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1. ITNRODUCTION & PRILIMNARIES 

 Discrete Splines have been introduced by Mangasarian and Shumaker [5] in 

connection with certain studied of minimization problems involving differences. 

Deficient Spline are more useful then usual spline as they require less continuity 

requirement at the mesh points.  Malcolm [4] used discrete spline to compute non-

linear spline interactively. Discrete cubic splines which interpolate given functional 

values at one intermediate point of a uniform mesh have been studied in [1]. These 

results were generalized by Dikshit and Rana [2] for non-uniform meshes. Rana and 

Dubey [8] have obtained local behavior of discrete cubic spline interpolation which is 

some time used to smooth histogram. For some constructive aspect of discrete spline 

reference may be made to Schumaker [3] and Jia [6].   

        We have develop a new function for deficient quartic spline interpolation .if we increase 

the degree of polynomial with boundary condition, then we find that result is better 

then by comparing with author  [1, 2] for smoothness of the function. 

         In this paper, we have obtained existence, uniqueness and convergence properties of 

deficient discrete quartic spline interpolation matching the given function at two 
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interior points of interval and first difference at mid points with boundary condition of 

function. 

 Let us consider a mesh  on [0, 1] which is defined by 

 1......0: 10  nxxx  

 Such that iii Pxx  1  for i = 1, 2,...., n. Throughout h, will be represent a given 

positive real number, consider a real continuous function ),( hxs  defined over [0,1] 

which is such that its restriction is  on  ii xx ,1  is a polynomial of degree 4 or less for i 

= 1,2,.....n then  hxs ,  defines a discrete deficient quartic spline if 

     1,0,,_, 1

)()(   jhxsDhxsD i

j

nii

j

n      

 (1.1) 

 Where the difference operator nD are defined as 

    
   

h

hxfhxf
xfDxfxfD nn

2
)(, )1()0( 
  

 The class of all discrete deficient quartic splines is denoted by  hS ,1,,4   

2. EXISTENCE AND UNIQUENESS 

 Consider the following conditions - 

    ii fs            (2.1) 

    ii fs            (2.2) 

    i
j

hin sDsD  }{}1{          (2.3) 

 for i = 1,2,.....n 

 Where iii Px
3

1
1    

  iiii Px   
2

1
1  

 and boundary conditions 

 )()( 00 xfxs           (2.4) 

    nn xfxs           (2.5) 
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 We shall prove the following. 

 Problem A : Given 0h  for what restriction on iP  does there exist a unique 

   hPShxs ,,1,4,   which satisfy the condition (2.1) - (2.3) and boundary condition 

(2.4)-(2.5). 

 Proof : Denoting 
i

i

P

xx 
 by t, 10  t . Let P(t) be a discrete quartic Polynomial on 

[0,1], then we can show that 
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21 PDtqPtqPtP h          tqPtqOPtq 543 1  (2.6) 
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 Where   babhabaG ,,, 2  are real numbers?  We can write (2.6) in the form of the 

restriction  hxsi ,  of the deficient discrete quartic spline  hxs ,  on  1, ii xx  as follows 

: 

http://www.iiste.org/


Control Theory and Informatics                                                                                                                                                         www.iiste.org 

ISSN 2224-5774 (Paper) ISSN 2225-0492 (Online) 

Vol.4, No.6, 2014  

 

 4 

             )(3

}1{

21 tqfDPtqftqfxs ihiiii    

        tqxstqxs ii 514        

 (2.7) 

 Observing that from (2.7),  hxsi ,  is discrete quartic spline on  1, ii xx  for i=1,2,...n-

1. Satisfying (2.1) - (2.5). 

 We are set to answer the problem A in the following: 

 Theorem 2.1 : For any h>0, then there exist a unique deficient discrete quartic spline 

),,1,4(),( hPShxs   which satisfies the condition (2.1) - (2.5). 

 Proof : Now applying continuity condition of first difference of ),( hxs  at ix in (2.7)  

we get the following system equations. 
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 iF   for i = 1,2,..... n-1       (2.8) 
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 Writing iii mhmhxs  )(),(  (Say) for all i we can easily see that excess of the absolute 

value of the coefficient of im dominants the sum of the absolute value of the 

coefficient of 1im  and 1im in (2.8) under the condition theorem 2.1 and is given by 
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 Therefore, the coefficient matrix of the system of equation (2.6) is diagonally 

dominant and hence invertible.  Thus the system of equation has unique solution. This 

complete proof of theorem 2.1. 

3. ERROR BOUNDS : 

 Now system of equation (2.6) may be written as 

  FhMhA )(),(        (3.1) 

 Where A(h) is coefficient matrix and )()( hmhM i . However as already shown in the 

proof of theorem 2.1 A(h) is invertible. Denoting the inverse of )(hA  by )(1 hA  we 

note that max norm )(1 hA  satisfies the following inequality. 

  )()(1 hJhA         (3.2) 

 Where    1

1max)(


 hThJ , for convenience we assume in this section that 1 = Nh 

where N is positive integer, it is also assume that the mesh points }{ ix are such that 

   hix 1,0 , for i = 0,1,..., n 

 Where discrete interval [0,1]h is the set of points }.....,,0{ Nhh for a function f and two 

disjoint points 1x  and 2x  in its domain the first divided difference is defined by 

       

21

21
21,

xx

xfxf
xx

f



       (3.3) 

 For convenience we write }1{f for fDn

}1{  and ),( Pfw  for modulus of continuity of f, 

the discrete norm of the function f over the interval [0, 1] is defined by 

  )(max
]1,0[

xff
x

        (3.4) 
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 We shall obtain the following the bound of error function )(),()( xfhxsxe   over the 

discrete interval  h1,0 . 

 Theorem 3.1 : Suppose ),( hxs  is the discrete quartic splines of theorem 2.1 then 

  PfwhPKxe ,),()( }1{        (3.5) 

    PfwhPKhJxe i ,),(')( }1{       (3.6) 

    hfwhPKxe ,),("' }1{        (3.7) 

 Where ),(),,( 1 hPKhPK  and ),(" hPK  are positive function of P and h. 

 Proof : Equation (3.1) may be written as  

 )()()()().( fLfhAhFxehA iiii      (Say) 

 When iii fhxsxe  ),()(        (3.8) 

 We need following Lemma due to Lyche [9,10] to estimate inequality (3.3). 

 Lemma 3.1 :  Let  m

iia
1
and  n

jjb
1
be given sequence of non-negative real numbers 

such that   ji ba then for any real value function f defined on discrete interval 

h]1,0[ , we have 
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1010

 
!

1}1{

K

a
Khfw i   

 (3.9) 

 Where  hji kK
yx 1,0,  , for relevant values of i , j and k. We can write the equation (2.8) 

is of the form of error function as follows: 
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 First we write )( fLi  is in the form of divided difference and using Lemma of Lyche 

[9, 10] , we get 
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15
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hPpb ii   

 and 
01110 42211 , yyxxxx iji    

 hxhxxx iii   131312 100
,,   

 hyyyy iiii   1321111 0010
,,,   

 ,,,
011 5413 hyyhx iii     

 iiii xxxhy  
0101 5445 ,,,  

 151  ixx  

 Now using equation (3.1) and (3.9) in (3.8) 

  PfwhPKhJxe i ,'),()()(   

 This is inequality (3.6) of Theorem (3.1).  To obtain inequality (3.4) of 

theorem 3.1. Writing (2.6) in form of error functions as follows. 

 )()()()()()( 514 fMtaxetaxexe iii       (3.12) 
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1 xffqftqftqfP iiii     
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 From equation (3.6), (3.12) and (3.13) gives inequality (3.5) of Theorem 3.1. 

 We now proceed to obtain an upper bound of }1{

ie for we use first difference 

operator in (2.6) equation we get 
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 Now using equation (3.6), (3.14) and (3.15) we get inequality (3.7) of theorem 

3.1. This complete proof of theorem 3.1. 

 Future scope: we have find out existence and uniqueness, error and convergence of 

deficient discrete spline interpolation in interval [0, 1] by this spline method. The 

deficient discrete quartic spline will match the function at two interior points and first 

difference at middle point of the function with boundary condition. 
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