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ABSTRACT

The objective of the paper is to investigate precise error estimate concerning deficient

discrete quartic spline interpolation.
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1.

ITNRODUCTION & PRILIMNARIES

Discrete Splines have been introduced by Mangasarian and Shumaker [5] in
connection with certain studied of minimization problems involving differences.
Deficient Spline are more useful then usual spline as they require less continuity
requirement at the mesh points. Malcolm [4] used discrete spline to compute non-
linear spline interactively. Discrete cubic splines which interpolate given functional
values at one intermediate point of a uniform mesh have been studied in [1]. These
results were generalized by Dikshit and Rana [2] for non-uniform meshes. Rana and
Dubey [8] have obtained local behavior of discrete cubic spline interpolation which is
some time used to smooth histogram. For some constructive aspect of discrete spline

reference may be made to Schumaker [3] and Jia [6].

We have develop a new function for deficient quartic spline interpolation .if we increase

the degree of polynomial with boundary condition, then we find that result is better

then by comparing with author [1, 2] for smoothness of the function.

In this paper, we have obtained existence, uniqueness and convergence properties of

deficient discrete quartic spline interpolation matching the given function at two
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interior points of interval and first difference at mid points with boundary condition of

function.

Let us consider a mesh Aon [0, 1] which is defined by

A0=X, <X <. <X, =1

n

Such that x, —x,_,=P for i =1, 2,...., n. Throughout h, will be represent a given

positive real number, consider a real continuous function s(x,h) defined over [0,1]

which is such that its restriction s, on [x,_,, x| is a polynomial of degree 4 or less for i
=1,2,.....n then s(x, h) defines a discrete deficient quartic spline if
DWs,(x,h_)=DWs,(x,h),  j=0,1

(1.1)
Where the difference operator D, are defined as

x+h)—f(x—h)

DO f(x)=f(x),D®f (x)= ut o

The class of all discrete deficient quartic splines is denoted by 8(4, AL h)

2. EXISTENCE AND UNIQUENESS

Consider the following conditions -

s(er)="f () (2.1)
s(8)=1(8) 2.2)
Di%s(y; )= D" s(;) (23)
fori=1,2,...n

Where o, =X, +% P

1
Bi=X, +§P| =7i

and boundary conditions
(%)= (%)) (2.4)

s(x,)=f(x,) (2.5)
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We shall prove the following.

Problem A : Given h>0 for what restriction on P does there exist a unique
s(x,h)eS(4,, P,h) which satisfy the condition (2.1) - (2.3) and boundary condition
(2.4)-(2.5).

Proof : Denoting % by t, 0<t<1. Let P(t) be a discrete quartic Polynomial on

[0,1], then we can show that

0-7(3 Ju )7 5 0.0+ DPF( 5 | 0,0+ PO+ PO (26

Where
alt)=t o5 g ol protamr e[ ol
{aa)
q(t)t[G(g’—sgz}G[ ==, 1;6} L °G(8,-32)+ £°G( 416”
| ey
qs(t)t[G(;’oj+G@’ojt+G[ 911 Oj G@,ojﬁ}
(aa)

a,(t) 1+{G@ 34} 6(3263 ngt G(;’_8jt3+G(_31’4)t4
(305

o ol ol ol

| —

(505

Where G(a, b)=a+bh2,a,b are real numbers? We can write (2.6) in the form of the

restriction s (x, h) of the deficient discrete quartic spline s(x,h) on [x;,x;,,] as follows

i) Nl
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5,(0)= (e )au(t)+ (4 Ja, (t)+ RO F (7 )iy (1)
+ 5 (X0l (1) + 57,1 (X)as ()

2.7)

Observing that from (2.7), s,(x,h) is discrete quartic spline on [x,,x, ] for i=1,2,...n-
1. Satisfying (2.1) - (2.5).
We are set to answer the problem A in the following:

Theorem 2.1 : For any h>0, then there exist a unique deficient discrete quartic spline
s(x,h)eS(4,1, P, h) which satisfies the condition (2.1) - (2.5).

Proof : Now applying continuity condition of first difference of s(x,h) at x,in (2.7)

we get the following system equations.

oo TP
[ rlelae el del 3oli o)l
" Pil{e(% %}pz G(g A}}snl

=F fori=1.2,...n-1 (2.8)
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+P>PD® f(y, ){G@,ijﬁ + G[%,O}hz}

Writing s(x;, h)=m, (h)=m, (Say) for all i we can easily see that excess of the absolute
value of the coefficient of m,dominants the sum of the absolute value of the

coefficient of m,_, and m,,in (2.8) under the condition theorem 2.1 and is given by

i+l

T, (h){G(_—7 E)Pifl +G(~10,24)h? +G(%,__1jpf}

12 '18 6

Therefore, the coefficient matrix of the system of equation (2.6) is diagonally
dominant and hence invertible. Thus the system of equation has unique solution. This

complete proof of theorem 2.1.
3. ERROR BOUNDS :

Now system of equation (2.6) may be written as
A(h),M(h)=F (3.1)

Where A(h) is coefficient matrix and M (h)=m, (h). However as already shown in the
proof of theorem 2.1 A(h) is invertible. Denoting the inverse of A(h) by A™*(h) we

note that max norm A~'(h) satisfies the following inequality.

|A™ ()< 3(h) (3.2)

Where J(h)=max{T,(h)]™", for convenience we assume in this section that 1 = Nh

where N is positive integer, it is also assume that the mesh points {x;}are such that
x,€[04],, fori=0,1,...,n

Where discrete interval [0,1]y is the set of points {0, h,.....Nh}for a function f and two

disjoint points x, and x, in its domain the first divided difference is defined by

f () - f(x,) (3.3)

[Xl'XZ]f = X, — X,

For convenience we write f®for D f and w(f,P) for modulus of continuity of f,

the discrete norm of the function f over the interval [0, 1] is defined by
| [|=max | f (x)| (3.4)

x<[0,1]
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We shall obtain the following the bound of error function e(x)=s(x,h)— f (x) over the

discrete interval [0,1],.

Theorem 3.1 : Suppose s(x, h) is the discrete quartic splines of theorem 2.1 then

le()|<K(P,hyw(f®,P) (3.5)
le(x, )< 3 () K' (P, hyw(f &, P) (3.6)
le'(x)| < K" (P, hyw(f®,h) (3.7)

Where K(P,h),K'(P,h) and K"(P,h) are positive function of P and h.

Proof : Equation (3.1) may be written as

A(h).e(x;)=F (h)—A(h) f; =L () (Say)

When e(x;)=s(x;,h)—f, (3.8)
We need following Lemma due to Lyche [9,10] to estimate inequality (3.3).

Lemma 3.1 : Let {a ] and {bj }';:lbe given sequence of non-negative real numbers

such that Zai =ij then for any real value function f defined on discrete interval

[0,1], , we have

h
io ! |1 k]f _;bj[yjo’yh""yjk]f

(3.9)

<w(fO- Kh|)2%

Wherex; ,y; e[O,l]h , for relevant values of i , j and k. We can write the equation (2.8)

is of the form of error function as follows:

42t
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f,- Pii{e(i,ljaz +G[§,4jh2}fm L) (say) (3.10)

First we write L, (f) is in the form of divided difference and using Lemma of Lyche

[9, 10], we get

LO<w(f®1-P)>a=3b, (3.11)
i=1 j=1
PR _33(i 132) 3 (ﬁ_jz
Where IZ:l:ai jzl:bJ {Pl P’ G 135" 36 P’P,G| =,—6 |h* +
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_ p3 11,
b5 - pi i1 h

and X, =B X, =X =Xy =Yy =Y,
Xo, =Xi1sXg =Via —N %y =y, +h
Yy, =1, Yo, =Bias Yo, =%, Y3, =%ia —h
Xq =Via TN Yy =, Y5, =7 —h,
Vs =i+ X, =, X, =[5, % =
Xs =X;

1 i+1

Now using equation (3.1) and (3.9) in (3.8)
le(x)|<3 () K(P,hyw(f",P)

This is inequality (3.6) of Theorem (3.1). To obtain inequality (3.4) of

theorem 3.1. Writing (2.6) in form of error functions as follows.
e(x)=e(x;)a, (t) +e(x,,) as (t) + M; (f) 3.12)
Where M,(f)=f(a)a.(t) + f(5)a.()

+ Py PO (4)a, (0 + iy dy O+ as(F) - F(X)

Again write M, (f) is of the form of divided difference as follows :

el - 3nbv)

(3.13)

b,=P|G _—7,£ t+G i,ﬁ t2 -G 1,2 t°+G i,l £
144 36 144 36 9 12
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b, PtG(S 1)
9'9

By using Lemma 3.1 of Lyche [9.10]

Za Zb [ [142 112jt+t 6(14714 géj G[é,zjtg +GG ,1jt4}

and

X, =, X, =L =Xy,

Xy, =Xi1, %, =7 —N X3 =7, +h

Yi, =50 Yy, =X Yo, =Xi1s Yo =X

From equation (3.6), (3.12) and (3.13) gives inequality (3.5) of Theorem 3.1.
We now proceed to obtain an upper bound of e™ for we use first difference

operator in (2.6) equation we get

AREP (=6, qP (t)=e, g (1)U () (314
Where U,(f)= f(a,) a®(t)+ 1 (8)a®(t)}+R 1 ()

P0+1,.0P0+ 1P 0-R 1 (0Ad A-6[.2]

Now writing U, (f ) is of the form of divided difference. We get

|Ui(f — [10’ 'f] Zb [ylo yh

Where

a1=P{G[_?1,§j 2G(§,ﬂjt (3t? + h?)
9
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a,=P N —E(C%t2 + h2)+§t(t2 + h2)
9 3 9 3

b,=P G(_—3,_—3j+2t(E,_—15j+G(_—3,6j(3t2+h2)
16 4 8’ 2 2

and y, =a;, Yy =/, Y, =X+h

Yo =X=h% =B,X% =X,% =y, —h

X3, =ﬂi’X21 =X X3 =7 +h

Now, using Lemma 3.1 of Lyche [9,10] we get

ORI

b, Jw(f{l},l— P) (3.15)

]

iq:ibj =P [G(%OS,%)+2+G(%,_715] +(3t2+h?)
i k

Now using equation (3.6), (3.14) and (3.15) we get inequality (3.7) of theorem
3.1. This complete proof of theorem 3.1.

Future scope: we have find out existence and uniqueness, error and convergence of
deficient discrete spline interpolation in interval [0, 1] by this spline method. The
deficient discrete quartic spline will match the function at two interior points and first

difference at middle point of the function with boundary condition.

10
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