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Abstract 

This paper develops Bayesian analysis in the context of progressively Type II censored data from the two-

parameter compound Rayleigh distribution. The maximum likelihood and Bayes estimates along with the 

associated posterior risks are derived for unknown reliability parameters under the balanced logarithmic loss and 

balanced general entropy loss functions. A practical example and simulation study have been considered to 

illustrate the proposed estimation methods and compare the performance of derived estimates based on 

maximum likelihood and Bayesian frameworks. The study indicates that Bayesian approach is more preferable 

over the maximum likelihood approach for estimation of the reliability parameters, while in Bayesian approach, 

a balance general entropy loss function can effectively be employed.      

Keywords: Maximum likelihood estimation, Bayes estimation, balanced logarithmic loss function, balanced 

general entropy loss function, posterior risk, Monte Carlo simulation. 

 

1. Introduction 

In life testing and reliability, the two-parameter compound Rayleigh distribution plays an important role and 

useful for modelling and analysis of lifetime data especially in medical and biological sciences. In the last couple 

of decades, significant inference procedures have been developed for this distribution (Mostert et al. 1999; 

Abushal 2011; Shojaee et al. 2012). In many industries, industrial experiments often terminate before failure of 

all the experimental units. Such experiments should be planned with an aim of significant reduction in total 

failures or time duration. Due to these reasons, an experimenter naturally prefers the most popular progressive 

Type II censoring scheme that allows the removal of experimental units at points other than the terminal point of 

an experiment. For a comprehensive review of this censoring scheme, one may refer Cohen (1963), Balakrishnan 

& Aggarwala (2000), Wu et al. (2006), and Barot & Patel (2013).  

In decision-making theory, balanced loss function usually focuses on precision of estimation as well as 

goodness of fit. Zellner (1994) introduced this loss function in the context of the general linear model and used 

this for the estimation of a scalar mean, vector mean, and a regression coefficient vector. Various authors have 

done various inferential studies using this loss function under different set ups. For more information, one may 

refer Rodrigues & Zellner (1994), Chung et al. (1998), Dey et al. (1999), Sanjari & Asgharzadeh (2004), and 

Gruber (2004). Appreciating the popularity of balanced loss functions, we introduce and motivate the use of 

balanced logarithmic loss function (BLGLF) and balanced general entropy loss function (BGELF) in estimating 

reliability parameters of the compound Rayleigh model.  

The present paper is an attempt to examine and compare the performance of Bayes estimates and 

maximum likelihood estimates when the data are progressively Type II censored from the compound Rayleigh 

distribution. In Section 2, the maximum likelihood and Bayes estimates of reliability parameters along with the 

corresponding posterior risks are obtained. In Section 3, an example with the real data is considered to illustrate 

the proposed methods of estimation. In Section 4, an extensive Monte-Carlo simulation study is carried out to 

compare the performance of the maximum likelihood and Bayes estimates. The paper concludes in Section 5. 

  

2.  Estimation of Reliability Parameters of Compound Rayleigh Model 

The probability density, cumulative density, reliability, and failure rate functions (at mission time t ) of a 

compound Rayleigh distribution with unknown shape parameter α and scale parameter β  are given, 

respectively,  
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Let n units are placed on a life-testing experiment and only m (≤ n) units are completely observed until failure. 

At the time of each failure occurring prior to the termination point, one or more surviving units are removed 
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from the test. Let ( )ix  be the lifetimes of completely observed units following (1), and ir  denotes the withdrawn 

units at 
thi failure, mi , ... ,2 ,1= . Then the likelihood function based on progressively Type II censored sample 

( ) ( ) ( )( )mxxxx  ,  ...  , , 21=  is (Barot & Patel 2015) 
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2.1. Maximum likelihood Estimation 

The likelihood equations can be obtained by differentiating the natural logarithm of (3) partially with respect to 

β  andα , and then equating the partial derivatives with zero. The resulting likelihood equations will be in the 

form 
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The Maximum likelihood (ML) estimates
MLβ̂ and 

MLα̂ can be obtained by solving the equations in (4) 

numerically. The invariance property of ML estimation enables one to obtain the ML estimates ( )
MLtR̂ and ( )

ML
tĥ

by using the ML estimates of α  and β  in (2). 

 

2.2. Bayes Estimation 

In Bayes estimation, it is required to assign prior distributions of the unknown scale parameter α  and shape 

parameter β  to consider subjective inputs from experienced experts or summary judgment of past research that 

yielded similar results. Following the idea of Soland (1969), β  is restricted to finite positive real values
jβ with 

probability
( )

,
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+NN

j
Nj  , ... ,2,1= ; and conditional upon

jββ = , α  has a natural conjugate gamma ( )
jj ba ,  prior 

with a density function 
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where ja  and jb  are unknown hyper-parameters chosen to reflect prior beliefs on α given that 
jββ = . 

Following the idea of Barot & Patel (2015), the marginal posterior probability distribution of β  and α can be 

obtained, respectively, as 
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For each 
jβ , the hyper-parameters ( )

jj ba ,  can be elicited from the expected value of reliability ( )tR  conditional 

on 
jββ = . 
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In order to create a balance between Bayesian and classical approach and provide an estimate that is a linear 

combination of Bayes and ML estimates, the BLGLF and the BGELF with shape parameter ( )0  ≠dd  have 

been proposed, respectively, in the forms 

( ) ( ) ( )( ) 2 2 
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where φ̂  is a Bayes estimates of φ , and [ ]1,0∈ω  is a weight. 

The Bayes estimates 
BLGφ̂

 
and 

BGEφ̂
 
relative to BLGLF and BGELF are, respectively, the values of φ̂  that 

minimizes the corresponding posterior expectations ( )( )φφπ ,ˆ1

*

LE  and ( )( )φφπ ,ˆ2

*

LE ; and their posterior risks are, 

respectively, the posterior expectations 
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2.2.1. Bayes estimates and posterior risks under BLGLF 

Based on the progressively Type II censored data and the posterior densities (6) and (7), the Bayes estimates 

BLGα̂ , 
BLGβ̂ , 

BLGtR )(ˆ  and ( )
BLGtĥ  are obtained, respectively, as 
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Moreover, the posterior risks of ML estimates 
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tĥ under BLGLF are obtained, 

respectively, as 

( ) ( ) ( ) ( ) ,  ˆln 2ˆln 1ˆ
51

2

1 



 +−−= SSPR MLMLMLL ααωα                 (19) 

( ) ( ) ( ) ( ) ,  ˆln 2ˆln 1ˆ
62

2

1 



 +−−= SSPR MLMLMLL ββωβ                  (20) 

( ) ( ) ( ), ˆ2ˆ 1)(ˆ
73

22 

1
SStttRPR mMLmMLMLL +−−= ααω                         (21) 

          ( )( ) ( ) ( ), 2  2 1ˆ
9854

2

1
SSSSthPR MLL +++−−= δδω                       (22) 

where 

( )
 ; ln   ; 

2

1
ln   ; 

ˆ
1ln

1

j2

1

1

2

∑∑
==

=












+
−














−

+
=













+=

N

j

j

N

j jjj

j

j

ML

m PS
amTb

am
PS

t
t β

β



Control Theory and Informatics                                                                                                                                                         www.iiste.org 

ISSN 2224-5774 (Paper) ISSN 2225-0492 (Online) 

Vol.5, No.2, 2015  

 

36 

( )
( )

( )( ) ( )
 ; 

2

1

 

 2
ln   ; 

1ln  

1
24

1

2

3 ∑∑
== 











+
−













−+

+
=

−














++

=
N

j jjjj

j

j

N

j jj

j

j

j
amTbt

amt
PS

Tb

t
am

PS
β

β

( ) ( )
( ) ; ln   ; 

1

2

1
ln

1

2

j6

1 0
2

1

2

5

1

∑∑ ∑
==

∞

=

=














++
+













+
−














−

+
=

N

j

j

N

j n jjjj

j

j PS
namamTb

am
PS β  

( )( )
( ) ( )

; 
2

1
ln 

2
ln        ; 

  1

1
28

1
2

2

7 ∑∑
== 












+
−














−

+















+
=

−

+++
=

N

j jjj

j

j

j

N

j jj

jjj

j
amTb

am

t

t
PS

Tb

tamam
PS

β

. 
ˆ

ˆ2
ln  ; 

2t
ln 

2
1

2

2

j

9 













+
=



























+
= ∑

= t

t

t
PS

ML

ML
N

j

j
β

α
δ

β
 

 

2.2.2. Bayes estimates and posterior risks under BGELF 

Based on the progressively Type II censored data and posterior densities (6) and (7), the Bayes estimates 
BGEα̂ , 

BGEβ̂ , 
BGEtR )(ˆ  and ( )

BGEtĥ  are obtained, respectively, as 
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with the corresponding posterior risks are obtained, respectively, as 
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Moreover, the posterior risks of the ML estimates 
MLα̂ ,

MLβ̂ , 
MLtR )(ˆ , and ( )
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tĥ under BGELF are, obtained, 

respectively, as 
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3. Numerical Example (Real data) 

In this section, the real data consisting of survival times (in years) of 46 patients given chemotherapy treatment 

alone reported in Bekker et al. (2000) is presented to illustrate the estimation methods developed in the 

preceding sections. They showed that the compound Rayleigh model is acceptable for these data. As a numerical 

illustration, we have generated the artificial progressive Type II censored sample of size m = 12 from the given 

data set. Let the vector of observed failure times be =x (0.115, 0.132, 0.164, 0.203, 0.296, 0.458, 0.501, 0.534, 

0.641, 0.841, 1.219, 1.447) with the censoring scheme =r (4,4,4,4,1,0,0,1,4,4,4,4). 

Firstly, we have obtained the ML estimate of parameter β by solving the equation (4) numerically. Concerning 

the estimated value of ( )1237.0 =β , we have assumed that 
jβ
 
takes 25 values ( )( )0.190 0.005 070.0  with the 

probability
( )

 ,
1

2

+NN

j
2521 , ... , ,j = . Based on x , we have obtained two values of reliability function 

( ) 86735.01 =tR  and ( ) 37755.02 =tR  
using a nonparametric approach (Martz & Waller 1982) by setting 

132.01 =t  and 534.02 =t . For each assumed 
jβ , we have elicited the hyper-parameters ( )jj ba ,  with the help 

of the reliability values. We have also obtained the prior probabilities 
jP  for each

jβ . 

Table 1 summarized the elicited values of the hyper-parameters ( )jj ba ,  and the posterior probabilities for each 

jβ . The posterior risks of ML estimates, Bayes estimates under BLGLF and BGELF were computed using the 

results outlined in Section 2, and reported in Table 2. 

 

4. Simulation study 

Since the performance of the different methods cannot be compared theoretically, we have performed an 

extensive Monte Carlo simulation study to compare the performance of Bayes and ML estimates in terms of 

posterior risks, for different sample sizes (n), effective sample sizes (m) and censoring schemes ( )r  according to 

the following steps: 

1. For a particular n, m and censoring scheme ( )mrrrr  , ... ,, 21= , we have generated a progressive Type II 

censored samples x  from the compound Rayleigh distribution with the parameters ( ) ( )4.5 ,2.1 , =βα  

according to the algorithm given in Balakrishnan and Sandhu (1995). 

2. Concerning the assumed value of the parameter β , we have assumed that 
jβ  takes 20 values ( )( )5.5  0.1  6.3  

with the probability
( )

02 , ... ,2,1 ,
1

2
=

+
j

NN

j . 

3. According to the generated sample x , we have estimated two values of the reliability using a nonparametric 

approach (Martz & Waller 1982). Using these reliability values, we have elicited the hyper-parameters 

( )jj ba ,  for each 
jβ  via numerical method. 

4. The ML estimates, Bayes estimates under BLGLF and BGELF, and the corresponding posterior risks were 

computed according to the results outlined in Section 2 by utilizing computer software Microsoft Visual 

Studio 2008. 

 

The different censoring schemes applied in the simulation study are summarized in Table 3. The averaged values 

of posterior risks of ML and Bayes estimates based on 1000 simulated data sets were computed, and reported, 

respectively, in Tables 4 – 7. From the simulation results, the following points can be drawn: 

1. It is clear that each of the Bayes estimates has smaller posterior risk than the ML estimates, i.e., the Bayes 

estimates perform better than the ML estimates. 

2. In case of Bayes estimation under the mentioned balanced loss functions, the Bayes estimates under BGELF 

have the smallest posterior risk as compared with those under BLGLF. This indicates that the Bayes 

estimates relative to BGELF perform better than the Bayes estimates relative to BLGLF. 

3. In case of ML estimation, the posterior risks of ML estimates of reliability parameters are smaller under 

BGELF with negative shape parameter .d
  

 

4. For fixed sample size n, as the effective sample size m increases, the posterior risks of both ML and Bayes 

estimates decrease, i.e., the performance becomes better with increasing effective sample size m. 

5. For fixed effective sample size m, as the sample size n decreases, the posterior risks of both ML and Bayes 

estimates decrease, i.e., the posterior risk of the estimates gets smaller with decreasing sample sizes. 

6. The Bayes estimates relative to BGELF are sensitive to the values of the corresponding shape parameter d . 
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7. Different values of the parameters α  and β , weight ω , shape parameter d  have been examined, and the 

same conclusions stated above were observed. It may be mentioned here that because of space restriction, 

results for all the variations in the reliability parameters are not shown. 

 

5. Conclusion 

Based on the progressive Type II censored data, the present paper proposes classical and Bayesian approaches to 

estimate the two unknown parameters as well as the reliability and failure rate functions for the compound 

Rayleigh model. The Bayes estimates are obtained under both the BLGLF and BGELF. The use of a discrete 

distribution for the shape parameter resulted in a closed form expression for the posterior pdf. The posterior risks 

of ML estimates and Bayes estimates relative to BGELF are obtained under BLGLF; and the estimates are 

compared in terms of posterior risks by considering real life data and simulated data. The findings from the 

analysis of real life data and simulated data are in accordance with those of the simulation study, suggesting that 

Bayesian approach is superior to ML approach. The motivation is also to explore the most appropriate loss 

function among the proposed loss functions. The effect of BLGLF and BGELF is therefore examined, and it is 

observed that importance should not solely rest upon the choice of prior distribution, but also the choice of loss 

function for optimum decision-making. As the Bayes estimates under BGELF perform better than BLGLF, we 

recommend employing BGELF for optimal decision-making. It is also noticed that the posterior risk of estimates 

gets smaller with increasing ratio m/n. 
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Table 1. Prior Information, Hyper-parameter Values, and Posterior Probabilities 

j  jβ  je  ja  jb  jP  j  jβ  je  ja  jb  jP  

1 0.070 0.00308 5.530 8.457 0.00113 14 0.135 0.04308 1.370 1.100 0.04545 

2 0.075 0.00615 4.084 5.843 0.00343 15 0.140 0.04615 1.324 1.025 0.04847 

3 0.080 0.00923 3.293 4.425 0.00647 16 0.145 0.04923 1.279 0.956 0.05147 

4 0.085 0.01231 2.797 3.543 0.00992 17 0.150 0.05231 1.244 0.899 0.05426 

5 0.090 0.01538 2.456 2.942 0.01358 18 0.155 0.05538 1.208 0.845 0.05706 

6 0.095 0.01846 2.205 2.505 0.01734 19 0.160 0.05846 1.179 0.799 0.05966 

7 0.100 0.02154 2.016 2.178 0.02109 20 0.165 0.06154 1.149 0.755 0.06225 

8 0.105 0.02462 1.864 1.919 0.02484 21 0.170 0.06462 1.124 0.717 0.06470 

9 0.110 0.02769 1.743 1.714 0.02851 22 0.175 0.06769 1.101 0.682 0.06703 

10 0.115 0.03077 1.645 1.549 0.03209 23 0.180 0.07077 1.079 0.650 0.06933 

11 0.120 0.03385 1.559 1.407 0.03559 24 0.185 0.07385 1.061 0.622 0.07147 

12 0.125 0.03692 1.487 1.289 0.03899 
25 0.190 0.07692 1.041 0.594 0.07360 

13 0.130 0.04000 1.424 1.187 0.04227 

 

Table 2. Posterior risks of ML and Bayes estimates with ( )2 ,40 == t.ω
 

Estimate MLLPR ) . (
1

 
MLLPR ) . (

2  
BLGLPR ) . (

1
 

BGELPR ) . (
2  

7.0 −=d  5.1=d  7.0 −=d  5.1=d  

β̂  0.04479 0.01172 0.04472 0.03386 0.00831 0.03792 

α̂  0.03983 0.01582 0.06195 0.03370 0.01343 0.06035 

)(ˆ tR  0.04159 0.00938 0.05883 0.03810 0.00886 0.04892 

( )tĥ  0.03823 0.01533 0.06079 0.03268 0.01316 0.05945 
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Table 3. Progressive Type II censoring schemes (C.S.) applied in the simulation study 

n m C.S. No. ( )mrrrr  , ... ,, 21=  

20 8 [1] 2, 2, 2, 0, 0, 2, 2, 2 

 10 [2] 2, 2, 1, 0, 0, 0, 0, 1, 2, 2 

 12 [3] 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1 

50 8 [4] 8, 8, 5, 0, 0, 5, 8, 8  

 10 [5] 5, 5, 5, 5, 0, 0, 5, 5, 5, 5 

 12 [6] 4, 4, 4, 4, 3, 0, 0, 3, 4, 4, 4, 4 

100 8 [7] 18, 18, 10, 0, 0, 10, 18, 18 

 10 [8] 15, 15, 15, 0, 0, 0, 0, 15, 15, 15 

 12 [9] 10, 10, 10, 10, 4, 0, 0, 4, 10, 10, 10, 10 

Table 4. Averaged posterior risks of ML and Bayes estimates of parameter α  with 40.=ω  

 

C.S. ( )MLLPR α̂
1

 
( )MLLPR α̂

2  ( )BLGLPR α̂
1

 
( )BGELPR α̂

2
 

7.0 −=d  5.1=d  7.0 −=d  5.1=d  

[1] 0.52082 0.18283 0.36874 0.23478 0.06278 0.25809 

[2] 0.26953 0.09042 0.22041 0.12885 0.03746 0.15377 

[3] 0.16206 0.05361 0.15153 0.08198 0.02573 0.10646 

[4] 1.60272 0.65892 0.62312 0.66763 0.15522 0.45604 

[5] 0.74752 0.27339 0.48421 0.32061 0.08067 0.34432 

[6] 0.69798 0.24806 0.46673 0.29691 0.07519 0.32301 

[7] 2.69403 1.27232 1.27756 1.10319 0.23844 1.01901 

[8] 2.04948 0.89656 1.04645 0.84127 0.18732 0.81194 

[9] 1.79258 0.75238 0.95503 0.73507 0.16588 0.72746 

 

Table 5. Averaged posterior risks of ML and Bayes estimates of parameter β  with 40.=ω  

C.S. 
( )MLLPR β̂

1
 ( )MLLPR β̂

2  ( )BLGLPR β̂
1

 
( )BGELPR β̂

2
 

 7.0 −=d  5.1=d  7.0 −=d  5.1=d  

[1] 1.38686 0.57409 0.74668 0.55868 0.11854 0.55553 

[2] 0.88994 0.32945 0.53736 0.36003 0.07931 0.37725 

[3] 0.70585 0.27621 0.49586 0.28647 0.07434 0.34758 

[4] 2.77120 1.36296 1.25925 1.11222 0.22248 1.01197 

[5] 1.51599 0.60558 0.80348 0.67027 0.12994 0.66002 

[6] 1.47034 0.60366 0.79634 0.59208 0.12606 0.59253 

[7] 3.56024 1.88663 1.91492 1.42776 0.27831 1.24713 

[8] 3.09487 1.58501 1.66420 1.24173 0.24524 1.10759 

[9] 3.00988 1.51181 1.54496 1.20782 0.24006 1.08821 
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Table 6. Averaged posterior risks of ML and Bayes estimates of reliability ( )tR  with ( )2 ,40 == t.ω  

C.S. 
( )( )MLL tRPR ˆ

1

 

( )( )MLL tRPR ˆ
2  

( )( )BLGL tRPR ˆ
1

 

( )( )BGEL tRPR ˆ
2

 

7.0 −=d  5.1=d  7.0 −=d  5.1=d  

[1] 0.03992 0.00874 0.06599  0.03425 0.00783 0.04608 

[2] 0.01809 0.00437 0.02193 0.01652 0.00396 0.01982 

[3] 0.01369 0.00354 0.01479 0.01096 0.00268 0.01244 

[4] 0.12269 0.02470 0.26254 0.07446 0.01668 0.10029 

[5] 0.03980 0.00877 0.05929 0.03077 0.00710 0.03979 

[6] 0.02831 0.00633 0.04050 0.02275 0.00530 0.02874 

[7] 0.25341 0.04864 0.67931 0.13253 0.02982 0.16938 

[8] 0.12115 0.02528 0.21169 0.06803 0.01564 0.08659 

[9] 0.07914 0.01701 0.12569 0.04598 0.01069 0.05744 

 

Table 7. Averaged posterior risks of ML and Bayes estimates of failure rate ( )th with ( )2 ,40 == t.ω  

C.S. 
( )( )MLL thPR ˆ

1

 

( )( )MLL thPR ˆ
2  

( )( )BLGL thPR ˆ
1

 

( )( )BGEL thPR ˆ
2

 

7.0 −=d  5.1=d  7.0 −=d  5.1=d  

[1] 0.13806 0.04712 0.13530 0.08035 0.02601 0.10801 

[2] 0.05704 0.02112 0.07928 0.04275 0.01595 0.07247 

[3] 0.03161 0.01296 0.06154 0.02896 0.01199 0.05886 

[4] 0.63944 0.22633 0.28830 0.28018 0.07302 0.20272 

[5] 0.24147 0.08081 0.20185 0.11611 0.03424 0.14160 

[6] 0.19823  0.06572 0.17249 0.09502 0.02878 0.11905 

[7] 1.29814 0.51039 0.75239 0.54236 0.12889 0.55321 

[8] 0.89958 0.33200 0.56688 0.37881 0.09330 0.40293 

[9] 0.73427 0.26212 0.48625 0.30926 0.07753 0.33689 
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