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Abstract 

A quantum system whose internal Hamiltonian is not strongly regular or/and control Hamiltonians are not full 

connected, are thought to be in the degenerate cases. The most actual quantum systems are in these degenerate 

cases. In this paper, convergence problems of the multi-control Hamiltonians closed quantum systems in the 

degenerate cases are solved by introducing implicit function perturbations and choosing an implicit Lyapunov 

function based on the average value of an imaginary mechanical quantity. For the diagonal and non-diagonal 

target states, respectively, control laws are designed. The convergence of the control system is proved, and an 

explicit design principle of the imaginary mechanical quantity is proposed. By using the proposed method, the 

multi-control Hamiltonians closed quantum systems in the degenerate cases can converge from any initial state 

to an arbitrary target state unitarily equivalent to the initial state in most cases. Finally, numerical simulations are 

studied to verify the effectiveness of the proposed control method. The problem solved in this paper about the 

state transfer from any initial state to arbitrary target state of the quantum systems in degenerate cases 

approaches a big step to the control of actual systems. 
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1. Introduction 

In the last three decades, the quantum control theory developed rapidly. One of the main goals in quantum 

control theory is to develop a series of systematic methods for the control of quantum systems. There are many 

quantum control methods: quantum optimal control (Schmidt et al., 2011), adiabatic control (Boscain et al., 

2012), quantum control method based on the Lyapunov stability theorem (Grigoriu, 2012; Wen & Cong, 2011), 

optimal Lyapunov-based quantum control (Hou, et al., 2012) and so on. By using the quantum Lyapunov control, 

control systems are at least stable. For this method, the convergence of control systems is a research focus, which 

is analyzed based on LaSalle’s invariance principle (LaSalle & Lefschetz, 1961). According to LaSalle’s 

invariance principle, as t  , any state trajectory will converge to the largest invariant set in the set E in 

which the states satisfy that the first order derivative of the Lyapunov function equals zero. In fact, the set E 

contains not only the target state but also other states which make the system may converge to other states. Thus, 

in order to enable the control system converge to the target state, the main idea is to add restrictions to make the 

set E as small as possible. In recent years, research results on the convergence of the control system by using the 

Lyapunov control method are as follows: I) Consider the Schrödinger equation 

0

1

( ) ( ( )) ( )
r

k k

k

i t H H u t t 


  , where ( )t  is the quantum state vector, 0H  is the internal 

Hamiltonian, , ( 1, , )kH k r  are control Hamiltonians, and ( ),( 1, , )ku t k r  are control laws. For the 

target state f   being an eigenstate, the conditions which make the control system converge to the target 

state are (Kuang & Cong, 2008): i) The internal Hamiltonian is strongly regular, i.e., 

 , ( , ) ( , ), , , , 1,2, ,i j lm i j l m i j l m N         , where lm l m     represents the Bohr frequency 

(transition frequency) between the energy levels l  and m , l  is the l-th eigenvalue of 0H  corresponding 

to the eigenstate l . ii) (a) For the Lyapunov function based on the state distance  
2

1 2 1 fV     or 

state error 1 2 f fV       , the condition is: all the eigenstates different from the target state are 

directly coupled to the target state, i.e., for i f  , there exists at least a k such that 0i k fH   , or 

(b) For the Lyapunov function based on the average value of an imaginary mechanical quantity V P  , 

where P is an imaginary mechanical quantity, the condition is: any two eigenstates are coupled directly, i.e, for 

i j  , there exists at least a k such that 0i k jH   . II) Consider the quantum Liouville equation 

0

1

( ) [ ( ), ( )]
r

k k

k

i t H H u t t 


  , where ( )t  is the density operator. For the target state being a diagonal 

matrix, the convergence conditions are (Wang & Schirmer, 2010; Kuang & Cong, Sep. 2010 & Feb. 2010): i) 

The internal Hamiltonian is strongly regular, and ii) The control Hamiltonians are full connected, i.e., j l  , 

for 1, ,k r , there exists at least a ( ) 0k jlH  , where ( )k jlH  is the (j,l)-th element of kH . In general, if 
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the control systems satisfy the conditions mentioned above, they are called ideal systems and in the 

non-degenerate cases. However, many practical systems do not satisfy these conditions. They are so called in the 

degenerate cases.  For the degenerate cases, people utilized a modified control design based on an “implicit” 

Lyapunov function so that the control system can converge to an arbitrary eigenstate from any pure state for the 

Schrödinger equation (Beauchard et al., 2007; Zhao et al., 2009 & 2012; Meng, Cong & Kuang, 2012). However, 

few works focus on the problem of convergence to a superposition state or a mixed state.  

We propose a solution to this problem in this paper. The main contribution of this paper is to make the closed 

quantum system governed by the quantum Liouville equation in the degenerate cases can converge from an 

arbitrary initial state to an arbitrary target state unitarily equivalent to the initial state by using the implicit 

Lyapunov quantum control. In order to complete this control task, our method is to introduce implicit function 

perturbations into the control laws and choose an implicit Lyapunov function based on the average value of an 

imaginary mechanical quantity. Based on LaSalle’s invariance principle, analyze the convergence of the control 

system and seek the convergence conditions. Then analyze how to make these convergence conditions be 

satisfied, and propose the explicit design principle of the imaginary mechanical quantity.  

The remainder of this paper is arranged as follows: in Section 2, the model of the control system and control 

objective are described. In Section 3, the Lyapunov function is choosed, and the control laws are designed. In 

Section 4, the convergence of the control system is analyzed and proved. How to make the convergence 

conditions of the control system be satisfied is analyzed. And the explicit design principle of the imaginary 

mechanical quantity is proposed and proved. Then a design method for the non-diagonal target state cases is 

proposed. In Section 5, numerical simulations on a 3-level system are done to verify the effectiveness of the 

proposed method. Some concluding remarks are drawn in Section 6. 

2. Description of Problem 

Consider the N-level closed quantum control system governed by the following quantum Liouville equation: 

0 0

1

( ) [ ( ), ( )], (0), ( 1)
r

k k

k

i t H H u t t   


                  (1) 

where ( )t  is the density operator, 0H  is the internal Hamiltonian, , ( 1, , )kH k r  are control 

Hamiltonians, and ( ),( 1, , )ku t k r  are control laws.    

In order to solve the convergence problem of the control system in the degenerate cases, we introduce 

perturbations ( )k t  into the control laws. Thus Eq. (1) becomes 

0 0

1

( ) [ ( ( ) ( )), ( )], (0)
r

k k k

k

i t H H t v t t    


                 (2) 

where ( )k t  are the control laws to solve the convergence problem for the degenerate cases, and 

( ) ( ) ( ),( 1, , )k k kt v t u t k r     are the total control laws.  

The control objective is to design control laws ( ) ( ) ( )k k ku t t v t   so as to make the control system depicted 

by (2) can completely transfer from any initial state 0  to an arbitrary desired target state 

0 , ( )H
f U U U SU N   . 

3. Design of Control Laws  

In this paper, the Lyapunov quantum control method based on the average value of an imaginary 

mechanical quantity is used. The so-called imaginary mechanical quantity means that it is a linear 

Hermitian operator to be designed, and maybe not a physical observable. In order to solve the convergence 

problem for the degenerate cases, perturbations ( ),( 1, , )k t k r   are introduced into the control laws,  

and the specific Lyapunov function is selected as： 

1 , ,( ) ( )
r

V tr P                (3) 

where 
1, , 1( ( ), , ( ))

r rP f t t     is a functional of ( )k t  and is positive definite.  
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After introducing perturbations ( )k t , 0

1

( )
r

k k

k

H H t


  can be regarded as the new internal Hamiltonian 

of the control system. In order to facilitate understanding the basic idea of this method, we describe the 

system in the eigenbasis of 0

1

( )
r

k k

k

H H 


 . Assume the eigenvalues and eigenstates of 0

1

( )
r

k k

k

H H 


  

are 
1, , , rn    and 

1, , , rn   , 1 n N  , respectively. Set  
1 11 1, , , , , ,, ,

r rNU      , then the control 

system in the eigenbasis of 0

1

( )
r

k k

k

H H 


  is 

0

1 1

ˆ ˆ ˆˆ ˆ( ) [( ( )) ( ), ( )]
r r

k k k k

k k

i t H H t H v t t  
 

                 (4) 

where 1 1 0 1 0 1 1 1
ˆ ˆˆ , ,H H H

k kU U H U H U H U H U    . 

Accordingly, the target state f  will become 1 1ˆ = H
f fU U   which is also a functional of ( )k t . 

The design idea of ( )k t is as follows: 1) The perturbations are designed to satisfy the strongly regular and 

full connected conditions so that the control system can converge toward ˆ f  by designing appropriate 

control laws; 2) ( ),( 1, , )k t k r   need converge to zero, and their convergent speed must be slower than 

that of the control sytem to ˆ f  to make ( )k t  take effect; 3) ( )=0k f   must hold to make the control 

system be asymptotically stable at the target state f .  

For the non-degenerate cases, Kuang and Cong proposed the restriction      0f otherV V V     to make 

the system converge to the target state f  from the initial state 
0 , where 

other  represents any other state in 

the set  ( )=0E V   except the target state (Kuang & Cong, Sep. 2010& Feb. 2010). Without this 

restriction, the system state trajectory is possible to evolve to 
other , at which all the control laws vanish because 

of ( )=0 ( ) 0,( 1, , )kV u t k r    . Then the system will keep staying in 
other . Namely, the control laws fail 

to manipulate the control system converge to the target state. In order to make the state trajectory not stay in 

other  until it reaches the target state for the degenerate cases , we can design that for 1, ,k r , all the 

perturbations ( ) 0k t   holds only in the target state, i.e., 1) ( )=0,( 1, , )k f k r   , and 2) for f  , there 

exists at least one k such that ( ) 0k   . Thus the restriction only need to be    f otherV V   for the 

degenerate cases.  

According to the analysis mentioned above, let us design ( ),( 1, , )k t k r  . In the Lyapunov control, since 

evolution of the system’s state relies on the decrease of the Lyapunov function, we design ( )k t  be a 

monotonically increasing functional of ( )V t : 

( ) ( ( ) ( ))k k k fC V V                           (5) 

where 0kC  , and for 1, ,k r , there exists at least a 0kC  . And  k   satisfies (0) 0k  , ( ) 0k s  , 
' ( ) 0k s   for every 0s  . The existence of ( )k t  can be depicted by Lemma 1. 

Lemma 1: If 0kC  , ( ) 0k   . Else if 0kC  , ( ;[0, ]), 1, ,k kC R k r      (
k
  is a positive constant) 

satisfy (0) 0k  , ( ) 0k s  , ' ( ) 0k s   for every 0s  , and ' 1 (2 )k kC C  , =1C C  , 

 1
1

, ,max ,( 1, , )
r k

m
C P k r      , then for every  , there is a unique ( [0, ])k k kC       

satisfying
1 1, , , ,( ) ( ( ) ( )),( 1, , )

r rk k k fC tr P tr P k r           . 

Proof:  

Assume 
1 , , r

P   are analytic functions of the perturbations ( ) 0, , ( 1, , )k k k r       . 

1 , , , ( 1, , )
r kP k r      are bounded on 0, k

   , thus C   . By (3) and (5), the derivative of k  on k  is 

1

'

, ,( ( ))
rk k k k ftr P                        (6) 
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Define 

1 11 , , , ,( , , , ) ( ( ) ( ))
r rk r k k k fF C tr P tr P                    (7) 

where 
1( , , , ),( 1, , )k rF k r     are regular. For a fixed  ,  

1( ( ), , ( ), ) 0,( 1, , )k rF k r                  (8) 

holds. By (6), one can obtain 

1

'

, ,1 ( ( ))
rk k k k k fF C tr P                         (9) 

Some deductions show that 

1 1
1

, , , ,( ( )) 2
r rk f k

m
tr P P                        (10) 

According to the given condition, one can have 

1

'
, ,( ( )) 1

rk k k fC tr P                      (11) 

Then 

1( ( ), , ( ), ) 0k r kF                (12) 

holds. Thus according to the implicit Theorem (Krantz & Parks, 2002),  Lemma 1 is proved. □ 

Then let us design ( )kv t . The basic idea is to design the control laws ( )kv t  such that the time derivative of the 

selected Lyapunov function ( ) 0V t   holds. For the sake of simplicity, set ( )=0k t  for some k, and other 

( )k t   are equal, denoted by ( )t , i.e., set 

1 1 1( )= (t),C 1, , , ;C 0, , , (1 , , )k k m k m mt k k k k k k k k r                  (13) 

Correspondingly, (3) can be rewritten as ( ) ( )V tr P  , where P  is a functional of ( )t . By (2), we can 

obtain the time derivative of the selected Lyapunov function as follows: 

 
1

0

1

([ , ( )] ) ( ) ([ , ] ) ( )
mk r

n k k

n k k

V itr P H H t i v t tr P H tr P       
 

               (14) 

The sign of the first term in the right-hand side of (14) is difficult to determine. By setting 

1

0[ , ( )] 0
mk

n

n k

P H H t 


  , this term is eliminated. Then (14) becomes 

 
1

( ) ([ , ] ) ( )
r

k k

k

V i v t tr P H tr P    


                (15) 

Equation (15) contains the time derivative of the implicit function perturbation ( )t  which needs to be 

eliminated. By (5) and (13), we can obtain the time derivative of the implicit function perturbation ( )t  as: 

 
1

( ) ( ([ , ] )) ( ( ( ))-1)
r

k k f

k

t i v tr P H tr P       


               (16) 
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Substituting (16) into (15), one has 

 
  1

1+ ( )
([ , ] ) ( )

1- ( ( ))

r
f

k k

kf

tr P
V itr P H v t

tr P






  


    

  
 

   
              (17) 

According to (11) and (13), one can obtain  ( ) 1/ 2ftr P      , then 

   (1+ ( )) (1- ( ( ))) 0f ftr P tr P               holds . In order to ensure ( ) 0V t  , ( ),( 1, , )kv t k r  

are designed as: 

 ( ) ([ , ] ) ,( 1, , )k k k kv t K f itr P H k r                    (18) 

where 
kK  is a constant and 0kK  , and ( ),( 1,2, , )k k ky f x k r   are monotonic functions through the 

coordinate origin and in the first quadrant and the third quadrant of the plane k kx y . 

4. Convergence analysis 

In this section, the convergence is analyzed based on LaSalle’s invariance principle (LaSalle & Lefschetz, 1961). 

According to LaSalle’s invariance principle, if the Lyapunov function ( )V t  satisfies ( ) 0V t  , ( ) 0V t  , as 

t  , any trajectory will converge to the largest invariant set in { | ( ) 0}E V   . After the above analysis, 

the convergence of the control system can be depicted by Theorem 1.  

Theorem 1: Consider the control system depicted by (2) with control laws ( )k t  defined by Lemma 1, Eq. (5) 

and (13), and ( )kv t  defined by (18), if the control system satisfies: i) 

 , , , , , ( , ) ( , ), , , , 1,2, ,l m i j l m i j i j l m N     , , , , ,l m l m      , where ,l   is the l-th  eigenvalue of 

1

0 ( )
mk

n

n k

H H t


   corresponding to the eigenvector ,l  ; ii) j l  , for 1, ,k r , there exists at least a 

ˆ( ) 0k jlH  , where ˆ( )k jlH  is the (j,l)-th element of  1 1
ˆ H

k kH U H U  with  1 1, ,, , NU    ; iii) 

1

0 1[ , ( )] 0,1 , ,
mk

n m

n k

P H H t k k r 


    ; iv) For any , (1 , )l j l j N   ,    ˆ ˆ
ll jj

P P   holds, where 

 ˆ
ll

P  is the (l,l)-th element of  1 1
ˆ HP U P U  , then the control system will converge toward 

  0 0 01 1 00, ( ),H
t t t

ij
E U U t R        . 

Proof: 

Without loss of generality, assume that for 0 0, ( )t t t R  , 0V   is satisfied. By (17) and (18), one can obtain 

0 ([ , ] )=0 ( ) 0k kV tr P H v t                       (19) 

As 0V  ,   are constants, denoted by  . By property of the trace, (19) can be written as 

ˆ ˆ ˆ0 ([ , ] )=0 ( ) 0k kV tr P H v t                         (20) 
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where 1 1
ˆ HP U P U  . Set 

0 0ˆ ˆ( )t t  , the solution of Eq. (4) with ( )k t  defined by Eq. (5), Eq. (13),    

and ( ) 0kv t   is 

0 0 0 0

1 1

0

ˆ ˆ ˆ ˆ( )( ) ( )( )

ˆ ˆ( )

k km m

n n
n k n k

i H H t t i H H t t

tt e e

 

  

     
                   (21) 

Thus ˆ ˆ ˆ([ , ] ) 0ktr P H    can be written as 

0 0 0 0

1 1

0

ˆ ˆ ˆ ˆ( )( ) ( )( )

ˆ ˆˆ( [ , ]) 0

k km m

n n
n k n k

i H H t t i H H t t

t ktr e e P H

 

 

     
                 (22) 

By condition iii), P̂  is a diagonal matrix. Therefore 
0 0 0 0

1 1

ˆ ˆ ˆ ˆ( )( ) ( )( )

ˆ

k km m

n n
n k n k

i H H t t i H H t t

P e P e

 

 
 

     
 holds. 

Substituting it into (22), one can obtain 

0 0 0 0

1 1

0

ˆ ˆ ˆ ˆ( )( ) ( )( )

ˆ ˆˆ( [ , ]) 0

k km m

n n
n k n k

i H H t t i H H t t

k ttr e H e P

 

 

     
                 (23) 

By   ( )

0

1 ! [ , ]A A n

n

e Be n A B






 , one gets 

 
0

1

( )
0 0

0

ˆ ˆ ˆ ˆˆ1 ! ( ( ) ) ([( ) , ][ , ]) 0
mk

n n n
n k t

n n k

n i t t tr H H H P 


 

              (24) 

where 

1 1 1

( )
0 0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[( ) , ] [( ),[( ), , ]]
m m mk k k

n
n k n n k

n k n k n k

n times

H H H H H H H H  
  

     
. 

Then gives 

   
0, ,

, 1

ˆ ˆ ˆ ˆ( ) ( )( ) 0, ( 1, , )
N

n
j l k jl t lj

ll jj
j l

H P P k r   


                 (25) 

where  ˆ
ll

P  is the (l,l)-th element of  P̂ . Set 

     

     

0

0

21
12 22 11

( 1)
( 1) ( 1)( 1)

ˆ ˆ ˆ ˆ( )( )

ˆ ˆ ˆ ˆ( )( )

k t

k

k t N N
N N NN N N

H P P

H P P

 

 





 
  

 
 
 
 
 
  

           (26a) 

1,2, 1, ,( , , )N Ndiag                (26b) 
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2 2 2
1,2, 1,3, , 1,

( 1) 2 ( 1) 2 ( 1) 2
1,2, 1,3, , 1,

1 1 1

N N

N N N N N N
N N

M
  

  

  

  



     


 
 
 

  
 
 
 

               (26c) 

For 0,2,4,n  , (25) reads ( ) 0kM   . For 1,3,5,n  , (25) reads ( ) 0kM   . By condition i), M  

and   are nonsingular real matrices. One can obtain 0k  , i.e., 

   
0

ˆ ˆ ˆ ˆ( ) ( )( ) 0,( 1, , )k jl t lj
ll jj

H P P k r                    (27) 

By condition ii), one can have 

   
0

ˆ ˆ ˆ( )( ) 0t lj
ll jj

P P            (28) 

That is 
0

ˆ ˆ[ , ] 0tP   . Denote 
0 0( )t t  , then 

0
[ , ] 0tP   . By condition iv),  

0
ˆ( ) 0t lj         (29) 

holds. Then Theorem 1 is proved based on the LaSalle’s invariance principle. □ 

Without loss of generality, assume H0 is a diagonal matrix in this paper. By (29), 
0

ˆt  is a diagonal matrix. 

Since the evolution of  ˆ( )t  is unitary in closed quantum systems, ˆ( )t  for 0t   are isospectral., Denote 

the eigenvalues of the initial state 0̂  by 01 02 0
ˆ ˆ ˆ, , , N   . Then the diagonal elements of the states in 

  1 ˆ ˆ 0
ij

E     are various permutations of 01 02 0
ˆ ˆ ˆ, , , N   . According to Lemma 1, for every 

0
ˆt , there 

is a unique  . Therefore E has at most !N  elements. For the target state f  being a diagonal matrix, f  is 

contained in E because of ( ) 0f   . In the evolution process of the system’s states, as ( ) 0V t  , the 

Lyapunov function is decreasing. In order to make the system converge to the target state f , we need to 

design P  to make  fV   be smallest, i.e.,  

   f otherV V          (30) 

where other  represents any other state in the set E  except the target state. With the condition (30), the state 

trajectory will not stay in other  until the target state f  is reached because there exists at least one non-zero 

control law in any other  to make the state trajectory evolve. Therefore for the target state being a diagonal 

matrix, if the control system satisfies the conditions in Theorem 1 and (30), the state trajectory can converge to 

the target state from an arbitrary initial state unitarily equivalent to the target state.  

Next we’ll analyze how to make these conditions be satisfied in detail. Conditions i) and ii) in Theorem 1 are 

associated with 0H , , ( 1, , )kH k r  and ( )k t . By appropriately designing ( )k t , these two conditions can 

be satisfied in most cases. Condition iii) means that P and 

1

0 ( )
mk

n

n k

H H t


   have the same eigenstates 

, , ( 1, , )j j N  . Design the eigenvalues of P  be constant, denoted by 1 2, , , NP P P , then P  can be 

written as 

, ,

1

N

j j j

j

P P   


        (31) 
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By condition iii), P̂  and 

1

0
ˆ ˆ ( )

mk

n

n k

H H t


   have the same eigenstates, and 1 2
ˆ ( , , , )NP diag P P P  . Design 

( ;1 , )l jP P l j l j N     , condition iv) can be satisfied. Then let us analyze how to make (30) hold, the result 

is as follows: 

Theorem 2: For the diagonal target state 
f , if     ,1 ,f fii jj

i j N    , design i jP P ; if 

    ,1 ,f fii jj
i j N    , design i jP P ; else if     ,1 ,f fii jj

i j N    , design i jP P , then  

   f otherV V   holds. 

Proof: 

At first, some useful propositions are proposed as follows. 

Proposition 1: If the diagonal elements of the diagonal target state       
11 22

, , ,f f f NN
    arranged in 

a decreasing order, design  1 2, , , NP P P  arranged in an increasing order, then    f otherV V   holds. 

Proof: Denote      
11( ) 22( ) ( )

( , , , )s f f f NN
diag

  
    , where  11( ),22( ), , ( )NN    is a permutation 

of  11,22, , NN . At first, we prove    f sV V   holds. 

As H0 is diagonal, 1 20
( , , , )NP diag P P P  

 , thus the Lyapunov function ( ) ( )V tr P   for 0   can 

be written as  

0
1

( )
N

j jj

j

V P


 




        (32) 

Assume      
11 22

, 0f f f NN
     , and 1 20 NP P P    .  

For N=2,  

   
2 2

1 2 11 22

( ) ( )

( )( ) 0

f s

f f

V V

P P

 

 



   
 (33) 

where the subscript “2” in 2( )fV   and 2( )sV   means N = 2. Proposition 1 is true. 

For N=3, one can also prove Proposition 1 is true. 

Assume that Proposition 1 is true for N-1. Then 

       
1 1

1 1 ( )( ) ( )
1 1

( ) ( ) ( )= ( ) 0
N N

f N s N j f f j j fjjjj jj jj
j j

V V P P P P  
    

 

 

 

         (34) 
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where  ( ) 0 ( )
j

jj

P P   
 . For N,  

   
1

( ) ( )( ) ( )
1

( ) ( ) ( ) ( )
N

f N s N j j f N N fjj NN
j

V V P P P P  
   





         (35) 

By (35) and 1 20 NP P P    , one can get 

( ) ( ) 0f N s NV V          (36) 

Because of / 0, 0V V    , ( ) ( )s otherV V   holds. Proposition 1 is proved. □ 

Proposition 2: If the diagonal elements of the diagonal target state       
11 22

, , ,f f f NN
   arranged in a 

non-decreasing order with 

       

   

11 11 1 1 21 21 2 21 1 22

1 1
11,1 , 1,

l l ll

q
q q ql qlq q

f f f fk k k k k k k k

f f ij qlk k k k
k N k k N

   

 

     

      
, design  1 2, , , NP P P  

as follows: 
11 1 11

, , , , 0
l q qlq

k k k kP P P P   . 

Then,    f otherV V   holds. 

Proof: Obviously,    f sV V   holds for N=2, 3. Assume that for N-1,    f sV V   is true. Then Eq. 

(34) holds. For N, if    
( 1)( 1)f fN N NN

 
 

 , design 
11 11

, ,
lk k NP P P  , then (36) holds. If 

     
1 1 2 2q q q q

f f fk k k k NN
     , then 1 1 ( 1) ( 1)( )

q qq q q l q lNN k k k k      in (35). Design 

11 1 11
, , , ,

l q qlq
k k k kP P P P  , then (36) holds. Proposition 2 is proved. □ 

Obviously, according to Proposition 1and Proposition 2, we can obtain Theorem 2. □ 

From the convergence analysis mentioned above, one can see that the proposed method can only ensure that the 

control system converge to the target state f  which satisfies 0, 0f H    . For the target state which 

satisfies 0, 0f H    , further research needs to be done. We introduce a series of disturbances 

 , 1, ,k k r   whose values are constant. Thus the dynamical equation (2) will become 

0

1

( ) [ ( ( ) ( ) ), ( )]
r

k k k k

k

i t H H t v t t   


             (37) 

where ( ) ( ) ( )k k k kt v t u t     are the total control laws. Our basic idea is to design k  to make the target 

state f  satisfies 0

1

, ( ) 0
r

f k k

k

H H 


 
  

  
 . If r is large enough, 0

1

, ( ) 0
r

f k k

k

H H 


 
  

  
  can be 

satisfied in most cases by designing k  appropriately. Then design control laws according to Section 3 by 

setting 

1

0

1

[ , ( )] 0
mkr

k k n

k n k

P H H H t  
 

    . And one can prove that the convergence (Theorem 1) also holds 

with changing H0 into 0

1

r

k k

k

H H 


 , and can also prove that the design principle of the imaginary mechanical 
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quantity (Theorem 2) also holds with changing 
f  into 2 2

H

f fU U  , 2 1, 2, ,( , , , )NU      , 

, , ( {1, , })i i N   is the i-th eigenstate of 0

1

r

k k

k

H H 


 . 

5. Numerical simulations 

In order to verify the effectiveness of the proposed method, a three-level system is considered in this section. 
And numerical simulations are done for a non-diagonal target state case.  
Consider a three-level system with H0 and H1 as: 

0 1

0.3 0 0 0 1 1

0 0.6 0 , 1 0 0

0 0 0.9 1 0 0

H H

   
   

 
   
      

                    (38) 

According to 
0H  and 1H , the system is in the degenerate case.  

Assume that the initial state is a mixed state: 0

0.1 0.1 0.04

0.1 0.5 0.08

0.04 0.08 0.4



 
 


 
  

, and that the target state is a diagonal 

mixed state:  0.5687,0.3562 0.075f diag  ， .  

According to the design ideas introduced in section 3, the control law is 
1 1 1( ) ( ) ( )u t t v t  , where perturbation 

1( )t  is designed as: 

1 11 1( ) ( ( ) ( ))fM tr P tr P              (39) 

And ( )v t  is designed as: 

 
11 1 1( ) ([ , ] )v t K itr P H         (40) 

where 1M  is the proportional coefficient of 1  and 1 0M  , and 
1

3

1 ,

1

j j

j

P P 


  in which 
1,j   is the 

j-th eigenvector of 0 1 1( )H H t .  

In the numerical simulations, according to the specific design principle of the imaginary mechanical quantity 

proposed in Section 4, design 1 2 3, ,P P P  such that 
1 2 3P P P  . Denote the terminal time of numerical 

simulations as ft , the principle of regulating 1 2 3, ,P P P  is as follows: in general, if    ( ) ( )f f fii ii
t t  , 

decrease 
iP ; else if    ( ) ( )f f fii ii

t t  , increase 
iP , where  ( )f ii

t and  ( )f f ii
t are the (i,i)-th elements 

of ( )ft  and ( )f ft , respectively. Sometimes this method dose not work because 
iP  not only influence 

ii , 

but also influence other elements of  . The principle of regulating 1K  is: the larger 1K  is, the faster the 

system converges to the target state. But after 1K  exceeding a certain value, the transition probability will 

decrease, the control effect will deteriorate, and the system even may oscillate. The principle of regulating 1M  

is: regulate 1M  be as small as possible on the premise that the perturbations take effect to make the control 

system exhibits a behavior of trending to the target state. After tuning the control parameters repeatedly and 

carefully, the control parameters are selected as: 1 0.1M  , 1 0.34K  , 1 0.01P   , 2 0.4P  , and 3 2.9P  . 

In the simulations, the time step size is set as 0.01 a.u., and the control duration is 300 a.u.. The results of 

numerical simulations are shown in Figure 1 and Figure 2. Figure 1 displays the evolution curves of 

, ( 1,2,3)ii i  , where ii  is the i-th diagonal element of  . Figure 2 shows the designed control laws 1( )v t , 
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1( )t  and 
1( )u t . According to numerical results, the state at 300 a.u. is 

11 0.56811  , 
22 0.35215  , 

33 0.07973  . The transition probability is reached above 99.53% . So the control method and design principle 

of the imaginary mechanical quantity proposed in this paper is effective. 

 

Figure 1. The elements of density matrix   of the control system 

 

Figure 2. Control fields of the control system 

 

6. Conclusion 

In this paper, we have investigated the convergence for the closed quantum systems governed by the quantum 

Liouville equation. For the so-called degenerate cases where the internal Hamiltonian is not strongly regular 

or/and the control Hamiltonians are not full connected, by introducing implicit function perturbations and 

choosing an implicit Lapunov function based on the average vale of an imaginary mechanical quantity, an 

implicit Lyapunov control method has been proposed to complete the state transfer task from an arbitrary initial 

state to an arbitrary target state unitarily equivalent to the initial state. According to the LaSalle invariance 

principle, convergence of the control system has been analyzed and proved. The conditions for convergence have 

been anyalyzed, for which a specific design principle of the imaginary mechanical quantity also has been 

proposed. At last, the numerical results have demonstrated that the proposed control method in our work is 

correct and effective. The more study on quantum system control can be found in the book of Cong published in 

2014. The further study should be on the design and realization of the quantum feedback control system with the 

data observation and state estimation. 
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