 36.00 30.00 30.00 280.00 45.00 27.50
15 35.00 147 64 10.00 260.00 35.00 2294
15 4200 30.00 30.00 280.00 4500 23.91
17 43.00 147 B4 10.00 260.00 35.00 20.08
18 43.00 150.00 30.00 1200.00 100.00 41.67 ;
e [ ]

Data View ! Wariable WIE

18



European Journal of Business and Management Www.iiste.org

ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) I/Li,l
Vol.6, No.2, 2014 Ils E
Appendix A2

HDD PRODUCTIVITY MODEL - CLAYEY CONDITIONS
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HDD PRODUCTIVITY DATA — ROCKY CONDITIONS
is¢ HDD Rocky Model Data.sav [DataSet2] - SPSS Data Editor
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MODELING HDD PRODUCTIVITY — ROCKY CONDITIONS
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