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Abstract 

In this paper, the solution of some (robust) control problem of non-linear semi-explicit descriptor uncertain 

systems without matching condition by defining an optimal control approach is considered. This approach has 

been developed in the sense that, the solution of an equivalent optimal control problem is the solution to the 

given descriptor one without matching condition. A relation between the robust control problem and its 

equivalent optimal control problem has been discussed with theoretical justifications and illustration. 

1 Introduction    

A descriptor control system can be represented by differential and algebraic equations which is a generalized 

representation of the state-space system. The application of these systems can be found in electrical circuits, 

robots,… (Kunkel & Mehrmann 2001). These systems are also referred to as singular systems, implicit systems, 

generalized state-space systems, semi-state systems, or differential-algebraic systems (Debeljkovic  & Buzurovic 

2011). 

The solvability of linear descriptor systems may be found in (Brenan et al. 1996), (Campbell 1980) and (Dai 

1989), and while, nonlinear descriptor systems is discussed by (Kunkel & Mehrmann 1994, 1995, 2001 and 

2004). Furthermore, Stability of linear and non-linear descriptor systems are studied by (Danielle et al 2002),  

(Debeljkovic  & Buzurovic 2011), (Michael 2011),  (Shravan 2012), (Tadeusz 2012), and  (Xiaoming & Zhi 

2013). 

The descriptor control uncertain system have been interested and introduced to preserve various system 

properties under some perturbation in the model.  

The insensitiveness of the system properties is called robustness and it is an important field of investigation. The 

fact is that in many practical situations the parameters of system components are not known exactly. Usually, 

there is only some information on the intervals to which they belong. Therefore, the robustness for any system 

property is an important theoretical and practical question.  

Recently, much attention has been given to the design of controllers, so that system properties are preserved 

under various classes of uncertainties appearing  in the system. Such controllers are called  robust controllers, 

and the resulting system is said to be robust control system. 

If the uncertainties lying in the range of the input matrix (operator), they are called matched condition 

uncertainties. For state- space system and some class of control problem, matched condition have been discussed 
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by (FING LIN 2000). If this condition is not satisfied, a decomposition approach may be used (FENG et al 1992) 

and (Radhi et al 2008). 

Due to the difficulty in solving general robust descriptor systems see (SUN & WANG 2012), in this paper, 

robust control problem is translated into a specific (equivalent) optimal control problem. The solution of optimal 

control problem is then a solution to the robust control problem based on the nominal system structure and the 

types of uncertainties.  

Descriptor systems, like other systems may contain many types of uncertainties. These uncertainties can be 

classified as with or without matching condition.  In this paper, robust control without matching condition has 

been considered.  

A novel method for design and analysis of some class of non-linear uncertain descriptor system with matching 

condition by using an optimal control approach have been developed and presented in (Radhi & Sabeeh 2016). 

The following is needed later on. 

2 Pseudo-inverse operator  

Recalling that, not every matrix has inverse. If � is singular or not square, then there exists an inverse called  

pseudo –inverse for �. For more such inverses see (Dai 1989), (Nikuie at el 2010).  

Pseudo–inverse of a matrix is one of those inverses who have called generalized inverses. All these inverses will 

reduce to the well-known inverse when the matrix is nonsingular. 

Definition (Ayman 2012) 

If A ∈ ℝ�×�, then there exists a unique A� ∈ ℝ�×� that satisfies the three  Penrose conditions: 

1. AA�A = A 

2. A�AA� = A� 

3. A�A = 
A�A�� 

A� is called pseudo –inverse for �.  

The singular values decomposition may be used to find pseudo –inverse. Recording that for any 
 × � matrix � 

has a rank 
�, then the singular values decomposition of � is � = ����, where � and � are 
 × 
 and � ×� 

orthogonal matrices and � = ���� 00 0� is 
 × � matrix,  here ��� is an 
� × 
� diagonal matrix with  

 ��� = ����
��, ��, … , ���� , where �� ≥	�� ≥ ⋯ ≥	��� ≥ 0   and 
�  is the rank of � . The numbers �$  is 

singular value of �,  ∀ � = 1,2, … , 
�; thus �� = ����� , where �� = ���(� and 0 otherewise. That is  

���(� = ����
��(�, ��(�, … , ���(�� . 
3 Problem formulation  

Consider the non-linear semi-explicit descriptor system without matching condition  )*+ = �* + -. + /0
*�		                                      (1) 
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Where  ), � ∈ ℝ�×� , 1�
2
)� = 
� , 0 < 
� ≤ 
   * ∈ ℝ� , . ∈ 56  and - ∈ ℝ�×6  are the system coefficients 

and 0 ∈ /�
ℝ�; ℝ6� represent the uncertainty of the system, satisfying some conditions that will be defined later 

on to ensure the solvability of the system (1). System (1) is equivalent to  *+� = ��*� + ��*� + -�. + /�0
*�, *��	                         (2a) 0 = �8*� + �9*� + -�. + /�0
*�, *��		                         (2b) 

Where  *� ∈ 5�� , 	*� ∈ 5�(��  and  �� ∈ 5��×�� , �� ∈ 5��×
�(���,		 �8 ∈ 5
�(���×�� , �9 ∈ 5
�(���×
�(���  and -� ∈ 5��×6 , -� ∈ 5
�(���×6 , /� ∈ 5��×6 , /� ∈ 5
�(���×6 , which 

comes by the following  

Since 1�
2
)� = 
�, then it follows that there always  exist unitary matrices � ∈ 5�×� and � ∈ 5�×� such that  

) = � :Σ 00 0< ��                  (3) 

Where  Σ = diag
σ�, σ�, … , σ��� and σ� ≥	σ� ≥	… ,≥ σ�� > 0 . 

From (3), one can define ℙ ≜ �, ℚ ≜ �(� 

ℚ)ℙ = �(� :� FΣ 00 0G ��< � = FΣ 00 0G                                          (4) 

On using (1) and (4) as well as 1�
2
)� = 
�, one gets ℚ)*+ = ℚ�* + ℚ-. + ℚ-0
*� ⇒	 ℚ)ℙℙ(�*+ = ℚ�ℙℙ(�* + ℚ-. + ℚ/0
*� 
From  

 ℙ(�* = F*�*�G ⇔ * = ℙF*�*�G,  *� ∈ ℝ�� , 	*� ∈ ℝ�(��                         (5) 

then  

ℚ)ℙ�*+�*+�� = ℚ�ℙ F*�*�G + ℚ-. + ℚ/0 JℙF*�*�GK		                            (6) 

where  ℚ�ℙ = ��̅� �̅��8 �9� ,  ℚ-=�-M�-��	 and , ℚ/=�/�̅/�� which gives  

*+� = ��*� + ��*� + -�. + /�0
*�, *�� 0 = �8*� + �9*� + -�. + /�0
*�, *�� 
Where  �� = Σ(��̅�	, �� = Σ(��̅�	, -� =	Σ(�-M�  and /� =	Σ(�/�̅ . 

In this paper, for simplicity, it is assumed that the matrix ℚ satisfies  ℚ- = �-M�0 � , and ℚ/ = �/�̅0 � then the  

system (2) is equivalent to *+� = ��*� + ��*� + -�. + /�0
*�, *��	                  (7a) 0 = �8*� + �9*�                                  (7b) 

To study the solvability of the differential algebraic equations (7) which is equivalent to the descriptor system (1) 

by the invertible transformation  * = ℙF*�*�G, the following assumption have been presented (FING LIN 2000). 

Assumption A 

3. Assume there exist an open set ΩOP ⊂ � such that for all *R� ∈ ΩOP 	 it is possible to solve  �8*R�
S� +�9*R�
t� = 0 for 	*R�. One can define the corresponding solution manifold as: 
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ΩO = U*� ∈ ΩOP , *� ∈ ℝ�(��| 	�*�
S�,*�
S�� ∈ ℵ
XA8 A9Y�	, S ≥ 0	Z  where ℵ
∙�  denotes the kernel (null 

space) of the operator 
∙�. 
Let us denote the set of the consistent initial values of (7) by \],  \] ≜ ^*� = 
*�,�, *�,��|	*� ∈ ℵ
XA8 A9Y�	_                                        (8) 

4. 5�
2XA8 A9Y = 5�
2A9 ⇔ \] = ℵXA8 A9Y                                                                                   (9) 

Lemma 1   

Consider the system *+� = ��*� + ��*� + -�. + /�0
*�, *��	                  (10a) 0 = �8*� + �9*�      (10b) `*�
0�, *�
0�a = 
*�,�, *�,�� ∈ \]                                              (10c) 

Where  *� ∈ 5�� , 	*� ∈ ℝ�(�� and  �� ∈ ℝ��×�� , �� ∈ ℝ��×
�(���,	 	�8 ∈ ℝ
�(���×�� , �9 ∈ ℝ
�(���×
�(��� and -� , /� ∈ ℝ��×6, 0 ∈ /�
ℝ�; ℝ6�, 
 0
0,0� = 0, such that Assumption A is satisfied. 

If  A9 is of rank deficient matrix, i.e., 	A9 < 
 − 
� , then there  exists  a matrix c of dimension 

 − 
�� × 
� 

such that the system (10) will be in the reduced form, for  *� ∈ ΩOP which is open subset of 5��, 
*+� = 
�� + ��c�*� + -�. + /�0`*�, d
*��a	                              (11) 

Where d
*�� ≜ c*�. 

Which is solvable for a given `*�
0�, *�
0�a ∈ \]   and   . ∈ eX0, SY, where  

\] = ^`*�
0�, *�
0�af*�
0� ∈ ΩOP, *�
0� = 	d
*�
0��	_ 
and eX0, SY = g.
⋅�|.
S�	�i	��00j1
S��klj	m
	X0, SYn 
And the solution to system (10) is 
*�
S�, *�
S��. 
Proof  

If  A9  is of rank deficient matrix in (10), then we may consider the existence of  a matrix c of dimension 

 − 
�� × 
� such that  *�
S� = c*�
S�                                                   (12) 

c*�
S� − *�
S� = 0	 ⇒ 	 `c − o�(��a �*�
S�*�
S�� = 0 

So    
*�
S�, *�
S�� ∈ ℵ
c o�(���   and  c satisfies  �8*� + �9c*� = 0 or 
�8 + �9c�*� = 0 for all *� ≠ 0 , *� ∈ ΩOP. This means that  �8 + �9c = 0                                                   (13) 

Such a matrix  c is always exists when condition (8) is satisfied (Kunkel & Mehrmann 2001). So the solution of 

(10b) have to belong to the set ℵ
c o�(���, so the solution manifold is ΩO ≜ g* ∈ ℝ�; *
S� ∈ ℵ
c o�(���n                               (14) 

Therefore, the solution of (10b) will be found locally in ΩO and the system is then given in the reduced form for  *� ∈ ΩOP *+� = 
�� + ��c�*� + -�. + -�0
*�, c*��                          (15) 
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From state space analysis and 0 ∈ /�
ℝ�; ℝ6�, the problem has a solution for a given . ∈ eX0, SY and *� ∈ ΩOP , 

hence the original system solution is *�
S� ∈ ΩOP and *�
S� = 	d
*�
S�� with *�
0� = 	d
*�
0��.                                                                                                                    ∎  

4  Robust descriptor control problem 

Consider the nonlinear semi-explicit descriptor robust control system without matching condition defined by (1) 

which is (by using lemma 1) equivalent to the system  *+� = 
�� + ��c�*� + -�. + /�0
*�, c*��, *� = 	d
*�� = c*�, `*�
0�, *�
0�a ∈ \]  

The equilibrium states of the robust control system (15) can be calculated when the control function  .  is 

identically 0 or is a constant vector  .�. Since 0
0,0� = 0, then the equilibrium state of the system  is the origin  
*�, *�� = 
0,0� . 
Suppose that the feedback control is defined by .
S� = −2*�
S�                                                    (16) 

Now, the aim of the following work under a suitable assumptions  is to find a suitable matrix 2 such that the 

closed loop nonlinear dynamical system  *+� = 
�� + ��c − -�2�*� + /�0
*�, c*��                                             (17a) 

 *� = 	d
*�� = c*�, `*�
0�, *�
0�a ∈ \], *� ∈ ΩOP                                (17b) 

is asymptotically stable. 

To find the conditions which make the nonlinear descriptor robust control system without matching condition (1) 

is asymptotically stable, the following theorem has been developed. 

Theorem 1 

Consider the nonlinear descriptor robust control system without matching condition (1) which is locally 

equivalent to the system (15), that satisfy  

8. The system satisfies Assumption A. 

9. The eigenvalues of  �� + ��c satisfies r
�� + ��c� = ^s$|s$ + st ≠ 0	, ∀	� ≠ u_ 
10. 
�� + ��c	, -��	 is state space controllable, where *� = c*�. 

11. 0
0,0� = 0. 

12. ‖0
*�‖ ≤ 0�wP
*� = x‖*‖y 	, * = 
*�, *��.             
Where z = �z� 00 z�� and z��
�	z�	 are symmetric positive semi-definite matrices. 

13. The control is defined by      .
S� = −2*� = −5(�-��{*�, 

Where 5  is symmetric positive definite matrix and {  is the symmetric positive definite matrix that 

solves the following Riccati equation 
�� + ��c��{ + {
�� + ��c� − 2{-�5(�-��{ + 2|{ + 2z� = 0      (18) 

| = }~��
��}~��
�� s�wP
z��
1 + ‖c‖�‖/�‖ , where ‖. ‖	is suitable norm.   

Then the equilibrium point 
*�, *�� = 
0,0� of (15) is asymptotically stable. 
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proof 

For *� ∈ ΩOP 	, and 
*�, *�� ∈ ΩO = ^*� ∈ ΩOP , 	*� ∈ 5�(��|	*� = c*�	_, define Lyapunov function for system (15) 

as     �
*�
S�� = *��{*�	,				{� = { > 0 

since   s�$�
{�‖*�‖� ≤ *��{*� ≤ s�wP
{�‖*�‖� for   {� = { > 0                                                                 (19) 

Where  s�$�
{� and s�wP
{� are the minimum and maximum eigenvalues of  { respectively, from (15) and 
condition (7) as well as .
S� = −5(�-��{*� with some computations, one gets 

�+ 
*�� 	= *��X
�� + ��c��{ + {
�� + ��c� − 2{-�5(�-��{Y*� +		*��{/�0 + 0�/��{*�	
By solving (18) for	{ , we have that �+ 
*�� 	= −2*��z�*�−2|*��{*� + *��{/�0 + 0�/��{*� ,  

Deletion		of		the	negative	term	−2*��z�*�	gives that 

�+ 
*�� 	≤ −2|*��{*� + *��{/�0 + 0�/��{*�	
Since		
									*��{-�0 + 0�-��{*� ≤ 2xs�wP
{�‖/�‖‖*�‖‖*�‖y�
1 + ‖c‖�	

                                     ≤ 2xs�wP
{�s�wP
z��‖/�‖‖*�‖�
1 + ‖c‖� 
And  *��{*� ≥ s�$�
{�‖*�‖� ⇒ −*��{*� ≤ −s�$�
{�‖*�‖� 

Therefore, from the two inequalities above, we have that �+ 
*�� 	≤ −2|	s�$�
{�‖*�‖� + 2xs�wP
{�s�wP
z��‖/�‖‖*�‖�
1 + ‖c‖� 
From assumption 6, we get that �+ 
*�� 	≤ 2
x−1�s�wP
{�s�wP
z��‖/�‖
1 + ‖c‖�‖*�‖� 

Putting the condition  x − 1 ≤ 0 on x i.e., 0 < x ≤ 1 

Gives that  �+ 
*�� 	≤ −2s�wP
{�s�wP
z��‖/�‖
1 + ‖c‖�‖*�‖� 				⇒ 						 �+ 
*�� 	< 0 

This proves that *� = 0 is asymptotically stable. i.e.,  lim�⟶�‖*�
S�‖ = 0, *� ∈ ΩOP 		 
And from the continuity of the norm  ‖∙‖ , then we have that 

lim�⟶�‖*�
S�‖ = � lim�⟶� *�
S�� 

                                                     = ‖lim�⟶� c*�
S�‖, *� ∈ ΩOP 		 
                                                     = ‖c lim�⟶� *�
S�‖, *� ∈ ΩOP 		 
                                                     = 0 

Therefore the equilibrium point 
*�, *�� = 
0,0� is asymptotically stable.                                            ∎ 

Theorem1 above gives us a class for the uncertainties 0
*� which can be defined as  

0� = U0�‖0
*�‖ ≤ x‖*‖y , 0 < x ≤ 1, | = s�wP
{�s�$�
{� s�wP
z��
1 + ‖c‖�‖/�‖	Z 
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i.e., the nonlinear descriptor robust control system with matching condition (1) is stable for all 0 ∈ 0� and  its 

solution is defined by  .
S� = −5(�-��{*�. 

Due to the difficulty in solving the equivalent robust control descriptor problem (15) in the presence of system 

uncertainties, leads to develop a novel approach by finding an equivalent control problem ( in reduced system 

form) which is equivalent to the robust one in the sense that the solution of the equivalent optimal control 

problem is the solution to the robust one. The following theorems present this fact. 

In robust control problem (17), one can decompose the uncertainty /�0
*� into the sum of a matched component 

and unmatched component by projecting /�0
*� onto the range of -�, thus 

/�0
*� = -�-��/�0
*� + `o − -�-��a/�0
*� 
So the system (17) will be 

*+� = 
�� + ��c�*� + -�. + -�-��/�0
*� + `o − -�-��a/�0
*�    (20) 

Where -�� is the pseudo inverse of -�. 

Consider a condition on (17) as: 

�-��/�0
*�� ≤ 0�wP
*�                                         (21) 

Where 0�wP
*� is a nonnegative function. 

Now, the robust control problem (20) with the condition (21) will be translated into the following problem: 

5 Optimal control equivalent problem  

The robust control problem (17) can be put in the equivalent quadratic optimal control problem: 

For all *� ∈ ΩOP 	, the nominal system will be 

*+� = 
�� + ��c�*� + -�. + `o − -�-��a/��                                 (22a) 

*� = c*�, `*�,�, *�,�a ∈ \] 

Where  *� ∈ 5�� , 	*� ∈ ℝ�(��, � ∈ 56  , �� ∈ ℝ��×�� , �� ∈ ℝ��×
�(���, -� ∈ ℝ��×6 and c ∈ ℝ
�(���×��. 
Which depends on the known part of the system (17) and the aim is to find a feedback control `�
*��, �
*��a 
that minimize the cost function 

� = � 
0�wP� 
*� + ����wP� 
*� + ��*��z�*� + ��5� + ���� ���S��              (22b) 

Where � and   � are some positive constants that serves as design parameters,  0�wP
*� is the upper bound of  

0
*�, ��wP
*� is the upper bound of  -��/�0
*� , z� is positive semi definite matrix and 5 ,    are positive 

definite matrices. 

Lemma 2 (necessary condition for optimality) 

Consider the equivalent optimal  control system (22) of  the robust descriptor control system (1), and there is a 

positive definite continuously differentiable function �
*�� such that 

�
*�� = min¡,¢∈eX�,�Y£ 
0�wP� 
*� + ����wP� 
*� + ��*��z�*� + ��5� + ���� ���S�
�  

Then the necessary condition  for existence of optimal control is that �
*��  must satisfies the Hamilton-Jacobi-

Bellman (HJB) equation 
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0 = min¡,¢∈eX�,�Y¤0�wP� 
*� + ����wP� 
*� + ��*��z�*� + ��5� + ���� �
+ �P��`
�� + ��c�*� + -�. + `o − -�-��a/��a¥ 

Where �P� = ¦§¦P� . 
Proof the same as derivation in the state space proof.     

Main Theorem 2 (Equivalency theorem) 

Consider the robust control problem  )*+ = �* + -. + /0
*�,				*
0� = *�	                                       (23) 

Where  ), � ∈ ℝ�×� , * ∈ ℝ�, . ∈ ℝ6 and -, / ∈ ℝ�×6 are the system coefficients and 0 ∈ /�
ℝ�; ℝ6� 
represent the uncertainty of the system and  

1. 1�
2
)� = 
� < 
  

2.  0
0� = 0,  

3.  ‖0
*�‖ ≤ ��wP
*�, ��wP
0� = 0, 

4. �-��/�0
*�� ≤ 0�wP
*�, 0�wP
0� = 0  

And the optimal control problem 

� 
0�wP� 
*� + ����wP� 
*� + ��*��z�*� + ��5� + ���� ���S��                  (24a) 

Subject to  

*+� = 
�� + ��c�*� + -�. + `o − -�-��a/��                                               (24b) 

           *� = c*�, `*�,�, *�,�a ∈ \], *� ∈ ΩOP 

Where z�is positive semi-definite matrix and 5 and   are positive definite symmetric matrices,  * =
{ F*�*�G	, *� ∈ 5�� , 	*� ∈ 5�(�� , c is the solution of  �8 + �9c = 0 and ℚ)ℙ = FΣ 00 0G , ℚ�ℙ = �Σ�� Σ���8 �9 �, 

ℚ- = FΣ-�0 G , ℚ/ = FΣ/�0 G for some suitable nonsingular matrices ℚ and ℙ. 

If one can choose  | and � such that the solution to the optimal control problem (24) , denoted by 
�
*��, �
*��� 
, exists and the following condition is satisfy 

2��‖�‖�̈ ≤ �© �‖*�‖y��     for all *� ∈ ΩOP 

for some  �©  such that f�© f ≤ |�|, then  �
*�� the u-component of  the solution to the optimal control problem 

(24), is the solution of the robust control problem (23). 

proof 

From lemma1 and the conditions above, we get that the robust control problem (23) is equivalent to the robust 

control problem  *+� = ��*� + ��*� + -�. + /�0
*�	                          (25a) 0 = �8*� + �9*�                                 (25b) 

And this problem is reduced locally to the problem *+� = 
�� + ��c�*� + -�. + /�0
*�                                              (26a) *� = c*�                                                                                          (26b) 

Or  
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*+� = 
�� + ��c�*� + -�. + -�-��/�0
*� + `o − -�-��a/�0
*�  (27a) *� = c*�                                                                                          (27b) 

For all *� ∈ ΩOP. 

Now to prove the theorem, it is enough to prove that the solution of  (24) is the solution of (26). To do so, define   

�
*�� = � 
0�wP� 
*� + ����wP� 
*� + ��*��z�*� + ��5� + ���� ���S��  

For all *� ∈ ΩOP and .
0� = 0, . ∈ eX0, SY, to be the minimum cost of bringing the system (24b) from 

 *�
S�� = *�,� to  *� = 0. 

From lemma 2 , �
*�� must satisfies H-J-B  

0 = min¡,¢∈eX�,�Y¤0�wP� 
*� + ����wP� 
*� + ��*��z�*� + ��5� + ���� �
+ �P��`
�� + ��c�*� + -�. + `o − -�-��a/��a¥ 

Now if  
., �� = 
�
*��, �
*��	is the solution of the optimal control problem (24), then   

0�wP� 
*� + ����wP� 
*� + ��*��z�*� + ��5� + ���� � + �P��`
�� + ��c�*� + -�. + `o − -�-��a/��a = 0                                         

(28a) 2��5 + �P��-� = 0                                        (28b) 

2����  + �P��`o − -�-��a/� = 0                                        (28c) 

*� = c*�                                        (28d) 

Now, we will show that the u-component of  the solution to the optimal control problem  (25) is the solution to 

the robust control problem (23), i.e., *� = 0  of (26) is globally asymptotically  stable for all admissible 

uncertainty 0
*�. 
To do so, we show that �
*�� is a Lyapunov function of the system (26).  

1. Since .
0� = 0, 0�wP
0� = 0, ��wP
0� = 0, then �
0� = 0. 

2. And  0�wP� 
*� > 0	, ��wP� 
*� > 0	, *��z�*� > 0	, .�5. > 0	, �� � > 0	 	∀	* = 
*�, c*�� ≠ 
0,0�,  then �
*�� > 0	,  ∀	*� ≠ 0. �+ 
*�� = �P��*+� 

           = �P�� ¤
�� + ��c�*� + -�. + -�-��/�0 + `o − -�-��a/�0	¥ 
         			= �P�� ¤
�� + ��c�*� + -�. + `o − -�-��a/�� + `o − -�-��a/�
0 − �� + -�-��/�0	¥ 													= �P�� ¤
�� + ��c�*� + -�. + `o − -�-��a/��¥ + �P��`o − -�-��a/�
0 − �� + �P��-�-��/�0  

Substitution (28a) , (28b)  and (28c), yields 

�+ 
*�� = −0�wP� 
*� − ����wP� 
*� − ��*��z�*� − ��5� − ���� � − 2��5-��/�0 − 2���� 
0 − ��                    

= −0�wP� 
*� − ����wP� 
*� − ��*��z�*� − ��5� − ���� � − 2��5-��/�0 − 2���� 0 + 2���� � 

= −0�wP� 
*� − ����wP� 
*� − ��*��z�*� − ��5� + ���� � − 2��5-��/�0 − 2���� 0 + `-��/�0a�5-��/�0
− 	`-��/�0a�5-��/�0 

= −0�wP� 
*� − ����wP� 
*� − ��*��z�*� + `-��/�0a�5-��/�0 + 	���� � − 2���� 0
− `. + -��/�0a�5`. + -��/�0a 

= −0�wP� 
*� − ����wP� 
*� − ��‖*�‖y�� + �-��/�0�ª� − 2���� 0 − �. + -��/�0�ª� + ��‖�‖�̈  
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Since ��‖� − 0‖�̈ = ��
‖�‖�̈ − 2���� 0 + ‖0‖�̈ � 
                                    ≥ −2���� 0 

Therefore, −2���� 0 ≤ ��‖� − 0‖�̈ ≤ ��‖�‖�̈ + ��‖0‖�̈  

�+ 
*�� = −0�wP� 
*� − ����wP� 
*� − ��‖*�‖y�� + �-��/�0�ª� + ��‖�‖�̈  

+��‖0‖�̈ − �. + -��/�0�ª� + ��‖�‖�̈ 	
= −0�wP� 
*� − ����wP� 
*� − ��‖*�‖y�� + �-��/�0�ª� + ��‖�‖�̈ + ��‖0‖�̈ − �. + -��/�0�ª� + ��‖�‖�̈  

= −F0�wP� 
*� − �-��/�0�ª�G − ��
��wP� 
*� − ‖0‖�̈ � − ��‖*�‖y�� + +2��‖�‖�̈ 	− �. + -��/�0�ª�  

≤ −��‖*�‖y�� + 2��‖�‖�̈ + �© �‖*�‖y�� − �© �‖*�‖y��  

≤ 2��‖�‖�̈ − �© �‖*�‖y�� − `�� − �© �a‖*�‖y��  

But 2��‖�‖�̈ ≤ �© �‖*�‖y�� ⇒ 2��‖�‖�̈ − �© �‖*�‖y�� ≤ 0 and  f�© f ≤ |�| ⇒ �� − �© � ≥ 0. Therefore �+ 
*�� ≤ 0 

Thus, the condition of Lyapunov stability is satisfied .  

Consequently, there exists a neighborhood  «¬ = ^*� ∈ ΩOP 	; 	‖*�‖y� < /_	 for some / > 0. Such that if *�
S� 
enters «¬  then lim�→�‖*�
S�‖y� = 0. 

But *�
S� cannot remains forever outside «¬ , otherwise ‖*�
S�‖y� > / for all S > 0 , therefore  

�
*�
S�� − �
*�
0�� = � �+ 
*�
i���i��   

																																								≤ −� ‖*�
i�‖y�� �i��   

																																								≤ −� /��i��   

																																							= −/�S  �
*�
S�� ≤ �
*�
0�� − /�S  
Letting → ∞ , we have �
*�
S�� → −∞ which contradicts the fact that �
*�
S�� > 0 for all *� ∈ ΩOP . Therefore   lim�→�‖*�
S�‖y� = 0. But *�
S� = c*�
S�  such that *
S� = 
*�
S�, *�
S�� ∈ ΩO. 

Then  

lim�⟶�‖*�
S�‖ = � lim�⟶� *�
S�� 

               = ‖lim�⟶� c*�
S�‖, *� ∈ ΩOP		 
               = ‖c lim�⟶� *�
S�‖, *� ∈ ΩOP 		 
               = 0 

So 	lim�⟶�‖*
S�‖ = ‖lim�⟶�
*�
S�, *�
S��‖ 

                                = ‖
0,0�‖ 

                                = 0.       For all *
S� ∈ ΩO                                                                                                        ∎ 

6 Illustration  

Consider the robust descriptor system )*+ = �* + -. + /0
*� 
Where  *� = 
*�, *�, *8, *9� and  
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) = ¯	0 31 0 0 00 00 00 0 0 00 0	± , � = ¯	 		0 			3−1		 			1 	3 		3	1 			1				0 		−1		−1 					2 	1		 	00		 	1	± , - = ¯0100±,  

/ = ¯0.6000 ±, 0
*� = 5 �́ *�cos F	 �Pµ¶·µ	G + 5´8*� sin
´9*�*��, *� ≠ −´�, 

�́ ∈ X−0.2	, 0.2Y,   ´� ∈ X−10	, 100Y,    ´8 ∈ X0	, 0.2Y,   ´9 ∈ X−100	, 0Y. 
Since 	) = 2 = 
� , then ) is singular matrix. 

Using the transformation matrices ℙ = ¯	0 11 0 0 00 00 00 0 1 00 1	± and ℚ = o9 and putting  

ℙ(�* = � �̧̧��,					 �̧ = F¹�¹�G	,			 �̧ = F¹8¹9G, the system above can be transformed to 

            +̧� = �� �̧ + �� �̧ + -�. + /� F5 �́¹� cos F	 �º�¶·µ	G + 5´8¹� sin
´9¹�¹��G   
            0 = �8 �̧ + �9 �̧ 

Where �� = F1 		01 −1G, �� = F1 11 1G, �8 = F	−1 			0				2 −1G, �9 = F1 				00 				1G, 
 -� = F	0	1G,  /� = F	0.2	0 G. 
Clearly ‖0‖ª� ≤ ¹�� + ¹�� = 
¹�, ¹��� F1 00 1G F¹�¹�G = �̧� �̧ = ��wP� 
¹�. 
 -�� = 
-��-��(�-�� = :
0 1� F01G<(� 
0 1� = 
0 1� . 
 -��/0 = 
0 1� F0.20 G 0 = 0. 0 = 0 . 

 �-��/0�ª� = 0 = 0�wP� 
¹� . 
 o − -�-�� = F1 00 1G − F01G 
0 1� = F0 00 1G . 
 `o − -�-��a/ = F0 00 1G F0.20 G = F0.20 G . 
Here, the consistency space is  ΩO = ^ �̧ ∈ ΩOº = ℝ�, �̧ ∈ ℝ�|	�8 �̧ + �9 �̧ = 0	_ 
Since �9 = o is invertible, then 

ΩO = ^ �̧ ∈ ΩOº = ℝ�, �̧ = −�9(��8 �̧	_. 
ΩO = »
¹� , ¹��� ∈ ΩOº = ℝ�, 
¹8, ¹9�� = F						1 0		−	2 1G F¹�¹�G	¼ ΩO = ^
¹�, ¹��� ∈ ΩOº = ℝ�, ¹8 = ¹�	, ¹9 = −2¹� + ¹�_ 
Therefore, the initial condition 
¹�,�, ¹�,�, ¹8,�, ¹9,�� is consistent iff 

 ¹8,� = ¹�,� and ¹9,� = −2¹�,� + ¹�,� for a given 
¹�,�, ¹�,��. 
Let = � = 1 . Then the corresponding  optimal control problem is as follow, for the nominal system 

 +̧� = 
�� − ���8� �̧ + F	0	1G . + F	0.2	0 G � 

 +̧� = F0 10 0G �̧ + F	0	1G . + F	0.2	0 G � 

Find a feedback control law 
�, �� that minimize the cost function  
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 � 
��wP� 
¹� + �̧� �̧ + ��� + �����S�� = � 
2 �̧� �̧ + ��� + �����S��  

It is easy to show that the solution of this optimal control problem is  

 � = −1.2906¹� − 2.1247¹� ,  � = −0.5783¹� − 0.2581¹� 

Or  � = −1.2906*� − 2.1247*� ,  � = −0.5783*� − 0.2581*� 

Since the condition 2��‖�‖�̈ ≤ �© �‖*�‖y��  is satisfied , then 

� = −1.2906¹� − 2.1247¹P� ⇒ � = −1.2906*� − 2.1247*�  is the optimal control. 

By theorem 2, this is a solution to the original robust control system.  

The solutions of the optimal control problem and robust control of the equivalent system are shown in the 

following figures:

 

 

 

It is very important to notice that in contracts to the state-space (o.d.e) systems, when the eigenvalues of the 

nominal system have negative real part then the system is stable for all initial condition. While in descriptor 

systems the initial condition divided into two parts, the first one concerns the dynamic (o.d.e) and the second part 

is the algebraic equation which is called the consistent initial conditions. And these initial conditions effect the 

system stability even when the spectrum of the dynamic system lie in the left half of ℂ as one can see the figure 

(2), the dynamic state space and the non dynamic state space vector are far from the equilibrium point 
0,0� 
when choosing the initial condition out of the consistency region.  
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Figure (1) Optimal solution represents 
¹�, ¹�, ¹8 , ¹9� with `¹�,�, ¹�,�, ¹8,�, ¹9,�a = 
1,2,1,0� ∈ \] 



Control Theory and Informatics                                                                                                                                                         www.iiste.org 

ISSN 2224-5774 (Paper) ISSN 2225-0492 (Online) 

Vol.6, No.3, 2016 

 

50 

 

 

 

 

 

0 1 2 3 4 5 6 7
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Time t

S
ta

te
 Y

(t
)

 

 

y1

y2

y3

y4

0 1 2 3 4 5 6 7
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time t

S
ta

te
 X

(t
)

 

 

x1

x2

x3=x1

x4

Figure (2) Optimal solution represents 
¹�, ¹�, ¹8 , ¹9� with `¹�,�, ¹�,�, ¹8,�, ¹9,�a = 
1,2,2,1� ∉ \] 

 

Figure (3) The nominal system represents 
*�, *�, *8, *9� with `*�,�, *�,�, *8,�, *9,�a = 
1,2,1,0� 
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Figure (4) The optimal controls .
S� and �
S� 

Figure (5) Robust solution represents 
¹�, ¹� , ¹8, ¹9� with `¹�,�, ¹�,�, ¹8,�, ¹9,�a = 
1,2,1,0� ∈ \] , 

 �́ = −0.2, ´� = −10, ´8 = 0, 	´9 = −100 
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Figure (6) Robust solution represents 
¹�, ¹� , ¹8, ¹9� with `¹�,�, ¹�,�, ¹8,�, ¹9,�a = 
1,2,2,1� ∉ \] , 

 �́ = −0.2, ´� = −10, ´8 = 0, 	´9 = −100 

 

Figure (7) Robust solution represents 
*�, *�, *8, *9� with `*�,�, *�,�, *8,�, *9,�a = 
2,1,1,0�, 
 �́ = −0.2, ´� = −10, ´8 = 0, 	´9 = −100 
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7 Conclusions  

From this work, we can conclude the following points: 

3. The solvability and Stabilizability of the robust control problem of some non-linear semi-explicit 

descriptor uncertain systems without matching condition is discussed via an optimal control approach in 

the sense that, the solution of an equivalent optimal control problem to the uncertain nonlinear 

descriptor system, is the solution to the given descriptor one with matching condition. 

4. This novel approach is very applicable for a large class of systems and make the original problems 
tractable and easy for point of applications. 

8 future work 

The solution of the robust control problem of some non-linear semi-explicit descriptor uncertain systems without 

matching condition and non-linear algebraic equation have been considered for publication: 
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