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Abstract 

Flexible AC transmission system (FACTS) devices are used to improve the existing transmission capabilities of 

the transmission system by making it more flexible and independent operating. The technology is used to 

achieve complete deregulation of power systems i.e generation, transmission and distribution. The loading 

capability of transmission system can also be enhanced nearer to the thermal limits without affecting the stability. 

The closed loop smooth control of reactive power can be achieved by using shunt connected FACTS devices. 

Static VAR Compensator (SVC) is one of the shunt connected FACTS device which is to be utilized here for the 

purpose of reactive power compensation. This paper attempts to design and simulate the Fuzzy logic control 

which is used to regulate the firing angle of SVC. With this scheme, it is seen that a better, smooth and adaptive 

control of reactive power has been achieved. The modelling and simulations are carried out for 750km long 

Transmission line and the compensation is placed at the receiving end (load end). 

Keywords: Flexible AC transmission system (FACTS); Static VAR Compensator (SVC); Fuzzy Logic 

Controller (FLC). 

 

1. Introduction 

In power system, the reactive power generation and absorption is essential since the reactive power plays a vital 

role in keeping the voltage of power system stable. The main elements for generation and absorption of reactive 

power are transmission line, transformers and alternators. The transmission lines have distributed parameters 

throughout the line. On the light loads or at no loads, parameters become predominant and consequently the line 

supplies charging VAR (generates reactive power). In order to maintain the terminal voltage at the load bus 

adequate, reactive reserves are needed. FACTS devices like SVC can be used which helps in achieving better 

economy in power transfer.       

In this paper transmission line (λ /8) is simulated using 4π line segments by keeping the sending end voltage 

constant. The receiving end voltage fluctuations were observed for different loads. In order to maintain the 

receiving end voltage constant, shunt inductor and capacitor are added for different loading conditions. SVC is 

simulated by means of Fixed Capacitor and Thyristor Controlled Reactor (FC-TCR) which is placed at the 

receiving end. The firing angle control circuit is designed and the firing angles are varied for various loading 

conditions to make the receiving end voltage equal to sending end voltage. Fuzzy Logic Controller (FLC) is 

designed to achieve the firing angles for SVC such that it maintains a flat voltage profile. All the results thus 

obtained, were verified and were utilized in framing of fuzzy rule base in order to achieve better reactive power 

compensation for the transmission line (λ/8). Based on observed results for load voltage variations for different 

values of load resistance, inductance and capacitance; a FLC is designed which controls the firing angle of SVC 

in order to automatically maintain the receiving end voltage constant. 

 

2. Modeling of SVC  

An elementary single phase thyristor controlled reactor [4] (TCR) shown in Fig.1 consists of a fixed (usually 

air core) reactor of inductance L and a two anti-parallel SCRs.  The device brought into conduction by 

simultaneous application of gate pulses to SCRs of the same polarity. In addition, it will automatically block 

immediately after the ac current crosses zero, unless the gate signal is reapplied. The current in the reactor can be 

controlled from maximum (SCR closed) to zero (SCR open) by the method of firing delay angle control. That is, 

the SCR conduction delayed with respect to the peak of the applied voltage in each half-cycle, and thus the 

duration of the current conduction interval is controlled. This method of current control is illustrated separately 

for the positive and negative current cycles in Fig.2 where the applied voltage V and the reactor current iL(α) at 

zero delay angle (switch fully closed) and at an arbitrary α delay angle are shown. When α =0, the SCR closes at 

the crest of the applied voltage and evidently the resulting current in the reactor will be the same as that obtained 
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in steady state with a permanently closed switch. When the gating of the SCR is delayed by an angle α (0 ≤ α ≤ 

p/2) with respect to the crest of the voltage, the current in the reactor can be expressed [4] as follows  

        (1) 

    (2) 

Since the SCR, by definition, opens as the current reaches zero, is valid for the interval  .For 

subsequent negative half-cycle intervals, the sign of the terms in equation (1) becomes opposite. 

In the equation (1) the term   is offset which is shifted down for positive and up for negative 

current half-cycles obtained at α = 0, as illustrated in Fig.2. Since the SCRs automatically turns off at the instant 

of current zero crossing of SCR this process actually controls the conduction intervals (or angle) of the SCR. 

That is, the delay angle α defines the prevailing conduction angle σ (σ = p-2α). Thus, as the delay angle α 

increases, the corresponding increasing offset results in the reduction of the conduction angle σ of the SCR, and 

the consequent reduction of the reactor current. At the maximum delay of α = p /2, the offset also reaches its 

maximum of V/ωL, at which both the conduction angle and the reactor current becomes zero. The two 

parameters, delay angle α and conduction angle σ are equivalent and therefore TCR can be characterized by 

either of them; their use is simply a matter of preference. For this reason, expression related to the TCR can be 

found in the literature both in terms of α and σ [4].  

 
 

Figure 1. Basic Thyristor Controlled Reactor    Figure 2. Firing delay angle 
 

The amplitude ILF (α) of the fundamental reactor current iLF (α) can be expressed as a function of angle α [4]. 

   

          ILF (α) = V/ωL (1 – (2/p) α – (1/p) sin (2α))       (3) 

                      

Where V is the amplitude of the applied voltage, L is the inductance of the thyristor-controlled reactor and ω 

is the angular frequency of the applied voltage. The variation of the amplitude ILF (α), normalized to the 

maximum current ILFmax, (ILFmax= V/ωL), is shown plotted against delay angle α shown in Figure 3. 

 
Figure 3 Amplitude variation of the fundamental TCR current with the delay angle (α) 
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It is clear from Figure 3, that the TCR can control the fundamental current continuously from zero (SCR open) 

to a maximum (SCR closed) as if it was a variable reactive admittance. Thus, an effective reactance admittance, 

BL(α), for the TCR can be defined. This admittance, as a function of angle α is obtained as:  

           BL(α)=1/ωL(1–(2/p)α–(1/p)sin(2α))                         (4) 

A basic VAR generator arrangement using a fixed capacitor with a thyristor-controlled reactor (FC-TCR) 

shown in Figure 4. The current in the reactor is varied by the previously discussed method of firing delay angle 

control. A filter network that has the necessary capacitive impedance at the fundamental frequency to generate 

the reactive power required usually substitutes the fixed capacitor in practice, fully or partially, but it provides 

low impedance at selected frequencies to shunt the dominant harmonics produced by the TCR. Figure 5 shows 

the dynamic V-I Characteristics of SVC with Load lines. 

 
Figure 4. Basic FC-TCR type static generator 

 

 
Figure 5. Dynamic V-I Characteristics of SVC with Load lines 

    VCmax    = voltage limit of capacitor 

    BC          = admittance of capacitor         

    VLmax   = voltage limit of TCR  

    ICmax    = capacitive current limit 

        ILmax      = inductive current limit  

     BLmax     = max inductive admittance 
 

3.  SVC and its control system  

The Static VAR Compensator (SVC) is a shunt device of the Flexible AC Transmission Systems (FACTS) family 

using power electronics to control power flow and improve transient stability on power grids [14]. The SVC 

regulates voltage at its terminals by controlling the amount of reactive power injected into or absorbed from the 

power system. When system voltage is low, the SVC generates reactive power (SVC capacitive). When system 

voltage is high, it absorbs reactive power (SVC inductive). The variation of reactive power is performed by 

switching three-phase capacitor banks and inductor banks connected on the secondary side of a coupling 

transformer. Each capacitor bank is switched on and off by three thyristor switches TSC. Reactors are either 

switched on-off TSR phase-controlled TCR. 

The figure below shows a single-line diagram of a static VAR compensator and a simplified block diagram of its 

control system. 
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Figure 6. Single-line Diagram of an SVC and Its Control System Block Diagram 

 

Where  V is Positive sequence voltage (pu) 

  I Reactive current (pu/Pbase) (I > 0 indicates an inductive current) 

 Xs Slope or droop reactance (pu/Pbase) 

Bcmax Maximum capacitive susceptance (pu/Pbase) with all TSCs in service, no TSR or TCR 

Blmax Maximum inductive susceptance (pu/Pbase) with all TSRs in service or TCRs at full conduction, no 

TSC 

Pbase Three-phase base power specified in the block dialog box 

3.1 SVC Dynamic Response 

When the SVC is operating in voltage regulation mode, its response speed to a change of system voltage depends 

on the voltage regulator gains (proportional gain Kp and integral gain Ki), the droop reactance Xs, and the system 

strength (short-circuit level). For an integral-type voltage regulator (Kp = 0), if the voltage measurement time 

constant Tm and the average time delay Td due to valve firing are neglected, the closed-loop system consisting of 

the SVC and the power system can be approximated by a first-order system having the following closed-loop 

time constant:  

where   Tc   Closed loop time constant 

Ki   Proportional gain of the voltage regulator (pu_B/pu_V/s) 

Xs   Slope reactance pu/Pbase 

Xn   Equivalent power system reactance (pu/Pbase) 

The above equation demonstrates that you obtain a faster response speed when the regulator gain is increased or 

when the system short-circuit level decreases (higher Xn values). If you take into account the time delays due to 

voltage measurement system and valve firing, you obtain an oscillatory response and, eventually, instability with 

too weak a system or too large a regulator gain. 

 The transmission line without any compensation was not satisfying the essential condition of maintaining the 

voltage within the reasonable limits. The effect of increasing load was to reduce the voltage level at the load end. 

At light loads, the load voltage is greater than the sending end voltage as the reactive power generated is greater 

than absorbed. At higher loads the load voltage drops, as the reactive power absorbed is greater than generated, 

as shown in Table III. Fig.14 and Fig.15 indicates unequal voltage profiles. Fig.16 clearly shows the inductor 
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current control. 

 

Table 1- Load voltage before and after compensation 

 
Tr Line Parameters for 

Lt=.10mh/km  

Ct =0.1μf/km 

R.= 0.001Ω 

Before  

compensation 

For Vs= 230V  

(peak) 

After 

compensation for 

Vs=230V (peak) 

Comp

ensati

ng 

induct

or 

Compensating 

capacitor 

R 
Ω 

VS 
(rms) 

Volts 

VR 
(rms) 

Volts 

IR 
rms 

Amp 

VR 
(rms) 

Volts 

IR 
(rms) 

Amp 

L 
(H) 

C 
(μF) 

500 

 

162.63 219.42 0.43 162.61 .32 .208 10 

400 

 

162.63 218.89 0.54 162.65 .40 .209 10 

300 

 

162.63 217.91 0.72 162.50 .54 .21 10 

200 

 

162.63 2215.63 1.07 162.49 .81 .214 10 

180 

 

162.63 214.78 1.19 162.82 .90 .217 10 

160 

 

162.63 213.66 1.33 162.55 1.016 .218 10 

140 

 

162.63 212.12 1.51 162.58 1.16 .221 10 

120 

 

162.63 209.92 1.75 162.58 1.355 .226 10 

100 
 

162.63 206.59 2.06 162.58 1.626 .234 10 

80 

 

162.63 201.13 2.51 163.47 2.032 .249 10 

60 
 

162.63 191.19 3.18 162.38 2.71 .289 10 

50 

 

162.63 182.88 3.65 

 

162.24 3.252 .344 10 

 

4. Fuzzy Logic Controller  

Fuzzy logic is an approach with great potential for real time applications [2] [3]. Load voltage and load 

current taken as input to fuzzy system. For a closed loop control, error input can be selected as current, voltage 

or impedance, according to control type [7]. To get the linearity triangular membership function is taken with 

50% overlap. The output of fuzzy controller taken as the control signal and the pulse generator provides 

synchronous firing pulses to thyristors. The Fuzzy Logic is a rule based controller, where a set of rules represents 

a control decision mechanism to correct the effect of certain causes coming from power system [8] [9]. In fuzzy 

logic, the five linguistic variables expressed by fuzzy sets defined on their respective universes of discourse. 

Table-2 shows the suggested membership function rules of FC-TCR controller. The rule of this table can be 

chosen based on practical experience and simulation results observed from the behavior of the system around its 

stable equilibrium points. 

 

Table 2 – Rule base for M.F’s 
                        Load  voltage  

 

 

Load 

current 

 NL NM P PM PB 

NL PB PB NM NM NL 

NM PB PB NM P NL 

P P PM NM NM P 

PM NM P NM NM PM 

PB NL NM NM NL NL 
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Figure 7. Single Phase equivalent circuit and fuzzy logic control structure of SVC 

 

The Fuzzy logic block is developed using the data obtained from MATLAB simulation. Figure 7 shows the 

single line diagram for the TCR-FC with fuzzy logic controller and other components. The Fuzzy logic block 

senses the load current and accordingly gives the firing pulse delay to achieve the desired voltage at the load 

terminals. The use of Fuzzy logic has facilitated closed loop control. By using a simple set of rules the Fuzzy 

logic block decides by itself the firing angle to be given to attain the required voltage. 

The Fuzzy logic block controls the firing angle circuit designed in MATLAB. The device TCR-FC is able to 

achieve flat voltage profile only for firing angles greater than 90 degrees. For firing angles less than 90 degrees 

TCR-FC is not able to control the voltage. The TCR model so designed is connected to the network to form the 

complete system with compensation. From the tabular forms and waveforms it is observed that the TCR-FC 

provides for an effective reactive power control irrespective of load variations. 

 

5. Simulation Results 

The simulation results were obtained using MATLAB software. Figure 8 shows the wave-forms without 

compensation for light loads with VR>VS that is the reactive power generated is greater than absorbed.  Figure 9 

shows the wave-forms without compensation for heavy loads with VR<VS that is the reactive power absorbed is 

greater than generated. Figure 10 represents the compensated rms and instantaneous voltage with fuzzy control. 

 

 

Figure 8: Wave-forms without compensation for light loads   VR>VS as the reactive power generated is 

greater than absorbed 
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Figure 9: Wave-forms without compensation for heavy loads VR<VS as the reactive power absorbed is 

greater than generated 

 

 
Figure 10: Compensated rms and instantaneous voltage with fuzzy control 

 

Compensating voltages are shown in wave forms. The use of fuzzy logic has facilitated the closed loop control 

of system, by designing a set of rules, which decides the firing angle given to SVC to attain the required voltage. 

With MATLAB simulations and actual testing it is observed that SVC (FC-TCR) provides an effective reactive 

power control irrespective of load variations. 

 

6. Conclusions 
This paper presents an online Fuzzy control scheme for SVC. It can be concluded that the use of fuzzy 

controlled SVC (FC-TCR) compensating device with the firing angle control is continuous and effective. It is a 

simplest way of controlling the reactive power of transmission line. It is observed that SVC device was able to 

compensate both over and under voltages. The network without any compensation was not able to satisfy the 

essential condition of maintaining voltage within reasonable limits. The effect of increasing load led to a 

reduction of voltage at the load end. At light loads the load end voltage is greater than sending end voltage 

because of Ferranti effect. At higher loads the load voltage drops because the reactive power absorbed is greater 

than generated. 

With the FC-TCR introduced the compensation of load voltage is fully controlled. The under voltages were 

compensated with greater firing angles while the over voltages at lower loads were brought to the required level 

by lowering firing angles. This is explained by the fact that for higher firing angles the angle or the time for 

which the inductor is in the circuit for the cycle of output voltage is lesser. For lower firing angles the inductor 

absorbs more reactive power and vice- versa. The output waveforms from MATLAB simulation clearly show the 

effect of introducing the inductor at the instant of firing. The voltage up to the firing instant was influenced by 

the network parameters and the fixed capacitor but from the instant of the firing angle the inductor also had its 

effect on the system voltage. It was observed that with FC-TCR in the circuit the load level up to which flat 

voltage profile is achieved is increased. If TCR alone is used without the fixed capacitor the compensation 

device would have been able to compensate the over voltages only. But due to the FC in circuit the SVC device 

was able to compensate for both over and under voltages.  

It can be finally concluded that the use of TCR-FC compensating device with Fuzzy logic block serving the 

purpose of firing angle control is a continuous, effective and simplest way of controlling reactive power. 
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