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Abstract

In this paper, the finite time stable concept for a forced control system is modefied. A feedback controller has been
designed with some necessary condition so that the solvability and the exponential finite time interval stablizability
are guaranteed with computational algorithm and illustration.
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I. INTRODUCTION

Singular control systems are those systems whose dynamic is governed by a mixture of differential and algebraic
equations, and named as generalized system, descriptor systems, as well as semi-state systems. These systems
include many real-world applications such as feedback system and robotics, chemical systems, biological systems
etc. [Campbell et al., 1976].

The initial conditions of these systems should be designed based on the solvability of the algebraic
equations which is not characteristic for the state space system where is no algebraic equation appeared. [Campbell
et al., 1976], [Wilkinson, 1979], [Debeljkovi¢ et al., 2002] [Sjoberg, 2005] some results on stabilization of some
classes of descriptor system with some set of sufficient conditions are given in [Guoping, 2004], [Guoping and
Daniel, (2006a)], [Batri and Murugesh, 2008].

The stability (robustness) of particular class of linear systems in the time domain using the Lyapunov
approach is given in [Durovic et al., 1998]. Decomposition of unstructured impulse free perturbations was studied
in [Zange and Lam, 2002].

II. Some Basic Concepts

Definition (2.1): [1]

A singular system of the form

Ex(t) = Ax(t) (1
Where E,AeR™™, x(t) € R", u(t) e R" is called Regular if there exists a constant scalar yeC such that
det(YE—A) #0

Definition (2.2): [2]

For E is n X n matrix the index of E denoted by ind (E), is the smallest non-negative integer Z such
that, rank(A%) = rank(A4?*1) )
Definition (2.3): [2]

If A e R™" with ind(A) =z, and if APe R™" such that

AAP = AP A
APAAP = AP
ADAZ+1 — AZ (3)

Forz > ind(A). then AP is called Drazin inverse
Lemma (2.1): [3]
Let A be a real, symmetric positive- definite matrix. and A,,;,(4) and 4,,,,(A) be the smallest and largest
eigenvalues of A. respectively Then, for any x € R,
lmin(A) ”xHZ =< xTAx = lmax(A) ”x”2 (4)
Where ||x||? = X% ,|x;]%,x; is the i- th component of x.

Definition (2.4) (Consistent Initial Conditions): [2], [4]
Consider the singular differential equation Ex + Ax = f, an initial condition x, € R™ is said to be consistent if
there exists a differentiable continuous solution of Ex + Ax = f.

Remarks (2.1): [4], [2]

1. if EA=AE and R(E) N X(A) = {0} . Then x = e E AtEEPq, q € C™ (5)
is the general solution of Ex + Ax = 0.,and ¢ may be obtained EE?q = x,

2. if EA = AE and R(E) n 8(A) = {0} .Then (I — EEP)AAP = (I — EEP) (6)

3. Suppose that EA = AE and X(E) N X(A4) = {0}. Then there exists a solutionto Ex + Ax = f,x(0) = x, ,
if and only if x, is of the form x, = EEPq + (I — EEP) YXZL(—1)" (EAP)"AP £ ™ (0) (7
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For some vector q. Furthermore, the solution is unique
4. Suppose that A such that (AE + A) is invertible. Then (XE + A)_lE and
(AE + A)™"A Commute since A ((AE + A) 'E+ (AE+A)A) =1 ®)
5. In particular, if f is identically zero, then EEP?q = x, characterizes consistent initial conditions.

I11. Finite time stable
Definition (3.1): [7]
The linear homogeneous singular system of the form
Ex(t) = Ax(t), x(ty) = xo € Wy
Where E, AeR™™, x(t)eR™, with |E| =0 and ind(E) = z < n is finite time stable w.r.t. {J, a, B, Q}, a < B if
Vx(ty) = xo € Wy satisfying ||x |5 < a implies that [|x()||§ < B
te] ={t:ty <t+T}. Where Wy as the limit of the sub-space algorithm:
Wy = R Wi, = AT (EW)),j 2 0.
Remarks (3.1)
Consider the linear singular system
Ex(t) = Ax(t) + Bu(t) 9)
If the following conditions hold:
(1 The matrix pair (E,A) is regular and
2) The matrix pair (E, A) is an impulse free and stable. Then for each Q > 0 there exist P > 0 is a solution
of generalized Lyapunov Equation (G.L.E) satisfying

(ATPE) + (ETPA) = —ETQE , see [8]

In the following theorem, a finite time stable concept for a forced control system is developed. A feedback
controller has been designed with some necessary condition so that the solvability and the stablizability are
guaranteed. A modified Lyapunov function approach is adapted for this theme.

Theorem (3.1)

Consider the singular linear control system:

Ex = Ax(t) + Bu(t) (10)
Where x(*): Rt — R™, u(-):R® — R™ and E,A,B € R**" are constant

Matrix with |E| = 0 and ind(E) =z <n and EA = AE and X(E) n X(4) = {0}

Let Lyapunov function defined by

V(x(0) = 27 (6) E"PEx(t) 2 llx(D) 37, (11

If

I- u = —kx is sclected such that the matrix (E, A- Bk)) is impulse free ,stable and regular det(YE —
(A—Bk))#0 ForyeC (12)

2- the consistent initial conditions is defined by W, = {x,(t) € R™01x0 € R(A — Bk)® }
where D is standing for Drazin inverse operator (13)

3 ol = V() < a , Vxo(t) = X € Wy (14)

4- The candidate Lyapunov function is defined to be V(x,t) = xT Px where the matrix P = PT is the unique

solution of (A — BK)TPE + ETP(A — BK) = —ETQE for a given Q such that ETQE > 0. (15)
T

5- ln%>%t,a<ﬁ,we]={t:toStst+T} (16)
Then V(x(t)) 2 ||x(t)|| < B, and hence the system is finite time stable w.r.t.
{ a, ‘8, K, ’ u(x),], Ql P! Wki V(x)}

Proof

Since EA = AE and X(E) n X(A) = {0}, then the homogenous system solution is given by

x(t) = e 4E’tq = E EPe~AE"tq, qeR(E EP), for some vector q

And the consistent initial condition is defined by W, is defined by:-

Wy 2 {x, € R"|x(0) = (A — Bk)?Aq,q = x(0)} For arbitrary vector q.

Wy < {x, € R"|x(0) = (A — Bk)PAx,, q 2 x(0)}

Wy < {x, € R"|((A — Bk)PA — Dx, = 0}

Wy < {x, € R"| x, € X(A — Bk)"}

By Lyapunov function

V(x(t)) 2 xT()ETPE x(t) = 0, for ETPE > 0 where the unknown P is designed as follows

d . dv dx

E V(x(t)) = V(X(t))| along the solution of system= a . E

= V(x(t) = xT()ETPEx(t) + xT ()ET PE %(t), hence



Control Theory and Informatics WWWw.iiste.org

ISSN 2224-5774 (Paper) ISSN 2225-0492 (Online) m 'l
Vol.6, No.3, 2016 IIS E
V(x(t)) = x"[(A — BK)TPE + ETP(A — Bk)]x (17)

By condition (17) there exists a unique solution P for a given matrix Q > 0 so that ETQE > 0 satisfying the
following algebraic Lyapunov equation

(A—BK)TPE + ETP(A— BK) = —ETQE (18)
From (18) and (19), the following is obtained

V(x®) £ —x"()(ETQE)x(t) (19)
Set

max(ETPE) {max(}; ...A,) |A; € 8(ETPE),i =1, ...,n}

Amin (ETQE) 2 {min(}, ...A,;)) |A; € 8(ETQE),i = 1, ..., n}, where §(ETPE) is standing for the spectrum value of
ETPE (20)

= Apin(ETQE) > 0 & A,y0,(ETPE) > 0, since ETPE >0 &P >0
By assumption it should be noted that on using (20) and (21), we have that

V(x®) = =x" () (ETQE)x(t) < — Amin(ETQE) x™ ()x(t) (21
= V( (t)) < — Apin(ETQE) x7 (£)x(t) M
HO) = = Al QRO 3 GTRE)
_ i T
S V(x®) < %xm)x@ Amax (ET PE)
_ i T
s V(x®) < %H@ETPE x(t)
= 7(D) < M V(x(®),x # 0 22)

ax(ETPE)
On using monotomcity of integration V te[0, J], and from (19) one gets

fV(x(t)) f Ain (" QE)
p

dt,te] 2 {t:t, <t<t+T},T>0

5 V(X(t)) max (ETPE)
_ mm(ETQE) A .
|V (x(®)| - ln|V(x(0))| S D ¥ F 0,2 (Lt SE<tHTLT>0
V(X(f)) - Amin(ETQE)
< t,te] 2{t:it, <t<t+T}LT>0
v(x(O)) Amax(ETPE) ‘
—Amm(ETQE)
eVExE)<e Amax(BTPE) © V(x(0),te] £ {t:tg <t <t+T} (23)
And from (15) and (20) we have that
= Amin(ET QE)
V() = llx@Oll3r,, <e Amax ETPE) lxo (O3 e ¥ te] (24)
_lmm(E QE)t
Ix(OllZr,, < e *max(ETPE)" o Ve & {t:ty <t < t+T} (25)
—Amm(E QE)t
By setting e Mmax(ETPE) ‘¢ < B vte] 2 {tity <t < t+ T}
mm(E QE)
& ln > e EE) ¢ (26)
Then from (29) we have ||x||ETPE < B forall ||xo|l;rp < @

And hence the system is finite time stable w.r.t. {J, a, 8, k, Q, P,V (x(t))}

Corollary (3.1)

the descriptor system Ex = Ax(t) + Bu(t)

Where x(*): Rt — R™,u(-): R — R™ and E, A, B € R™ *™ are constant matrix with |E| = 0 and ind(E) = z <
n and EA # AE and R(E) N 8(A) # {0}. One can choose and there exist A such that £ = (1E — A)™'E,A =
(AE —A)™'A,B = (AE — A)7'B

If A is chosen so that E, 4, is invertible and

Let Lyapunov function defined by

V(x(®) = x"(t) ETPEx(t) £ llx(t)||2r,, 27)

If

6- 0= —kx is selected such that the matrix (E, (A - Elz)) is impulse free ,stable and regular det(yE —
(A—Bk))+#0 . ForyecC (28)

7- the consistent initial conditions is defined by W), = {xo (t) € R™3]x0 € N(/T - BE)D}
where D is standing for Drazin inverse operator (29)
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8- Nxollirp, = V(xo(£) < @, VX, (t) = xo € Wy (30)
9- The candidate Lyapunov function is defined to be V(x,t) = x"Px where the matrix P = PT is the unique

solution of (4 — EIQ)TISE + ETP(A — Bk) = —ETQE for a given Q such that ETQE >0. (31)

. T

10- lng>wt,a<ﬁ,Vte]={t:toStSt+T} (32)

Amax(ETPE)
Then V(x(t)) 2 ||lx(t)|| < B, and hence the system is finite time stable w.r.t.
{/(/\lf, BAﬁ I’(\, i ﬁ(X),j, Qﬁ P' Wkﬁ V(X)}
Computational Algorithm
Input  Singular Linear Control System
Ex = Ax(t) + Bu(t)
Where x(*): Rt — R™,u(-): R® — R™ and E,A,B € R"*™ are constant.
Output J,a,B,k,Q,P,v(x(t)
Step (1):
If EA = AE and X(E) N X(A) = {0}. Then go to step (2) and if EA # AE
Find A s.t |AE + A| # 0 is invertible and define
A= AE-A)'AB= AE-A)"'B.E=(AE—-A)"'E=EA=AE and
X(E) n R(A) = {0} and hence replace A by A and B by B and the back to step (2)
Step (2): Define u = —k , Find ks.t det(yE — (A — Bk)) #0,Fory € C

Step (3):
Define
Wi = {xo(t) € R™031x0 € R((A — Bk)P )} Where D is standing for Drazin inverse and
A=(A-B+*K)
Step (4):
Find & such that [|xo|2r,; = V(x,(£)) < a , Vx,(t) = xo € Wy
Step (5):

Solve algebraic Ricatti equation we

(A—BK)TPE + ETP(A — BK) = —ETQE, For a given matrix Q,VETQE > 0
Step (6):

Calculate A,,,(ETQE) , A0 (ETPE)
Step (7):

Calculate lné >

Step (6)
Define v(x(t)) = xT(t) ETPEx(t) & ||x(t)||]23TPE where ETPE > 0 s.t
xollprpy = V(%o (®) < @

Then V(x(t)) < B, and the system is finite time stable w.r.t. { a, 8, k,J, Q, P, W, V (x)}

Amin(ETQE)

= . < <
Amax(ETPE)t'a<ﬁthE] {t-to_t_t+T}

Illustrations (2.1): (E, A) is regular if EA = AE
Consider the singular linear control system:
Ex = Ax(t) + Bu(t)

Where

6 -1 -3 -2 1 1 1
E=|-4 1 2 A=]12 0 -1 B=|1]|E|=0

2 0 -1 0 1 0 1
step (1)

|E| =0;rank (E) =2 and rank( E?) = 2,s0ind (E) = 1
step (2)
The condition EA = AE and X(E) N X(A) = {0} are satisfying

Step (3)

(3.1)  Define u = —kX, Find k s.t det(yE — (A—Bk)) #0,Fory€eC

6 -1 -3 -2 1 1 1
det y[—4 1 2 l - [ 2 0 —1] - [1] (k1 ky k3]
0 1 0 1

2 0 -1
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_Y _SY Z_kl 1_k2 1_k3
det ([ vy ] [2 A _1_k3]>

1 1- k2 _k3

> |—4y—-2+k Y +k; 2y+1+ k3 |+
2Y+k1 _1+k2 _Y+k3

= (6y+2+k)[(y+k)(=y+k3) — Qy+1+k3)(=1+ k)] —
(Y =1+ k)[(—4y =2+ k) (=y + k3) — Qy+1 + k3)(2y + k)] +
(=3y =1+ k)[(—4y =2+ k)(=1+ k) — (y + k) 2y + k;)]

= _klyz - 2k3Y2 + Zkly + 4’k3y + kl + 2k3 * 0

Step (3.1) on selection y and k4, k,,as well k;in different ways such that the necessary
Condition (13) is satisfied and as follows

Y Equation k1 k, ks Stable Impulse free
y=3 4k, —4k; #0 2 3 1 yes yes
y=-2 —7k; — 14k, -1 -3 5 No yes
y=0 ki + 2k, 3 1 2 No No
y=1 2k, + 4k, 0 0 0 No No
Step (4)

The class of consistent initial conditions is found by:
W = {xo(t) € R® \ {0} |x,(t) € X (A — Bk)P} Where D is standing for Drazin inverse and K =
[2 3 1]

-4 -2 07°
Wi, =< xo(t) e R3\ {0}] x,(t) e X -3 —2]
-2 =2 -1
Step (4.1) on computing W, the following algorithm is adopted; F = (A — Bk)P determine the Drazin

inverse of the matrix of F by using F? = F(FZ*1)TF where K = ind(A — Bk) and t is
standing for pseudo inverse operator

Let ¥ = F2k+1

—1800 —2458 —-1104

Y =F°%=|-1104 -1675 —802]

—1354 —-1906 —873

First, the pseudo inverse of the matrix Y (YT) is found by using singular value decomposition
10500580 6989758 8085940

YyT = [ 6989758 4667645 5387512] = |YY"| = 1.0486

8085940 5387512 622828

6292132 8854324 4054650
Ty = [8854324 12480225 5720920(= |YTY| = 1.0486
4054650 5720920 2624149

The Eigen values of YYTand YTY are equals. The concept pseudo inverse of Y one can using the singular
value decomposition (S.V.D) approach and as follows:-

U=1-04668 -0.8366 —0.2868], 0 0.1015 0

[—0.7006 0.5477 —0.4573] [4.6245 0 Ol
S
1—0.5397 0.0126 0.8418 0 0 0

[0.5421 —0.7814 —0.3089
V' =10.7639  0.3052 0.5686(, H=
10.3501 0.5443 —0.7624

0 9.8522 0
0 0 0

0.2162 0 0]
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The pseudo-inverse of the matrix Y is given by
—4.2990 6.3859 —0.1599
Yt =] 15311 -2.5923 —0.0514]
2.8840 —4.5211  0.0265

Therefore, the Drazin inverse of the matrix F is the computed as F? = F¥((F2k+1) T Fk

—413.5433 819174  223.2671
FP =| 2242230 —228.4565 —256.9608]
—143.4064 —35.8671 29.9601
—413.5433 819174  223.26711|X1(0)
Let(A—Bk)DX0(0)=[ 224.2230 —228.4565 —256.9608(|X,(0)| =0
—143.4064 —35.8671 29.9601 1]X5(0)

Since the Elementary Row Operations does not change the null space, convert (4 — Bk)? to reduce row echelon
form, to get:

1 0 —0.3936]]X1(0)
0 1 0.7385||X,(0)|=0
0 0 0 X53(0)

X1(0) — 0.3936X5(0) = 0 = X;(0) = 0.3936X5(0)

X,(0) + 0.0394X5(0) = 0 = X,(0) = — 0.7385X5(0)

Let S; = X3(0)

(X,(0),X,(0), X5(0)) = (0.3936S;, — 0.73855;, S;)

The class of consistent initial conditions is found to be:

Wy, = {X,(0)e R\ {0} |(X,(0), X,(0), X5(0)) = (0.3936S;, — 0.73855;,5,)}

Step (5)

Since ETQE = 0 and the system is regular and impulse free the unique solution of (19) is guaranteed
solving on algebraic ricatti equation (20) we have that
(A—BK)TPE + ETP(A— BK) = —ETQE , For a given matrix Q st ETQE =0

1 -1 4 164 —-26 -—82 6.9976
Where Q=|-1 3 5|, ETQE=]|-26 6 13] and eig(ETQE) = | 1.8407 l
4 5 4 —-82 13 41 209.1593
—4 0 =211P11 P12 P36 -1 -3 6 —4 27[Pi1 P, Pi31[-4 -2 0
[—2 -3 —2] [P21 P,, P23l -4 1 21+1-1 1 Ol P,y P,y P23l[ 0 -3 —2]
0 -2 —-1llPyy P3 Pzdl2 0 -1 -3 2 —1lPy; P35 Py3ll-2 -2 -1
164 —-26 -—-82
= [—26 6 13 l
—-82 13 41
Pyy Py Pi3 0.1615 —0.3635 0.4978 0.0004
= (P21 Py Pr =[—0.3635 0.8304 —1.1406] and eig(P)=[0.00SSl
P31 P;; Pgy 0.4978 —1.1406 1.5693 2.5574
Step (6):
Find a such that ||x0||§TPE =x,7 ETPEx, 2 V(x,(t)) < a , Vx,(t) = xo € W
6 —4 2 0.1615 —-0.3635 0.4978 6 -1 -3 0.3936
[0.3936 —0.7385 1]|-1 1 0] —0.3635 0.8304 —1.1406] [—4 1 2][— 0.7385]
-3 2 -—-11104978 —-1.1406 1.5693 2 0o -1 1

||x0||§TPE =0.037 < a Choose a =1

Step (7)
Calculate

~ Jmin(E"QE) ~Amin(E70E)

B T
In=>—_—"T0 < a<B,te] 2{tity<t<ty+T} < B >e *max(ETPE)
n a Amax (ETPE) a B E] { 0 0 } ﬁ e a

Amax(ETPE) = 2.5574 and A, (ETQE) = 1.8407 and Choose a = 1
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i to<t<t+T — dmin(ETQE) B

e Mmax(ETPE) " 4

0 0<st<1 1 6

0.1 0.1<t<11 0.9306 6

0.2 02<t<1.2 0.8659 6

0.3 03<t<13 0.8058 6

0.4 04<t<14 0.7498 6

0.5 0.5<t<15 0.6978 6

0.6 0.6 <t<16 0.6493 6

0.7 0.7<t<17 0.6042 6

0.8 08<t<18 0.5623 6

0.9 09<t<19 0.5232 6

1 1<t<2 0.4869 6
The value of T is then selectedtobe T = 1 for,tef 2 {t:0 <t < 1}
Step (7)

Define V(x(t)) = x"(t) ETPEx(t) £ |lx(t)||3r,, where ETPE > 0
st |lxllZr,, = V(x(®) < B
7.3020 —1.1202 —3.65107[x1(t)
V(x(®) =[x() x(t) x®]7[-1.1202 01719  0.5601 ||x,()
—3.6510 0.5601  1.8255 l|x3(t)
= V(x(®)) = x,(£)(7.3020x, (t) — 1.1202x,(t) — 3.6510x5(t))
+ x,(6)(—1.1202x (£) + 0.1719x,(¢) + 0.5601x5(¢))
+ x3(£)(—3.6510x; (t) + 0.5601x,(t) + 1.8255x5(t))
= V(x(t)) = 7.3020x2(¢) — 1.1202x; (£)x,(£) — 3.6510x; (£) x5 (£) —1.12022x, (£)x, (£) + 0.1719 x3(t)
+ 0.5601x,(t)x5(t) — 3.6510x; (t)x3(t) + 0.5601x,(t)x5(t) + 1.8255 x2(t)

Hence
V(x, (1)) = lIxollZrp, = 0038377 <1,  Vx,(t) = xq € Wy
finite time stable with respect to B
B e R s == e b
o) : ; : : : ; ; : +  xl
0, & & & & i pem | g g
i : : : : B=5.8934|
Erl ik s o s o et Fo e —— e 5 £ owa Y
p=0038377) (| O v
o A S e evpmiosms ey o i
026 02 015 01 -0.05 0 0.0 0.1 016 02 025
time
From the figure (1) the value of V(x(t)) 2 ||x(t)||§TPE <B=6,a<p and that completes the
assertion
CONCLUSION

Based on the previses results a finite time stablizability of forced control system is guaranteed
A computational algorithm have been developed for computing the feedback gain matrix and Lyapunov
function for this propose with illustration
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