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Abstract 

Time series analysis of Nigerian Gross Domestic Product series is done. A seasonal difference and then a 

non-seasonal one were obtained. The correlogram of the differenced series revealed seasonality of order 4. 

It also reveals an autocorrelation structure of a known seasonal model involving a seasonal autoregressive 

component of order one and a non-seasonal moving average component of order one. The model has been 

shown to be adequate. 
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1.Introduction 

1.1.ARIMA Models.  

A time series is defined as a set of data collected sequentially in time. It has the property that neighbouring 

values are correlated. This tendency is called autocorrelation. A time series is said to be stationary if it has a 

constant mean and variance. Moreover the autocorrelation is a function of the lag separating the correlated 

values and called the autocorrelation  function (ACF).    

 

A stationary time series {Xt} is said to follow an autoregressive moving average model of orders p and q 

(designated ARMA(p,q) ) if it satisfies the following difference equation 

qtqtttptpttt XXXX −−−−−− ++++=++++ εβεβεβεααα ...... 22112211    (1) 

or 

 Α  (B)Xt = Β (B)εt               (2)  

where {εt} is a sequence of random variables with zero mean and constant variance, called a white noise 

process, and the αi’s and βj’s constants; Α (B) = 1 + α1B + α2B
2 + ... + αpB

p and Β (B) = 1 + β1B + β2B
2 

+ ... + βqB
q and B is the backward shift operator defined by BkXt = Xt-k.  

If p=0, model (1) becomes a moving average model of order q (designated MA(q)). If, however, q=0 it 

becomes an autoregressive process of order p (designated AR(p)). An AR(p) model of order p may be 

defined as a model whereby a current value of the time series Xt depends on the immediate past p values: 

Xt-1, Xt-2, ..., Xt-p . On the other hand an MA(q)  model of order q is such that the current value Xt is a 

linear combination of immediate past values of the white noise process: εt-1, εt-2, ..., εt-q. Apart from 

stationarity, invertibility is another important requirement for a time series. It refers to the property whereby 

the covariance structure of the series is unique (Priestley, 1981). Moreover it allows for meaningful 

association of current events with the past history of the series (Box and Jenkins, 1976). 
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An AR(p) model may be more specifically written as 

Xt + αp1Xt-1 + αp2X t-2 + ... + αppXt-p = εt 

Then the sequence of the last coefficients{αii} is called the partial autocorrelation function(PACF) of {Xt}. 

The ACF of an MA(q) model cuts off after lag q whereas that of an AR(p) model is a combination of 

sinusoidals dying off slowly. On the other hand the PACF of an MA(q) model dies  off slowly whereas 

that of an AR(p)  model cuts off after lag p. AR and MA models are known to have some duality 

properties. These include: 

1. A finite order AR model is equivalent to an infinite order MA model. 

2. A finite order MA model is equivalent to an infinite order AR model. 

3. The ACF of an AR model exhibits the same behaviour as the PACF of an MA model. 

4. The PACF of an AR model exhibits the same behaviour as the ACF of an MA model. 

5. An AR model is always invertible but is stationary if Α (B) = 0 has zeros outside the unit circle. 

6. An MA model is always stationary but is invertible if Β (B) = 0 has zeros outside the unit circle. 

Parametric parsimony consideration in model building entails preference for the mixed ARMA fit to either 

the pure AR or the pure MA fit. Stationarity and invertibility conditions for model (1) or (2) are that the 

equations Α (B) = 0 and Β (B) = 0 should have roots outside the unit circle respectively. Often, in 

practice, a time series is non-stationary. Box and Jenkins (1976) proposed that differencing of an 

appropriate data could render a non-stationary series {Xt} stationary. Let degree of differencing necessary 

for stationarity be d.  Such a series {Xt} may be modelled as  

 (1 + )∇dXt = Β (B)εt              (3) 

where ∇ = 1 – B and in which case Α (B) =   = 0 shall have unit roots d times. Then 

differencing to degree d renders the series stationary. The model (3) is said to be an autoregressive 

integrated moving average model of orders p, d and q and designated ARIMA(p, d, q).  

 

1.2 Seasonal ARIMA models. 

A time series is said to be seasonal of order d if there exists a tendency for the series to exhibit periodic 

behaviour after every time interval d. Traditional time series methods involve the identification , 

unscrambling and estimation of the traditional components: secular trend, seasonal component, cyclical 

component and the irregular movement. For forecasting purpose, they are reintegrated. Such techniques 

could be quite misleading.  

 

The time series {Xt} is said to follow a multiplicative (p, d, q)x(P, D, Q)s seasonal ARIMA model if 

 t
s

t
D
s

ds BBXBB ε)()()()( ΘΒ=∇∇ΦΑ                                 (4) 

where Φ and Θ are polynomials of order P and Q respectively and s is the seasonal period. That is, 

,...1)( 1
sP

P
ss BBB φφ +++=Φ                                 (5) 
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,...1)( 1
sQ

Q
ss BBB θθ +++=Θ                                         (6) 

where the  iφ and jθ are constants such that the zeros of the equations (5) and (6) are all outside the unit 

circle for stationarity and invertibility respectively. Equation (5) represents the autoregressive operator 

whereas (6) represents the moving average operator.  

 

Existence of a seasonal nature is often evident from the time plot. Moreover for a seasonal series the ACF 

or correlogram exhibits a spike at the seasonal  lag. Box and Jenkins (1976) and Madsen (2008) are a few 

authors that have written extensively on such models. A knowledge of the theoretical properties of the 

models provides basis for their identification and estimation. The purpose of this paper is to fit a seasonal 

ARIMA model to Nigerian Gross Domestic Product Series (NGDP). 

 

2.Materials and Methods:  

The data for this work are quarterly Gross Domestic Products(NGDP) from 1980 to 2007 obtainable from 

Abstracts of the National Bureau of Statistics of Nigeria.  

 

2.1. Determination of the orders d, D, p, P, q and Q: 

Seasonal differencing is necessary to remove the seasonal trend. If there is secular trend non-seasonal 

differencing will be necessary. To avoid undue model complexity it has been advised that orders of 

differencing d and D should add up to at most 2 (i.e. d + D < 3). If the ACF of the differenced series has a 

positive spike at the seasonal lag then a seasonal AR component is suggestive; if it has a negative spike 

then a seasonal MA component is suggestive. Box and Jenkins(1976) and Madsen(2008) have given a 

catalogue of seasonal models and their covariance structures for possible use for modelling.  

As already mentioned above, an AR(p) model has a PACF that truncates at lag p and an MA(q)) has an 

ACF that truncates at leg q. In practice ±2/√n where n is the sample size are the non-significance limits for 

both functions.   

 

2.2. Model Estimation: 

The involvement of the white noise terms in an ARIMA model entails a nonlinear iterative process in the 

estimation of the parameters.  An optimization criterion like least error of sum of squares, maximum 

likelihood or maximum entropy is used. An initial estimate is usually used. Each iteration is expected to be 

an improvement of the previous one until the estimate converges to an optimal one. However,for pure AR 

and pure MA models linear optimization techniques exist (See for example Box and Jenkins (1976), 

Oyetunji (1985)).   There are attempts to adopt linear methods to estimate ARMA models (See for 

example, Etuk(1996). We shall use Eviews software which employs the least squares approach involving 

nonlinear iterative techniques. 

 

2.3. Diagnostic Checking: 

The model that is fitted to the data should be tested for goodness-of-fit. We shall do some analysis of the 
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residuals of the model. If the model is adequate, the autocorrelations of the residuals should not be 

significantly different from zero. 

 

3.Results and Discussions: 

The time plot of the original series NGDP in Figure 1 shows secular trend and marked seasonality that 

grows with time, which is an indication of a multiplicative seasonal model. Seasonal (i.e. 4-month) 

differencing of the series produces a series SDNGDP with much lesser trend and seasonality. See Figure 2 

for the time plot. Non-seasonal differencing yields a series DSDNGDP with some seasonality but no trend 

(see Figure 3). Its ACF as shown in Figure 4 has the following features: 

1. There are significant (positive) spikes at lags 4, 8 and 12 indicating seasonality of order 4 as well 

as a seasonal AR component. 

2. The spikes immediately before and after each seasonal lag are of the same sign and equal.  

3. As the lag increases autocorrelation generally decreases. 

These features fit the description of the (0, 0, 1)x(1, 0, 0)s model (5.131) of  page 132 of Madsen(2008) 

which is given by 

 

 (1 - ΦBs) Xt = (1 - θB)εt 

 

 With s=4, this translates into 

 

Xt = α4 X  t-4  + β1εt-1  + εt             (7) 

 

where X represents DSDNGDP.  The estimation of the model summarized in Table 1 yields the model 

 

 Xt = 0.2356Xt-4 - 0.9043εt-1+  εt            (8) 

                                                                                                                                      

The estimation involved 7 iterations. We note that both coefficients are significantly different from zero, 

each being larger than twice its standard error. Moreover, there is considerable agreement between the 

actual and the fitted models as shown in Figure 5. The correlogram of the residuals in Figure 6 also depicts 

the adequacy of the model since all the autocorrelations are not significantly different from zero. 

 

4.Conclusion:  

The DSDNGDP series has been shown to follow the seasonal model (8). This model has been shown to be 

adequate. 
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Table 1: Model Estimation 
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FIGURE 4: CORRELOGRAM OF DSDNGDP 
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FIGURE 6: CORRELOGRAM OF THE RESIDUALS 
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