Simulation of Ammonia Production using HYSYS Software

Prof. /Nabil Abdel El Moneim Cairo University, Faculty of Engineering

Prof. / Ibrahim Ismail Cairo University, Faculty of Engineering

> Nasser. M.M Egyptian Armed Force.

Abstract

Now-a-days, Because of cost and time consuming in the design of plants chemical engineer used simulators to simulate design and operation of chemical equipment and plant, which spares a great deal of time and cash. Today, there are many number of the simulators are refreshed and utilized in the simulation of chemical equipment and plant such as ChemCad, ProII, UniSim.....etc. Among of these simulators, Aspen Hysys is the most utilized programming in all ventures because of aiding in two noteworthy fields (design & operation). Simulation of ammonia synthesis process is done on Aspen Hysys V8.8 with steady state mode making some assumptions and using hypothetical reactors ammonia. By fluctuating the distinctive parameters in this simulation environment, the impact of these parameters in the generation rate of the procedure are watched.

Keywords: Ammonia, Simulation, Aspen Hysys

DOI: 10.7176/CPER/62-03

Publication date: January 31st 2020

1. Introduction

Ammonia is a compound of nitrogen and hydrogen with the recipe NH₃. It is a drab gas with a trademark sharp smell. [1]

Ammonia is used in the Production of nitrogen fertilizers as the primary element. Ammonia is used in a plenty of application such as used as a fertilizer or used as a feedstock in synthesis of many compounds such as urea, or nitric acid, etc. [2] The demands for ammonia production are increased due to higher world's consumption of ammonia in synthetic fertilizers. [3]

Haber-Bosch process [4] is the main industrial method for ammonia production which created in 1905 by Fritz Haber and developed for industry in 1910 by Carl Bosch. In Haber-Bosch process, the reaction between nitrogen and hydrogen lead to produce ammonia in the presence of iron catalysts and at a high pressure and temperature.

In Haber-Bosch process, 150 million tons of ammonia is produced yearly which is approximately five times higher than produced before Haber-Bosch process. In ammonia synthesis, production of hydrogen is from natural gas and production of nitrogen is from atmospheric air. [2,5]

Simulation is used to simulate the operation of both state steady state (time is ignored) and dynamic state (time isn't ignored). Simulation is also used to display the courses of action and actually effects of other conditions.

Aspen Hysys [6] is generally used for process of oil and gas industry but it's expanded to simulation of various industries such as Oil refinery, Sweetening of Acid Gas with DEA, Industries of Heavy chemical, Industries of Petrochemical, Plant of Natural gas process, Industries of Petroleum,.....etc.

The property package in HYSYS can display exact thermodynamic and physical property forecasts for hydrocarbon, non-hydrocarbon, chemical fluids and petrochemical. The database of Hysys contains many components exactly more than 1500 components and over 16000 fitted binary coefficients and the creation of hypothetical components is performed when the database doesn't contain any components. [7]

Presently a-days, simulators are used for different chemical engineering purposes for example, outline new plants, diminish capital expenses for plant, huge monetary advantages for the procedure, and so on. Though our task was to represent production of ammonia in aspen HYSYS software v 8.8, making a few suppositions and utilizing theoretical reactors ammonia production simulation have been performed with the steady state behavior of the process.

2. Methodology:

In this paper, ammonia production plant was simulated by using one of the best chemical engineering simulators, called ASPEN HYSYS (V8.8) with steady state mode.

www.iiste.org

2.1 Process Description:

The process of ammonia production depended on two basic parts: Production of syngas and Production of ammonia. The production of syngas contains a lot of unit operations as the following: (1) steam reforming (primary reforming) which is responsible for producing hydrogen, (2) air reforming (secondary reforming) which is used to generate nitrogen, (3) High& Low shift conversion which is used to convert all carbon monoxide to carbon dioxide, (4) CO₂ removal and(5) methanation.

2.1.1 Hydrogen Production:

Hydrogen is predominantly generated from the reaction amongst methane and steam. Natural gas is sent to the primary reformer for steam reforming, where superheated steam is fed into the reformer with the methane at 639.7°C in the presence of a nickel catalyst where methane is changed over to hydrogen, carbon dioxide and little amounts of carbon monoxide.

 $\begin{array}{l} CH_4 + 2H_2O \rightarrow CO_2 + 4H_2. \end{array} \tag{1}$ $CH_4 + H_2O \rightarrow CO + 3H_2. \end{array} \tag{2}$

2.1.2 Nitrogen addition:

The synthesis gas from primary reformer is sent to the secondary reformer where syngas blended with air within the sight of profoundly exothermic reaction amongst oxygen and methane produces more hydrogen. What's more, the important nitrogen is included in the secondary reformer

$2CH_4 + O_2 \rightarrow 2CO + 4H_2$	(3)
$CH_4 + O_2 \rightarrow CO_2 + 2H_2$	(4)

2.1.3 Removal of carbon monoxide & carbon dioxide:

It is essential advance to expel carbon dioxide and staying of carbon monoxide with a specific end goal to keep the toxin of ammonia synthesis reaction. At high temperature shift conversion, carbon monoxide is changed over to carbon dioxide at 583^oC and likewise carbon monoxide is expelled and changed over to carbon dioxide at low temperature move change (325^oC).

2.1.4 Ammonia Production:

2.2 Equipment & Software:

The software used in the simulation of ammonia plant design is Aspen Hysys (v.8.8) with steady state mode. The equipments used from aspen Hysys in the simulation of ammonia plant design are shown in Table (1). Table (1) Equipment used in the simulation of ammonia plant design

		1	8
Equipment used in the simulation	Coolers & Mixers	CO2 absorber	Compressors
	Low temperature shift	High temperature shift	
	conversion reactor (LTSC)	conversion reactor (HTSC)	mmoma converter react
	Primary & Secondary reformer	Methanator reactor	separators

2.3 Simulation of the process:

The main steps for ammonia process simulation by using aspen hysys are the following:

Selection of component list. 2) Selection of fluid package. 3) Defining reactions and formation of reaction sets.
 Installing the feed streams 5) drawing flow sheet.

Fig (15) shows the Process Flow Diagram (PFD) for the production of ammonia process, generated by Aspen HYSYS.

2.3.1 Selection of components list:

In this simulation, the reactant component list contain CH_4 , H_2O , CO, CO_2 , N_2 , H_2 , O_2 ignoring sulfur content as the components for the ammonia production. Figure (01) demonstrates the used component list in aspen hysys programming.

Component List - 1 \times +						
ource Databank: HYSYS				Select: Search for:	Pure Components	-
Component	Туре	Group				
CO	Pure Component					
CO2	Pure Component			Simula	tion Name	Full Nam
H2O	Pure Component		< Add		Ethane	
Methane	Pure Component				Propane	
Nitrogen	Pure Component				i-Butane	
Hydrogen	Pure Component		Replace		n-Butane	
Oxygen	Pure Component				i-Pentane	
Ammonia	Pure Component				n-Pentane	
			Remove		n-Hexane	
					n-Heptane	
					n-Octane	
					n-Nonane	

Figure (01) component list in aspen hysys software

2.3.2 Selection of fluid package:

In this simulation, the used fluid package is Peng- Robinson (PR), which is the most improved model in Aspen HYSYS.

2.3.3 Defining reactions and formation of reaction sets:

In this simulation, the procedure of ammonia production involves sets of reactions; primary reforming, secondary reforming, high and low shift conversion, methanation, ammonia converter. Figures from (02) to (07) give input information to the making of different reactions sets.

Statisticity Bata	Statisticity Component Mole Weight Stoch Ceeff 00 2001 -1.000 00 44.00 1.000 Waterspress 2006 -1.000 Waterspress -1.000	in a proden	Library				Stoichiometry Info		
Mole Weight NO Statch Ceeff With Temperature 2015 Statch Ceeff With Temperature 2015 Statch Ceeff With Temperature 2015 Statch Ceeff 2011 Statch Ceeff 2013 Statch Ceeff 2014 Statch Ceeff 2014 Statch Ceeff 20	Balance Balance Error Output Stack Coeff Stack Co	Stoichiometry			Basis		Comment	Mala Mainha	Chaileh Calaff
Image: New Year Col 28.01 -1.000 1 </td <td>Image: Color of the section from the section from the color of the secole the secole the sectin from the color of the secole the seco</td> <td>Component</td> <td>Mole Weight</td> <td>Stoich Coeff</td> <td>Basis</td> <td>Partial Pre</td> <td>Component</td> <td>Iviole Weight</td> <td>Stoich Coeff</td>	Image: Color of the section from the section from the color of the secole the secole the sectin from the color of the secole the seco	Component	Mole Weight	Stoich Coeff	Basis	Partial Pre	Component	Iviole Weight	Stoich Coeff
NO 13635 -3.000 0 4000 13605 -3.000 Wetrogen 2.05 1.000 Methane 16.043 1.000 Water firer Balance firer 8.000 18.015 1.000 Water firer Balance firer 0.0000 **Add Comp** 0.0000 Water firer Balance firer 0.0000 **Add Comp** 0.00000 Water firer 0.00000 **Add Comp** 0.00000 **Add Comp** 0.00000 Water firer 0.00000 **Add Comp** 0.00000 **Add Comp** 0.00000 Water firer 0.00000 **Add Comp** 0.00000 **Add Comp** 0.00000 'igure (0.2) design the reaction (set-1) of Figure (0.3) design the reaction (set-2) o Component Mole Weight Stoich Coeff 1.000 *1.000 H2O 18.015 -1.000 *1.000 *1.000 H2O 18.015 -1.000 *1.000 *1.000 H2O 18.015 -1.000	Not of theregene "Add Comp* 100 (1000) 2016 1000 (1000) 1200 1000 (1000) 1200 1000 (1000) 1200 1000 (1000) 1200 1000 (1200) 1200 1000 (1200) 1200 1000 (1200) 1200 1000 (1200) 1200 1000 (1200) 1200 1000 (1200) 1200 1000 (1200) 1200 1000 (1200) 1200 1000 <	CO	28.011	-1.000	Phase Min Tomporture	VapourPha		28.011	-1.000
CO2 4400 1000 "Add Comp" 1000 "Add Comp" 1000 "Add Comp" 1000 "Add Comp" 1000 "Balance Error 0.00000 Total Total Balance Balance Error 0.00000 Total Total Balance Error 0.00000 Total Total Total Balance Error 0.00000 HTSC & LTSC reactor. Figure (03) design the reaction (set-2) o o Component Mole Weight Stoichometry Info Stoichometry Info Component Mole Weight Stoichometry Info Component Mole Weight -1.000 H2O 18.015 -1.000 Co 28.011 1.000 Hydrogen 2.016 4.000 H2O 18.015<	CO2 44.00 1.00 Wethame 16.043 1.000 "Add Comp" 18.015 1.000 Baterie Error 0.00000 -2.21e+05 KJ/kgmole Balance Balance Error 0.00000 Hydrogen 2.016 4.000 Balance Balance Error 0.00000 Balance Balance Error 0.00000 Hydrogen 2.016 4.000 Hydrogen 2.016 3.000	H2O	18.015	-1.000	Max Temperature	-2/3.1	Hydrog	en 2.016	-3.000
Hybridgen 2006 1.009 "Add Comp" 18.015 1.009 Balance Reaction Heat (25 C) -2.1e+05 kJ/kgmole Tigure (02) design the reaction (set-1) of Figure (03) design the reaction (set-2) o Methane 16.043 -1.000 Methanet reactor. Stoich Coeff Component Mole Weight Stoich Coeff Component Mole Weight Stoich Coeff Methane 16.043 -1.000 H2O 18.015 -2.000 Component Mole Weight Stoich Coeff Component Mole Weight -1.000 Hydrogen 2.016 4.000 H2O 18.015 -1.000 "*Add Comp** -2.016 4.000 H2O 18.015 -1.000 "*Add Comp** -2.016 4.000 H2O 18.015 -1.000 "*Add Comp** -2.016 4.000 H2O 18.015 -1.000 Balance Balance Error 0.00000 Balance Error 0.00000 -1.000 Balance	Hereagen 205 L00 Balance Balance Error 00000 Reaction Heat (25 C) -1.4:e05 Li/kgmole Balance Balance Error 0.0000 H20 18.015 -2.0e0 Methane 16.043 -1.000 H20 18.015 -2.000 Methane 16.043 -1.000 H20 18.015 -2.000 Mole Weight Stoich Coeff Component H20 18.015 -2.000 H20 18.015 -2.000 H20 18.015 -2.000 H20 18.015 -2.000 H20 18.015 -1.000 H20 16.043 -1.000 H20 16.043	CO2	44.010	1.000	Max remperature		Metha	ne 16.043	1.000
Add Comp **Add Comp** Balance Balance Error 0.00000 Texture Heat (25 C) 4.1e+04 M/lymote Balance Balance Error 0.00000 Texture Heat (25 C) 4.1e+04 M/lymote Balance Balance Error 0.00000 Texture Heat (25 C) 4.1e+04 M/lymote Balance Balance Error 0.00000 Texture Heat (25 C) 4.1e+04 M/lymote Balance 16.043 -1.000 Mode Weight Stoich Coeff Component Mole Weight 1.000 H20 18.015 Hydrogen 2.016 4.000 H20 18.015 Hydrogen 2.016 3.000 **Add Comp** **Add Comp* Balance Error 0.00000 Balance Error 0.00000 Balance Balance Error 0.00000 Reaction Heat (25 C) 2.1e+05 ki/kgmole <td>"Add Comp" "Add Comp" Balance Balance Error 0.00000 Balance Balance Error 0.00000 Tigure (02) design the reaction (set-1) of Figure (03) design the reaction (set-2) o Component Mole Weight Stoich Coeff Stoichiometry Info Stoichiometry Info Component Mole Weight Stoich Coeff Stoichiometry Info Stoichiometry Info HTSC & LTSC reactor. Component Mole Weight Stoich Coeff Stoichiometry Info Hydrogen 2.016 4.000 H20 18.015 -1.000 Hydrogen 2.016 4.000 Hydrogen 2.015 3.000 "Add Comp" "Add Comp" Stoichiometry Info Stoichiometry Info Balance Balance Error 0.00000 Hydrogen 2.015 3.000 "Add Comp" Stoichiometry Info Stoichiometry Info Stoichiometry Info Stoichiometry Info Balance Balance Error 0.00000 Reaction Heat (25 C) 1.000 1.000 Balance Balance Error 0.00000 Reaction Heat (25 C) 2.1e+05 kl/kgmole</td> <td>Hydrogen</td> <td>2.016</td> <td>1.000</td> <td>Barie Unite</td> <td>atm</td> <td>H</td> <td>18.015</td> <td>1.000</td>	"Add Comp" "Add Comp" Balance Balance Error 0.00000 Balance Balance Error 0.00000 Tigure (02) design the reaction (set-1) of Figure (03) design the reaction (set-2) o Component Mole Weight Stoich Coeff Stoichiometry Info Stoichiometry Info Component Mole Weight Stoich Coeff Stoichiometry Info Stoichiometry Info HTSC & LTSC reactor. Component Mole Weight Stoich Coeff Stoichiometry Info Hydrogen 2.016 4.000 H20 18.015 -1.000 Hydrogen 2.016 4.000 Hydrogen 2.015 3.000 "Add Comp" "Add Comp" Stoichiometry Info Stoichiometry Info Balance Balance Error 0.00000 Hydrogen 2.015 3.000 "Add Comp" Stoichiometry Info Stoichiometry Info Stoichiometry Info Stoichiometry Info Balance Balance Error 0.00000 Reaction Heat (25 C) 1.000 1.000 Balance Balance Error 0.00000 Reaction Heat (25 C) 2.1e+05 kl/kgmole	Hydrogen	2.016	1.000	Barie Unite	atm	H	18.015	1.000
KTake Balance Error 0.00000 Reaction Heat (25 C) -2.1e+05 kl/kgmole Figure (02) design the reaction (set-1) of HTSC & LTSC reactor. Figure (03) design the reaction (set-2) or Methanator reactor. Component Mole Weight Stoich Coeff H2O 18.015 -2.000 Methane 16.043 -1.000 CO2 44.010 1.000 H2O 18.015 -1.000 H2O 18.015 -2.000 Methane 16.043 -1.000 H2O 18.015 -2.000 Methane 16.043 -1.000 H2O 18.015 -2.000 Methane 16.043 -1.000 H2O 18.015 -1.000 Component Mole Weight Stoich Coeff #Ydrogen 2.016 4.000 **Add Comp* 3.000 **Add Comp* Balance Balance Error 0.00000 Balance Error 0.00000 Reaction Heat (25 C) 2.1e+05 kl/kgmole	Balance Balance Error 0.00000 Reaction Heat (25 C) Figure (02) design the reaction (set-1) of HTSC & LTSC reactor. Figure (03) design the reaction (set-2) o Methanator reactor. Component Mole Weight Stoich Coeff H2O 18.015 -2.000 H2O 18.015 -2.000 Hydrogen 2.016 4.000 "*Add Comp* -2.016 4.000 Balance Balance Error Reaction Heat (25 C) -2.1e+05 kl/kgmole	Balance	Balance Error Reaction Heat (25 C	0,000	00 ie				
Ignre (02) design me reaction (set-1) Or Figure (03) design me reaction (set-2) Construction (set-2) <thconstru< td=""><td>Igure (02) design me reaction (set-1) Of HTSC & LTSC reactor. Methanator reactor. Component Mole Weight 16.043 -1.000 H20 18.015 C02 44.010 Hydrogen 2.016 **Add Comp** Mole Weight Balance Balance Error Balance 0.00000 Reaction Heat (25 C) 1.6e+05 kJ/kgmole</td><td>iguro (02) d</td><td>Read</td><td>constion (so</td><td>+ 1)</td><td>K Table</td><td>Balance</td><td>Balance Error Reaction Heat (25 C)</td><td>0.00000 -2.1e+05 kJ/kgmole</td></thconstru<>	Igure (02) design me reaction (set-1) Of HTSC & LTSC reactor. Methanator reactor. Component Mole Weight 16.043 -1.000 H20 18.015 C02 44.010 Hydrogen 2.016 **Add Comp** Mole Weight Balance Balance Error Balance 0.00000 Reaction Heat (25 C) 1.6e+05 kJ/kgmole	iguro (02) d	Read	constion (so	+ 1)	K Table	Balance	Balance Error Reaction Heat (25 C)	0.00000 -2.1e+05 kJ/kgmole
Component Mole Weight Stoich Coeff Stoich Coeff Methane 16.043 -1.000 Image: Component Mole Weight Stoich Coeff Stoich Coeff Image: Component Mole Weight Stoich Coeff Image: Component Image: Component <t< td=""><td>Component Mole Weight Stoich Coeff Methane 16.043 -1.000 H20 18.015 -2.000 Corponent Mole Weight Stoich Coeff Methane 16.043 -1.000 Corponent Mole Weight Stoich Coeff Mole Weight Stoich Coeff Mole Weight Stoich Coeff Mole Weight 10.00 10.00 H20 18.015 -1.000 Hydrogen 2.016 4.000 H20 18.015 -1.000 "*Add Comp*" - - - - - Balance Balance Error 0.00000 - - - - Balance Balance Error 0.00000 Reaction Heat (25 C) 1.6e+05 kJ/kgmole Balance Balance Error 0.00000</td><td>igure (02) de</td><td>HTSC &</td><td>LTSC rea</td><td>ctor.</td><td>01</td><td>Figure (03) desi</td><td>gn the reaction (Iethanator react</td><td>or.</td></t<>	Component Mole Weight Stoich Coeff Methane 16.043 -1.000 H20 18.015 -2.000 Corponent Mole Weight Stoich Coeff Methane 16.043 -1.000 Corponent Mole Weight Stoich Coeff Mole Weight Stoich Coeff Mole Weight Stoich Coeff Mole Weight 10.00 10.00 H20 18.015 -1.000 Hydrogen 2.016 4.000 H20 18.015 -1.000 "*Add Comp*" - - - - - Balance Balance Error 0.00000 - - - - Balance Balance Error 0.00000 Reaction Heat (25 C) 1.6e+05 kJ/kgmole Balance Balance Error 0.00000	igure (02) de	HTSC &	LTSC rea	ctor.	01	Figure (03) desi	gn the reaction (Iethanator react	or.
Methane 16.043 -1.000 Mole Weight Stoich Coeff H20 18.015 -2.000 Methane 16.043 -1.000 CO2 44.010 1.000 H20 18.015 -1.000 Hydrogen 2.016 4.000 CO 28.011 -1.000 **Add Comp** -	Methane 16.043 -1.000 H20 18.015 -2.000 CO2 44.010 1.000 Hydrogen 2.016 4.000 "*Add Comp*" -1.000 Balance Balance Error 0.00000 Reaction Heat (25 C) 1.6e+05 kJ/kgmole	Component	Mo	le Weight	Stoich Coeff		Stoichiometry Info		
H20 18.015 -2.000 CO2 44.010 1.000 Hydrogen 2.016 4.000 **Add Comp** CO 28.011 1.000 Hydrogen 2.016 3.000 3.000 **Add Comp** CO 28.011 1.000 Balance Balance Error 0.00000 8alance Balance Error 0.00000 Balance 1.6e+05 kl/kgmole Balance CO 2.1e+05 kl/kgmole	H20 18.015 -2.000 CO2 44.010 1.000 Hydrogen 2.016 4.000 **Add Comp** 0 Balance Balance Error 0.00000 Balance 1.6e+05 kJ/kgmole	Me	thane	16.043		-1.000	Component	Mole Weight	Stoich Coeff
CO2 44.010 1.000 Hydrogen 2.016 4.000 **Add Comp** Balance Balance Error 0.00000 Reaction Heat (25 C) 1.6e+05 kl/kgmole	CO2 44.010 1.000 Hydrogen 2.016 4.000 **Add Comp** 4.000 CO 28.011 1.000 Hydrogen 2.016 3.000 Hydrogen 2.016 3.000 Balance Balance Error 0.00000 Balance Balance Error 0.00000 Balance Diameter (25 C) 1.6e+05 kJ/kgmole Diameter (25 C) 2.1e+05 kJ/kgmole		H2O	18.015		-2.000	Methan	16.043	-1.000
Hydrogen 2.016 4.000 **Add Comp**	Hydrogen 2.016 4.000 "*Add Comp** 2.016 3.000 Hydrogen 2.016 3.000 Hydrogen 2.016 3.000 "*Add Comp**		CO2	44.010		1.000	H20	18.015	-1.000
Add Comp **Add Comp** Balance Error Reaction Heat (25 C) 1.6e+05 kl/kgmole Balance Balance Ba	**Add Comp** 2.016 4.000 **Add Comp** 2.016 3.000 **Add Comp** **Add Comp** 0.00000 Balance Balance Error 0.00000 Reaction Heat (25 C) 1.6e+05 kJ/kgmole	11		2.016		4.000		28.011	1.000
Add Comp Hydrogen 2.016 3.000 **Add Comp** **Add Comp** **Add Comp**	**Add Comp** 2016 3,000 **Add Comp** **Add Comp** 3,000 **Add Comp** **Add Comp** 3,000 Balance Balance Error 0,00000 Balance Balance Error 0,00000 Reaction Heat (25 C) 1.6e+05 kJ/kgmole	нуа	rogen	2.016		4.000		28.011	1.000
Balance Balance Error 0.00000 Reaction Heat (25 C) Balance Balance	Balance Balance Error 0.00000 Balance Balance Error 0.00000 Reaction Heat (25 C) 1.6e+05 kJ/kgmole	**Add Co	omp**				Hydroge	2.016	3.000
Balance Balance Error 0.00000 Reaction Heat (25 C) Balance Balance Balance Balance Balance Balance Balance C 0.00000 Reaction Heat (25 C) 2.1e+05 kJ/kgmole	Balance Balance Error 0.00000 Balance Balance Error 0.00000 Reaction Heat (25 C) 1.6e+05 kl/kgmole						**Add Comp*	*	
Balance Error 0.00000 Balance Balance Error 0.00000 Reaction Heat (25 C) 1.6e+05 kJ/kgmole Balance Balance Error 0.00000	Balance								
Balance Balance Balance Reaction Heat (25 C) 2.1e+05 kl/kgmole	Balance Reaction Heat (25 C) 1.6e+05 kJ/kgmole								
Reaction Heat (25 C) 1.0e+05 K/kgmole			Balance	: Error		0.00000		Balance Error	0.00000
		Balance	Balance	e Error	1.605.11	0.00000	Balance	Balance Error Reaction Heat (25 C)	0.00000 2.1e+05 kl/kamole

Chemical and Process Engineering Research ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) Vol.62, 2020

Stoichiometry Info					Commonweat	Mele Weight	Staich Cooff
Component		Mole Weight	Stoich Coeff		Component	16.042	1 000
Met	hane	16.043	-1.000		H2O	18.015	-2.000
	CO2	44.010	1.000		CO2	44.010	1.000
	H2O	18.015	2.000		Hydrogen	2.016	4.000
Ox	ygen	32.000	-2.000		**Add Comp**		
Add Cor	mp						
		Balance Error	0.00000		Balance	Balance Error Reaction Heat (25 C)	0.00000
Balance		Reaction Heat (25 C)	-8.0e+05 kl/kamole				
		Figure (05) design the reaction	1 (set	-4) of second re	eformer.	
Stoichiometry Info				_	Stoichiometry	uch clotary	
Component		Mole Weight	Stoich Cooff	- I ſ	stoichiometry		
Component	CO2	44.010	-1.000		Component	Mole Weight	Stoich Coeff
Hyd	lrogen	2.016	-4.000		Hydroge	n 2.010	6 -3.000
Me	thane	16.043	1.000		Nitroge	n 28.01	3 -1.000
	H20	18.015	2.000		Ammoni	a 17.03	0 2.000
Add C	omn				**Add Comp*	*	
Balance		Balance Error Reaction Heat (25 C)	0.00000 -1.6e+05 kJ/kgmole		Balance	Balance Error Reaction Heat (25	0.00000 C) -3.0e+04 kJ/kgmole
		Reaction Heat (25 C)	-1.0E+05 KJ Kgiffüle				
Figure (06) desig	gn th	e reaction (set-5)) of methanator (1)	I I	Figure (07) desig	n the reaction (set-6) of ammonia
0 (14) 8	5	· · · ·			0		,
		reactor				converter reacto	or

2.3.4 Installing the feed streams:

Natural gas & steam are the feed streams for the primary reformer. A stream of air is associated with the secondary reformer. For these streams, it is vital to characterize this properties temperature, pressure, and component mole fraction as appeared in table (2).

Stragger	Temperature	Pressure			Compo	onent mole	fraction		
Stream	(°C)	(Kpa)	Ch4	H ₂ O	CO	CO ₂	H ₂	N_2	O ₂
R-LNG	371	3346	0.985	0	0	0.0008	0	0.0142	0
Steam	246.1	3445	0	1	0	0	0	0	0
Air	30	3445	0	0	0	0	0	0.79	0.21

Table (2) the basic streams conditions for the simulation

3. Result and Discussions:

After performing the simulation, the influence of different processing parameters such as (temperature and pressure of steam, temperature and pressure of natural gas ...etc) on the production rate of the process are observed & by controlling these parameters optimum ammonia production can be obtained. From the simulation result, those effects are described in below.

3.1 Temperature of natural gas:

From the figure (08), it is observed that the influence of temperature of natural gas on ammonia product rate as the increases of the temperature of natural gas cause decrease of ammonia production rate.

3.2 Pressure of natural gas:

From the figure (09), influence of the pressure of natural gas on ammonia production rate is observed where from interval 1000 kpa to 3000 kpa the increases of the pressure cause decrease of ammonia production rate & from higher than 3000 kpa the increase of the pressure cause slightly increase of ammonia production rate.

3.3 Temperature of steam:

From the the figure (10), the influence of temperature of steam on ammonia production rate is very clear in three intervals as from 200-250 0 K the increase of the temperature cause increase of the ammonia production rate & from 250-300 0 K the maximum ammonia production rate is obtained & from higher than 300 0 K the increase of temperature cause decrease of ammonia production rate so the optimum operating temperature of steam is from 250-300 0 K.

www.iiste.org

3.4 Pressure of steam:

From the figure (11), it is observed that the influence of Pressure of steam on ammonia product where the increase of pressure of steam cause increase of the ammonia production rate.

3.5 Temperature of air:

From the figure (12), the influence of the temperature of air is very clear where the increases of temperature of air cause decrease of the production rate.

3.6 Pressure of air:

From the figure (13), it is seen that the increase of the pressure of air cause increase on the production rate.

3.7 temperature of the feed (hydrogen & nitrogen)

From the figure (14), it is seen that the increase of the feed temperature cause decrease of the ammonia production rate.

Figure (15) Hysys Process Flow diagram of ammonia synthesis

Figure 08: temperature of natural gas vs. Mass flow rate of ammonia

Figure 09: pressure of natural gas vs. Mass flow rate of ammonia

Figure 10: temperature of steam vs. Mass flow rate of produced ammonia.

Figure 11: pressure of steam vs. Mass flow rate of produced ammonia.

Figure 12: Temperature of feed of air vs. Mass flow rate of produced ammonia

Figure 13: pressure of feed of air vs. Mass flow rate of produced ammonia

Figure 14: temperature of feed of nitrogen and hydrogen vs. Mass flow rate of produced ammonia

4. Conclusion

Ammonia production is an essential chemical process because of its applications. In this paper, the produced information in light of the recreation performed in HYSYS. This information can enable us to comprehend the procedure in various circumstances in mechanical practice. By changing the distinctive parameters in this recreation condition, the impacts of these parameters on ammonia production are watched and the outcomes are appeared in graphical shape. Utilizing the plots, the ideal conditions for ammonia production can be effortlessly discovered.

www.iiste.org

References

- 1. Amin, M. R., Sharear, S., Siddique, N., & Islam, S. Simulation of Ammonia Synthesis. American Journal of Chemical Engineering, (2013)1(3), 59-64.
- 2. Appl, M. Ammonia. Ullmann's encyclopedia of industrial chemistry (2006).
- 3. Biegler, L. T. Process flow sheet optimization: recent results and future directions (1987).
- 4. Biegler, L. T., Grossmann, I. E., & Westerberg, A. W. Systematic methods for chemical process design (1997).
- 5. Bland. Optimization of an ammonia synthesis loop (2015).
- 6. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., & Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 1(10), 636.
- 7. Gaines, L. D., & Gaddy, J. L. Process optimization by flow sheet simulation. Industrial & Engineering Chemistry Process Design and Development, (1976) 15(1), 206-211.
- 8. Hamid, M. K. A. (2007). HYSYS: An Introduction to Chemical Engineering Simulation. Apostila de Hamid.
- 9. HYSYS, A. (2013). Version 8.0. Aspen Technology Inc.
- 10. Lawrence, S. A. (2004). Amines: synthesis, properties and applications. Cambridge University Press.
- 11. Schlögl, R. (2003). Catalytic Synthesis of Ammonia—A "Never-Ending Story"?. Angewandte Chemie International Edition, 42(18), 2004-2008.
- 12. Sotoft, L. F., Pryds, M. B., Nielsen, A. K., & Norddahl, B. Process Simulation of Ammonia Recovery from Biogas Digestate by Air Stripping with Reduced Chemical Consumption. In Computer Aided Chemical Engineering (2015) (Vol. 37, pp. 2465-2470). Elsevier.