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Abstract. 

This-study is a-fraction of a-larger-research, on potential-alternatives, to polyethylene-shopping-bags. Dry-laid 

adhesively-bonded nonwoven-structure was produced, from luffa cylindrica fibres. Testing parameters of the-

produced-nonwoven-structure were-limited-to: a-mass-per-unit-area, tested according to ISO 9073-1:1989; 

thickness (ISO 9073-2:1995); tensile-strength and elongation (ISO 9073-3:1989); tearing-strength (ISO 9073-

4:1997); and bursting-strength (ISO 13938-2:1999). The-data-analysis was conducted using Microsoft Excel, 

2010 software. The-nonwoven-structure had mass-per-unit-area of (645-3386) g/m
2
; thickness of (1.48-1.80) 

mm; tensile strength of (1.4-110.2) N; elongation of (2.8-13.8) %; tearing-strength of (2,292.5-47,952.0) mN; 

and bursting-strength of (79.4-338.2) KPa. From the-test-results, it was obvious, that the-nature of bonding has 

significant-effect, on-the-mass per-unit-area, tensile-strength and elongation, tearing-strength and bursting-

strength of the nonwoven-structure made from luffa cylindrica fibres. The-selected-properties, of the-nonwoven-

structure, are comparable, with the-requirements, for bursting-strength and tearing-strength, specified by Kenya 

Bureau of Standards (KEBS), for shopping-bags. The-study, thus, presents a-potential-opportunity of replacing 

polyethylene-shopping-bags, on the Kenyan-market, with a-nonwoven-structure from luffa cylindrical, as a-

potential biodegradable-substitute material for shopping-bags. Recommendations for further-research are also 

identified.  

Keywords: sustainable shopping bags, textile testing, natural fibres.  

 

1. Introduction 

1.1. Background situation: Impacts of polyethylene-shopping-bags and the need for alternatives. 

Plastic-pollution is a-pervasive-global-environmental-threat. Environmental-impacts of plastic-bags can be 

ordered into three-groups: (1) aesthetic-disturbance, (2) ecological-impacts, and (3) socio-economic-impacts. 

Readers, interested in-more-details on Environmental-impacts of plastic-bags, could-refer to Starovoytova et al 

(2016).   

The-environmental-devastations, caused by-synthetic-bags are both; direct and indirect, when 

considered, in-terms of outcome-effects. Among the-direct-effects, synthetic-bags lead to-floods, especially in-

urban-locations and towns, when they block the-drainage-channels; in a-bid to-destroy these-synthetic bags, 

most-people opt for-burning. When burnt, polyethylene-bags, apparently, emit dioxin-toxic-fumes, which pollute 

the-air and present a-danger of damage to human-lungs, when inhaled (Harkin, 2016; Graham, 2012). Indirectly, 

the-storage of hot-food in-plastic-bags (a-common-practice, among urban-dwellers) can result in the-chemicals, 

such-as Bisphenol-A and dioxins, to-leach into the-food and, hence, be-ingested. When ingested over-time, 

dioxins get fixed to-human-fats, resulting in the-potential, to cause tissue-changes, which may-lead to-cancer, in-

breast and prostate-cells (Uwera, 2016), hormonal-imbalance, in-the adolescents, which may-result in-early-

puberty (eHow-UK, 2016), increase the-risk of heart-disease, aggravate respiratory-ailments, such-as asthma and 

emphysema, and cause rashes, nausea, headaches, damages in-the nervous-system, kidney or liver, in the-

reproductive and development-system (WECF, 2012).  

Considering the-large-scale damaging-effects of plastic-bags, many-countries, all-over-the-world, have-

already-prohibited, the-production and use of plastic-bags, by enacting parliamentary-legislations. However, the-

implementation of this-complete-ban, on the-use of plastic-bags, has-not been successful, in Kenya, due-to 

inadequate-research and unavailability of suitable-substitutes, for the-polyethylene plastic- bags. According to-

UNEP (2005), there are no-satisfactory and affordable-alternatives, to-plastic-shopping bags, in-Kenya, except 

for-some-paper-bags. Although shopping-bags, made of natural-fibers, are present in the-market, their-use is 

limited, because of the-convenience and extensive-availability of plastic shopping-bags and their-low-cost or 

‘no-cost’, to-the-consumer. 

 

1.2. Research purpose 

In-Kenya, the-ban, on-plastic-bags was-meant to-take effect, on-the-midnight of the 14th of June, 2007, as 

stated-by Amos Kimunya, the, then, finance-minister of Kenya, in a-bid, to-encourage, industrial-players to 

come-up with innovative-ways, which are environmentally-friendly. However, supermarkets and shops, in 

Kenya, still distribute, up-to 11-million plastic-bags, a-year (Bahri, 2005).   

The-absence of innovative-alternatives and biodegradable-bags, which can serve the-same-purpose, 

with minimal-negative-impact, to-the-environment, has also-fuelled the-delayed-enforcement of the-ban. 
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Therefore, the-need for-research, in-the-area of potential-environmentally-friendly-materials, for packaging-bags, 

suitable for the Kenyan-shopping-market, is apparent. The main-purpose of this-study is to produce a nonwoven-

structure from luffa cylindrica fibres and characterize its-selected-properties.  

The-packaging, used for shopping-bags, in most-urban-supermarkets, in-Kenya, is made of synthetic 

non-biodegradable-material, which is not-environment-friendly. The-biodegradable-paper alternatives for some-

foodstuff, like maize-flour, are not-reusable. It is, thus, necessary to develop an environmentally friendly-

nonwoven-material, which can-cater, for this-vast-market-segment, with consideration, to sustainable-

environmental-management. Several-fibres have the-potential of producing such-materials. In this-study the-

focus was on luffa cylindrica fibres. This-project used Luffa cylindrica fibres adhesively-bonded with-

environmentally-friendly bonding-agents (resins), to-produce a-nonwoven- structure, which was-assessed for its-

suitability as-shopping-bags, on a-Kenyan-market. Subject to-success of the-study, Luffa-farmers will-be able, to 

get a-value-addition, for their-products, generating more-income, from the-sale, of their-products, to the-

nonwoven-manufacturers. Also, due to-the-simplicity, of producing the nonwoven-structure, from this-material, 

farmers involved in-producing luffa can-be-encouraged, to take-up commercial-initiatives, of producing and 

supplying, not only luffa fibres,  but the-nonwoven structures made of these-fibres, to the-already-available-

market in-both; Kenya and the East African-region, as-a-whole.  

  

1.3. Fibres to be used for production of the nonwoven-structure 

Natural-fibers, are nowadays, increasingly-employed, for-making nonwoven, replacing the-synthetic materials, 

due-to-economic and environmental-considerations (Ghali, 2014).  

Luffa cylindrica is a-natural-fibre, locally known as ‘muratina’, is an-annual-climbing-vine, which 

produces a-fruit, containing a-fibrous-vascular-system. When separated, from the-skin, flesh and seeds, the fibre-

network can-be-used, as a-bathroom-sponge (due-to the-fact that fibre has-very light-weight and considerable-

wet and dry-strength, which enables its-multiple-reusability, in both-states). Since luffa has a compact-network 

of close-fibres, its-resiliency makes it-useful, for many-products, such as: packing material, for-making-crafts, 

filters, slipper-soles, and baskets. In-addition, immature-gourds are used, as vegetables. Luffa is 

environmentally-safe, biodegradable and a-renewable-resource (Aluyor, 2009).  To- obtain the-fibres, it-is-

necessary, to-subject the-gourds, to a-retting-process, to-separate the-fibres, from the extra-pectin.  

 

1.4. Production of nonwoven fabrics 

From ISO 9092, nonwoven is defined, as-a-manufactured-sheet, web or batt of directionally or randomly-

oriented-fibers, bonded by friction, and/or cohesion and/or adhesion, excluding paper and products which-are 

woven, knitted, tufted, stitch-bonded, incorporating binding-yarns, or filaments, or felted by wet-milling, 

whether or not additionally-needled (ISO 9092:2011).  

Nonwoven-fabrics are the-oldest-technique, of fabric-production, discovered around 3500-3000 BC as-

a-felt of-animal-hair (Ghosh, 2014). They essentially-consist of fibres, laid-together, by-different bonding-

processes, instead of weaving, knitting or crocheting. The-processes are characterized, by producing a fibre-batt, 

bonding the-batts, to-form a-nonwoven-web, and finishing the-nonwoven (Anderson, 2016; Singh, 2014). The-

desired-properties and applicability, of nonwovens, is-mainly influenced, by-choice of the-fibres, for developing 

the-nonwoven, technological-process of web-production, methods of web-bonding and finishing, imparted to-

the-developed-nonwoven (Dubrovski, 2005). There is a number of batt-formation methods, used in-nonwoven-

technology today, such as: dry- laying, wet-laying, spun-bonding, and melt blown-batt, formation-technologies.  

A-study, by Andreassen et al (1995) shows, that the-tensile-properties, of nonwoven-fabrics, are 

governed by the-bonding-properties, of the-constituent-fibres, and not the-fibre-strength (Andreassen, 1995). A-

bonding-agent works as-glue, as it-binds, the-fibre-laid-web, firmly-together, to-make-bonded nonwoven fabric 

(Ghosh, 2014). There-are several-methods of web-bonding, such-as: (1) Resin-bonding (use of starch, as-

bonding-agents, for cellulosic-fibres, and use of vinyl-acetate-emulsions, as-bonding-agents, for cellulosic-

fibres); (2) Thermal-Bonding; (3) Hydrogen-bonding; (4) Needle-punching; (5) Multi-bonding; (6) Hydro-

entanglement; and (7) Ultrasonic-bonding. The-choice of the-method, often-depends, on the-characteristics and 

required fabric-quality, in the-end-products. In-this-research, resin-bonding was used. 

The-resin helps to-bind the-fibres, in the-nonwoven-structure, by means of adhesive-forces. There is a-

number of theories, which explain the-phenomenon, involved during-adhesion. Adhesion-theories, in the 

bonding of cellulosic-fibres, include: mechanical-interlocking, adsorption or wetting-theory, chemi-sorption 

theory, electrostatic-theory, diffusion-theory, and the-theory of weak-boundary-layers (Beardmore, 2011; 

Douglas, 2008).  

Resin can-be-applied, to-nonwoven-fabrics, with the-help of a-size-press, as a-liquid or foam, or 

spraying, or by rotary-screen-printing, impregnation and foam-techniques. Resin can-be-added, to-the-batt, using 

a-size-press, as a-liquid or foam, or spraying, or by rotary-screen-printing. In-the-spray-technique, the top of the 

batt, is sprayed with-resin, dried in-the-oven, and then flipped, so that the-other-side, can-be sprayed, with resin, 
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oven-dried and cured, before cooling, slitting and winding into-rolls. The-application of resin to-batts, using 

foam-techniques, avails a-cleaner and most-economical-use of resin, especially on materials exceeding 100gsm. 

The-properties of webs, bonded in-this-way, depend on the-base-web-structure and properties, the-characteristics 

of the-resin-polymer-relative-stiffness or softness, relative-strength and resilience, the-relative-proportions, of 

the-bonding-agent and substrate-web, after drying and cross-linking, and the-method, of addition (Dahiya, 2004).  

This-study used Synemul TB 341 resin, which is a VAM-Veova Emulsion (Synresins Limited, 2016) as 

a-bonding-agent, in-the-production of a-nonwoven, from luffa cylindrica fibres. This-is for the-reason that the-

emulsion exhibits exceptional-binding-properties, coupled-with excellent colour-holding potential and tough-

bonding, to-fabrics, when used, in-textile-printing (Synresins Limited, 2016). Upon disposal, the-emulsion can 

partition, to air, where it-is rapidly-degraded, without any-likelihood of bio-accumulation (The Dow Chemical 

Company, 2014).  

 

1.5. Previous-Relevant studies 

Researchers have-studied the-use of luffa cylindrica fibres, in-composites, as-a-matrix-material, with polyester-

resin (Valcineide, 2014), resorcinol-formaldehyde (Parida, 2013), recycled low-density polyethylene (rLDPE) 

(Paschal, 2015); epoxy (Acharya, 2015); a-comparative-study of the-composites from the-different-resins has 

also-been-investigated (Contreras-Andrade, 2014). Luffa cylindrica fibres have also been-studied for application, 

as-reinforcement, in-polymer-concrete (Martínez-Barrera, 2014). Wetaka et al. (2016), also-reported, the-

combined-effect of water-retting and alkali-treatment, on-tensile-properties of luffa cylindrica fibres. Besides 

the-use, as a-matrix, cellulose, from luffa cylindrica fibres, has found application, as a-binder, in-

Acetaminophen-tablets (Macuja, 2015). The-use of luffa cylindrica as a-filler material, has also been-found, to-

improve sound-absorption-properties, of soft-foam, at-frequency-ranges of 540Hz to 6300Hz (Ekici, 2012). 

However, there-is no-research, which has-been-published, in-open-literature (at-the-time, this-study was 

performed), as regards the-use of luffa cylindrica fibres, in-nonwovens, suitable for packaging-materials.  

This-study, hence, provides an-insight of the-effect of different-bonding-agents, on-selected properties, 

of a-nonwoven-structure, from luffa cylindrica fibres.  

 

2. Materials and Methods 

2.1 Materials. 

The-equipment, required for this-study included: buckets, beakers, conical-flasks, burets and pipettes, for 

measuring and handling chemicals; universal-tensile-testing-machine, bursting-strength-machine, high precision 

weighing-balance, drying-oven and micro-metre-disc-gauge, available, at the-Textile-Testing Laboratory, of 

Rivatex, East Africa, Limited.  

 

2.2 Production of the nonwoven structure  

2.2.1. Preparation of the materials  

The-materials, for the-production, of the nonwoven-structure, were: luffa cylindrica fibres, ionic-liquid, maize-

starch, Synemul TB 341 resin, and a woven-fabric-screen, for laying the nonwoven-structure.  

First, the-woven-fabric-screen was prepared, by nailing a-screen-mesh onto a 50cm X 30cm wooden-

frame. The water-retted luffa cylindrica fibres were then treated with pure-ionic-liquid and Sodium Hydroxide, 

at concentrations of 2% (w/v), 4% (w/v), and 8% (w/v) and neutralized with mild-acetic-acid, to remove Sodium 

Hydroxide, before rinsing, with distilled-water. Table 1 shows the-summary of preparation of luffa cylindrica 

fibres, for different-webs. Batt-prefix is the-prefix, used in the-sample-labelling, to represent the-treatment-

media, which the-materials were subjected-to.  

Table 1: Summary of preparation of luffa cylindrica fibres for different-webs 

 
The-treated-fibres were then dry-laid by-hand, as shown in Figure 1(a), on the-previously-formed- 

screens and allowed to-settle-overnight. Four-kinds of webs were dry-laid, according to Tanchis (2008) for 

ionic-starch-bonding and three-webs for Synemul TB 341 resin. These included three-webs, treated with Sodium 
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Hydroxide at 2%, 4% and 8% used for both; ionic-starch-bonding and Synemul-TB-341-resin. One-web was-

made from luffa cylindrica fibres, boiled in-ionic-liquid for one-hour, in-order to-investigate the total-effect, of 

ionic-liquid, on the-properties luffa cylindrica nonwoven-structure.  

Figure 1(b) shows examples of the-dry-laid-webs, after impregnation, with-bonding-agents. Bonding-

agents used were-made of maize-starch, boiled in-ionic liquid and Synemul TB 341 resins, as summarized in 

Table 2, below. The-produced-nonwoven-structures were allowed to-dry, until they were free from tackiness and 

completely-solid, for one-week. For easy-identification, the-structures were given codes, instead of the-

complete-descriptive-names. Batt-code represents the-combination of the batt-prefix, explained in the-previous-

section and the-initials of the-bonding-agent employed. For-example, 2IS has prefix 2, which implies 2% NaOH 

and suffix IS which implies ionic liquid/starch adhesive.  

Table 2: Summary of web-bonding-adhesive, to produce nonwoven-structures 

Batt Code  Treatment media  Bonding agent  
IL  Ionic liquid  Ionic Starch  

2IS  2% NaOH  Ionic Starch  

4IS  4% NaOH  Ionic Starch  

8IS  8%NaOH  Ionic Starch  

2S  2% NaOH  Synemul TB 341  

4S  4% NaOH  Synemul TB341  

8S  8%NaOH  Synemul TB341  

 The-dry-nonwoven-structures were then finished, by-passing-through pressing-rollers, as-shown in-

Figure 1(c), to make the nonwoven-structure more-compact and stronger, according to Desai & Balasubramanian  

(1994).  

 
           (a)                               (b)                                   (c) 

Figure 1: Production of the-nonwoven-structure.  

Key: (a) The-random dry-laid-web, from luffa cylindrica fibres; (b) The-adhesively-bonded web, from luffa 

cylindrica fibres; (c) Consolidating the nonwoven-structure, from luffa cylindrica fibres 

 

2.2. Methods 

2.2.1. Testing of the produced nonwoven-structure from luffa cylindrica fibres  

Testing is the-process of verifying conformity-to-requirements, with the-help of either-artificial or natural means. 

In-this-study, testing will, mainly, refer to the-activities of establishing the-practicality of the- nonwovens-

performance, in-relation to-what will-be-expected of it, in-real-applications. For-this-reason, the-nonwoven will-

be-required, to-conform, to-acceptable loading-strength, bursting-strength, and appreciable-resistance, to-

abrasive-forces. It-is, thus, crucial to-review, the-available and best-practice, on how-to-simulate the-

performance, of the-nonwoven, through-these-tests, so-as-to-avoid cognitive dissonance, in the-intended-market.  

All-the-testing was done, under standard-laboratory-conditions; at a-temperature of 20±2
0
C and 65±2% 

Relative Humidity (RH). All the-tests, identified-below, were conducted, according to-their -respective-

standards. The nonwoven-structures were pre-conditioned for 24-hours, prior to the-analysis.  

2.2.1.1 Mass-per-unit-area and thickness-test of the nonwoven-structure.  

According to ISO 9073-1:1989 Textiles – test methods for nonwovens - part 1: Determination of mass per unit 

area, the-principle involves measurement of an-area and mass of a-test-piece and calculation of its-mass per unit 

area in grams per square-meter. From each-sample, at least three-test-pieces are cut, with an-area of 50000mm
2
, 

using either the-die or the-template and a sharp-razor-blade. In-case of insufficient-material, a largest-possible-

rectangle is cut, and its-area determined, with the-help of a-meter-rule. The-mass per-unit area is then 



Chemical and Process Engineering Research                                                                                                                                    www.iiste.org 

ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) 

Vol.50, 2017 

 

5 

determined, under standard-atmosphere for testing (Indian Standard, 2011).  

In this-study, the structure-samples were-cut into rectangular-shape and their-length and width were 

obtained, using a meter-rule. The-obtained-length and width was used to calculate the-area by multiplying the- 

length by width. The-same-sample was then weighed, using a high-precision weighing-balance, and the- weight 

was-recorded. The-mass-per-unit area was determined, from dividing the-sample-mass, by calculated area, as 

shown, in-equation-below. For each-nonwoven-structure, 5-specimens were-evaluated and the average-reading 

was recorded, as the-mass per-unit-area.   

Mass per unit area = ������ ���� �� 	
���/������ �
�� �� ��.���
��      (ISO 9073-1:1989) 

ISO 9073-2:1995 specifies a-method, for the-determination of the-thickness of both-- normal and 

bulky-nonwoven-structures, under-specific-pressure. The-principle involves measuring the-distance, between 

the-reference-plate, on-which the-nonwoven rests, and a-parallel-presser-foot, which exerts a specified-pressure, 

on the area under-test. For normal-nonwoven-structures, the-principle involves the-use of two-circular-

horizontal-plates, attached-to a-stand, comprising an-upper-plate, or presser-foot, capable of moving-vertically 

and having an-area of, approximately, 2500mm
2
, and a-reference-plate, having a plane-surface of diameter, at 

least-50mm greater-than that, of the-presser-foot. A measuring-device with graduations of 0.01mm is used, for 

measuring the-distance, between the-reference-plate, and the-presser foot. To-obtain results, 10-test-pieces are 

taken and their-thickness readings used, to-calculate the mean-thickness, of the-nonwoven in mm, and, the-

coefficient of variation, if required (Indian Standard, 2011).  

The-technique, for determining thickness, of normal-nonwoven-structures, was employed, in-this study. 

The-nonwoven-structures were pressed, under a-constant-pressure and the-thickness was measured, using a-

Vanier-calliper. For-each nonwoven-structure, 10-specimens-reading were conducted, and the- average 

computed-thickness, was-recorded, as the-thickness, of the nonwoven-structure.   

2.2.1.3 Tensile strength and elongation of the-nonwoven-structure 

Tensile strength is indicative of the-strength, derived from factors, such-as: fibre-strength, fibre-length, and 

bonding. It-may-be-used, to-realize information, about these-factors, especially when used, as a-tensile strength-

index. For-quality-control-purposes, tensile-strength has been used, as an-indication of the serviceability of 

many-nonwovens, which are subjected, to a-simple and direct-tensile-stress. When evaluating the-tensile-

strength, the-stretch and the-tensile- energy-absorption for these-parameters can be of equal or greater-

importance in predicting the-performance of nonwovens, especially when that-paper is subjected to an-uneven-

stress, such as gummed-tape, or a-dynamic-stress, such as when a-sack full of granular-material, is dropped.  

The-exposure of the-nonwoven-fabric, to a-high-relative-humidity, before pre-conditioning and 

conditioning, can-lead to-erratic-results, varying from a-decrease-in-stretch and tensile, to a- substantial increase, 

in these-properties. Careful-protection, of the-sample, from the-time of sampling until testing is, therefore, very-

important.  

ISO 9073-3:1989 Textiles - Test methods for-nonwovens. Part 3: Determination of tensile strength and 

elongation; specifies a-method for the-determination of the-tensile-properties of nonwovens, by the cut-strip-

method. The-principle involves application of a-force-longitudinally, to-a-test-piece, of a specified length and 

width, at a-constant-rate of extension. Values for breaking-strength and elongation, are then determined, from 

the-recorded force-elongation-curve.  

Preparation and conditioning of test pieces: Unless otherwise specified, cut 5-test-pieces in the- 

machine-direction and 5 in the-cross-machine-direction, ensuring that they are all-taken, at-least 100 mm from 

the-edge, and are equally-distributed, across the-width and length, of the-specimen. Cut the-test-pieces 50 

mm±0.5 mm wide and of sufficient-length, to-allow a-jaw-separation of 200 mm, thus avoiding risks, due to 

local-heterogeneity of nonwovens, or to undue-cutting, of long-fibre nonwovens.  

Set the-jaws of the-tensile-testing-machine 200 mm + 1 mm apart, and clamp the-test-piece, between-

them; straighten-out the-test-piece, until the-force-curve is on the zero-line. Apply a-constant-rate of extension, 

of 100 mm/min, and record the-force-elongation-curve, for each-test-piece. Determine the elongation, of the-

test-piece, at the-maximum-breaking-strength, and express-this, as a-percentage, of the nominal-gauge-length, 

that is, the-original-jaw-separation. Discard the-results, from any-test-piece, where the-break occurs, in-the-

clamp, or where any-break reaches the-jaws, at a-minimum of one-point. Determine the-means of the-results, 

expressing the-average-breaking-strength, in Newtons, to the-nearest 0.l N, and the average-percentage-

elongation at break, to the-nearest 0.5 %. Calculate the-coefficients of variation, of the- results.  

In this-study, to-achieve results, with minimal-error, 6 test-specimens were cut from the longitudinal 

and crosswise-directions, to-obtain the-average, of each of the 7 fabric-samples. The nonwoven dimensions 

were-set, at 50±0.5 mm wide, with sides, parallel within 0.1 mm and 100 ± 5 mm long gauge-length, to-facilitate 

easy-clamping, of the-fabrics, in the-machine-jaws. The-fabric-samples were checked for any-abnormalities, 

creases and wrinkles, which may-interfere, with the-accuracy, of the findings.  

2.2.1.4. Bursting strength of the nonwoven-structure 

Bursting strength is a-measure of the-strength of the-material, when a-multidirectional-force is applied, on-it. 
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Bursting-strength, thus, implies the-measure of resistance, of a-material to rupture (Rashed, 2014) or wear- 

damage of the-material (Das & Raghav, 2009). The-methods used, for determination of bursting-strength, of 

textile-structure, include the-Ball-burst-method (Wang, 2011), Pneumatic-bursting-method (Apurba, 2012), and 

Hydraulic-bursting-method (Akaydin, 2009). Generally, bursting-strength depends-upon the-kind, proportion, 

and amount of fibres present, in-the-sheet, their-method of preparation, their-degree of beating, and refining, 

upon sheet-formation, and the-use of additives.  

ISO 13938-2:1999 describes a Pneumatic-method, for the-determination, of bursting-strength, and 

bursting-distension of knitted, woven, nonwoven and laminated-fabrics. The-principle involves clamping a test-

specimen, over an-expansive-diaphragm, by-means of a-circular-clamping-ring. The-compressed air pressure, is, 

then, increased, on the-underside of the-diaphragm, causing swelling of the-diaphragm and the- test-specimen. 

The-pressure is increased smoothly, until the-test-specimen-bursts. The-mean bursting strength (KPa) and mean-

height, at-burst (mm) are then recorded. The-bursting-strength and bursting- distortion are determined, via the-

formula below (Indian Standard, 2009).  

Bursting strength = mean bursting pressure – diaphragm pressure. 

In-this-study, 10-specimens were-used, for each-reading; by-obtaining the-average-reading, for 5-tests, on each-

fabric-surface i.e. five-tests were-done, on one-side, to-obtain the-average-reading, before turning to-the other-

side, to-obtain the-average, of five-tests.  

2.2.1.5 Tearing strength of the nonwoven structure 

Tearing and tensile-tests are two-main-domains of interest, of research, as-regards the-physical-behaviour, of a 

textile-structure. However, only rupture, caused-by tearin,g is much-more-closely related, to real-life-usage of 

the-structures (Kan, 2012). Tearing-tests can-be conducted, using the-Trapezoidal-method, Elmendorf- method, 

Trouser-method, or Wing and Tongue-tear-method. The-trouser-tear-test is mainly-used, for evaluating 

elastomeric-materials (Chang, 2002). Elmendorf-method is commonly-used for testing cotton and cotton-

blended-fabrics (Dhamija & Chopra, 2007). The wing-tear-method has been used by Beata & Iwona (2010), for 

determining, the static-tear-resistance, of woven-fabrics (Witkowska & Frydrych, 2010).  

ISO 9073-4:1997 specifies a-method, for the-determination, of tear-resistance of nonwovens, by the 

trapezoid-method. The-method involves marking a-trapezoid, on a-test-piece; clamping of the-non-parallel- sides 

of the-trapezoid, in the-jaws of a-tensile-testing-machine, and application of a-continuously increasing-extension, 

to the-test-piece, in-such-a-way, that a-tear-propagates, across its-width. The-average maximum-tear-resistance 

is then determined, in Newtons (Indian Standard, 2011). The-samples were cut, according to-the-template, 

shown in Figure 2 below, from regions, with minimal to no-imperfections.  

 
Figure 2: Template for trapezoidal testing of bursting strength (ISO 9073-4:1997). 

The-machine-jaws were adjusted, to an-initial-length of 25-mm, and the-sample-piece, was clamped, 

along the-dotted-lined, shown in Figure 2 above. The tearing-strength, was then read from the-peaks of the 

graphs, plotted by the-machine, on a-monitor. 10-tests were conducted, for each-sample, 5 for each 

perpendicular and parallel-direction, to-obtain-average, for both-directions, of the-structure, as outlined in ISO 

9073-4:1997. The-averages of the-tearing-strength, computed as tsx (longitudinal tearing strength) and tsy 

(crosswise tearing strength) were used for the-analysis.  

 

2.3. Analysis of the nonwoven structure properties.  

The-results, from testing of the-nonwoven-structure, from luffa cylindrica fibres, were analyzed using Microsoft 

Excel, 2010-software and presented via bar-charts with percentage-error-bars, generated by the- software, from 

input-data.  
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3. Results, Analysis of results and Discussion 

For-ease of logical-follow-up and comprehension, Results, Analysis of results, and Discussion, are presented-

jointly, in the-following-respective-sections:    

 

3.1 Mass per unit area 

Figure 3 shows the-variation of grams-per-square-meter of different-nonwoven-structures, from luffa cylindrica 

fibres.  

 
Figure 3: GSM of nonwoven structures from luffa cylindrica fibres 

Keys (see table below): 

 
*NOTE: This-key applies to-all the-subsequent-Figures, with similar-abbreviations. 

As shown in-Figure 3, the-mass-per-unit-area, of the-nonwoven-structures, bonded with the Synemul 

TB 341 adhesive, is higher than that of the-structures, bonded with ionic-liquid/starch adhesive. For the-same-

fibre-treatment of 2% NaOH and approximate thickness of 1.5mm; the-nonwoven-structure from Synemul TB 

341 weighed 51.4% more than, the-nonwoven-structure, made-from ionic-liquid/starch adhesive.  

 

3.2. Thickness 

Figure 4 shows the-thickness, of different-nonwoven-structures, from luffa cylindrica fibres. As shown in Figure 

4, the-thickness of the nonwoven-structures was consolidated to 1.63±0.14mm. There was a-variation of 6.25%, 

in the-thickness of the-nonwoven-structures, bonded by-ionic-liquid/starch-adhesive. Synemul TB341-adhesive-

bonded-structures, exhibited a-thickness-variation of 16.67%. This can-be-attributed, to the observed 

plasticization-effect, of sodium Hydroxide, on the-resin, since higher-concentrations, resulted in higher-viscosity.  
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Figure 4: Thickness for different nonwoven-structures 

 

3.3. Tensile-strength  

As-shown, in-Figure 5(a), the-tensile-strength of the-nonwoven-structures, seems vary, with the-pre treatment, 

given to-the-fibres, more than the-orientation, of the-fibres in the-nonwoven-structures. Nonwoven-structure, 

from luffa cylindrica fibres, treated with ionic-liquid, exhibited the-second-lowest strength of only 36.67% and 

39.13% better than the-nonwoven-structure, from the-fibres, treated with 8%NaOH, in the-longitudinal, and 

crosswise-directions, respectively. The strength-percentage-range for fibres treated, with Sodium Hydroxide, and 

bonded with ionic-liquid/starch-adhesive, was 69.84% and 80.28%, in the-longitudinal and crosswise directions, 

respectively. The-strength-difference between orientations, of the-different nonwoven-structures, was 

20.00±6.05%, which is-lower than the-effect of pre-treatment used, implying that nonwoven-structures were 

fairly-random-laid.  

    
(a)                                                      (b) 

Figure 5: Tensile-strength for nonwoven structures from luffa cylindrica fibres. 

Key: (a) Bonded with ionic liquid/ starch adhesive, (b) Bonded with Synemul TB 341 resin. 

Figure 5(b) shows the-tensile-behaviour of luffa cylindrica random-laid nonwoven-structures bonded with 

Synemul-TB-341-adhesive. It-shows that the-tensile-strength of the nonwoven-structures were highly dependent, 

on the-pre-treatment given to luffa cylindrica fibres, before laying. The strength-reduction from 2%NaOH to 

8%NaOH was 78.33% and 78.54%, in the-longitudinal and crosswise-direction, respectively. This-high, but 

close-reduction in-the-strength, of the-nonwoven-structures bonded, with the-Synemul TB 341-adhesive, also-

reveals that the-structures, were isotropic, in-nature – that is, the-probability, of a fibre-segment, in any-direction, 

between 0 and π is the same (= 1/
 ) (Batra, 2012).  

As regards the-effect of bonding-agent, nonwoven-structures bonded with the Synemul TB 341 
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exhibited much-higher tensile-strength of up to 97.28%, for same-pre-treated luffa cylindrica fibres.  

 

3.4. Elongation 

As-shown in-Figure 6(a), the-percentage-elongation, of the-nonwoven-structures, seems-vary, with the- pre-

treatment, given to the-fibres, more than the-direction of the-nonwoven-structures, considering the 4IS- structure. 

Nonwoven-structure from luffa cylindrica fibres, treated with ionic-liquid, exhibited the highest-percentage-

elongation, in the-crosswise (Ey) direction of up to 6.6%, which was 57.58% greater than the lowest-percentage-

elongation (exhibited by 4IS). The-elongation-percentage-range, for fibres, treated with Sodium Hydroxide, and 

bonded-with ionic-liquid/starch-adhesive, was 33.33% and 46.15%, in the-longitudinal and crosswise-directions, 

respectively. The-strength-difference between orientations of the different nonwoven-structures, was up to 0.00% 

(4IS) which is-lower than the-effect, of pre-treatment used, implying that nonwoven-structures, were fairly-

random laid and isotropic.  

         
(a)                                                      (b) 

Figure 6: Percentage elongation for nonwoven structures from luffa cylindrica fibres. 

Key: (a) Bonded with ionic liquid/ starch adhesive, (b) Bonded with Synemul TB 341 resin. 

Figure 6(b) shows the percentage-elongation-properties of luffa cylindrica random-laid nonwoven-structures 

bonded with Synemul TB 341 adhesive. It-shows that the-percentage-elongation of the-nonwoven-structures 

were highly-dependent, on the-pre-treatment, given to luffa cylindrica fibres, before laying, with a-gradual- 

decline, from 2S to 8S structures. The-reduction, in-percentage-elongation from 2%NaOH to 8%NaOH was 

33.33% and 0.00%, in the-longitudinal and crosswise-direction, respectively. The 0.00% difference for the 

structures 2IS and 8IS implies, that the-percentage-elongation in nonwoven-structures, bonded by ionic 

liquid/starch adhesive, was independent of the pre-treatment, given to luffa cylindrica fibres.  

As-regards the-effect of bonding-agent, nonwoven-structures, bonded with the Synemul TB 341, 

exhibited much-higher-percentage-elongation of up to 73.91%, for same pre-treated luffa cylindrica fibres.  

 

3.5. Tearing- strength  

As-shown in-Figure 7(a), the-tearing-strength of the nonwoven-structures, seems vary with the-pre treatment, 

given to-the-fibres, more than the-direction, of the-nonwoven-structures. Nonwoven structure from luffa 

cylindrica fibres, treated with ionic-liquid, exhibited the-lowest-strength, in the-longitudinal (tsx) direction of 

2293 mN, which was 82.97% lower than the-exhibited-maximum by 2IS nonwoven-structure. The tearing-

strength had percentage-range, for fibres, treated with Sodium Hydroxide and bonded-with-ionic liquid/starch-

adhesive, of 66.17% and 48.74% in the longitudinal and crosswise directions, respectively. The strength-

difference, between orientations of the-different nonwoven-structures, was up to 1.52% (4IS), which is lower 

than the-effect, of pre-treatment used, implying that nonwoven structures were, fairly-random laid, isotropic, in-

nature.  
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(a)                                                   (b) 

Figure 7: Tearing strength for nonwoven structures from luffa cylindrica fibres. 

Key: (a) Bonded with ionic liquid/ starch adhesive, (b) Bonded with Synemul TB 341 resin. 

Figure 7(b) shows the-tearing-strength-behaviour of luffa cylindrical, random-laid, nonwoven-structures, bonded 

with Synemul TB 341-adhesive. It-shows, that the-tensile-strength, of the nonwoven-structures, were dependent 

on the-pre-treatment, given to luffa cylindrica fibres, before laying, especially in the-longitudinal (tsx) direction. 

The tearing- strength reduction, from 2%NaOH to 8%NaOH was 65.73% and 76.63% in the- longitudinal and 

crosswise-direction, respectively. This-high-reduction in the-strength of the nonwoven structures bonded with 

the Synemul TB 341 adhesive, also reveals, that the-structures were isotropic, in nature. This is because, when 

compared to 8.19% difference, between tsx and tsy of 8S nonwoven structure, except for tsy for 4S nonwoven-

structure, which shows a tsx 65.01% greater than tsy. This can be attributed to some-inevitable-errors, which 

may-result, from accidental-orientation, of the-fibres during-consolidation, causing the-internal-fibres, to-realign 

more in one-direction, leaving the-other-direction, dependent on the-adhesive, which has lower-tearing-strength.  

As regards the-effect of bonding-agent, nonwoven-structures, bonded with the Synemul TB 341 

exhibited much-higher tearing-strength of up to 73.19% (tsy 2) for same pre-treated luffa cylindrica fibres.  

 

3.6. Bursting strength  

As-shown, in-Figure 8, the-bursting-strength increases, with concentration, of Sodium Hydroxide, used in pre-

treatment, as observed in a 45.39%, increase from 2IS to 8IS. However when Synemul TB 341 was used, the-

bursting-strength appears to-decrease, by 58.66% from 2S to 8S nonwoven-structures. As-much as the bursting-

strength of Synemul TB 341 bonded-nonwoven-structures decreased, 8S nonwoven-structure was only 3.85%, 

weaker than 8IS. Therefore overall, Synemul TB 341 bonded-nonwoven-structures exhibited superior-bursting 

strength, as-compared nonwoven-structures, bonded with ionic-liquid/starch-adhesive.  

 
Figure 8: Bursting strength of nonwoven structures from luffa cylindrica fibres 
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3.7. Specific requirements for shopping bags in Kenya  

Table 3 shows specific-requirements for shopping-bags in Kenya, which used, in this-study, as a bench-mark, to-

assess the-suitability of nonwoven-structures for shopping-bags.    

Table 3 Specific requirements for paper shopping-bags in Kenya (Kenya Standard KS 2523:2014) 

 
  

4. Conclusion and Recommendations 

4.1. Conclusions 

From the-tests, conducted on the-nonwoven-structures, it was evident, that the-nature of bonding, has 

significant-effect, on the-mass-per-unit-area, tensile-strength and elongation, tearing-strength and bursting 

strength of the-nonwoven, made from luffa cylindrica fibres.  

The-mass-per-unit-area of the-nonwoven-structures, ranged from 1645.85 g/m2 to 3386.26 g/m
2 

with 

an-average-thickness, ranging from 1.5mm to 1.8mm. The tensile-strength, in the-longitudinal-direction was 

found to-be-considerably-greater, than the-crosswise tensile-strength. The-ranges for were Tx = 3.0N - 1.9N and 

Ty = 2.3N – 1.4N for ionic starch bonded nonwoven-structures. Synemul TB 341 bonded structures tensile-

strength was Tx = 110.2N – 23.9N and Ty = 86.2N – 18.5N. The-percentage-elongation was in-the range of 3.6% 

- 4.2% in Ex and 6.6% - 5.0% in Ey.  

The tearing-strength was ranging from 32119 mN to 4555 mN, in longitudinal-direction and 47952 mN 

to 5944 mN, in the crosswise-direction, which satisfies the-range of 320 mN to 540 mN requirements, for 

shopping-bags, in Kenya, specified by KEBS (Kenya Standard: KS 2523:2014).  

The bursting-strength was in the-range of 79.4 KPa to 338.2 KPa, which satisfies the-range of 90 KPa 

to 162 KPa requirements, for-shopping-bags, in Kenya, specified by KEBS (Kenya Standard: KS 2523:2014).  

 

4.2 Recommendations for the nonwoven structure from luffa cylindrica fibres  

(1) Since the-nonwoven, from ionic liquid/starch bonding-agent was fairly-strong, but relatively stiff, 

this-material can-be-used, as a-space-filler, in-packaging fragile-objects, as a biodegradable substitute, to some-

plastics, which are not-environmentally-friendly.  

(2) The-nonwoven, produced from ionic-liquid, pre-treated fibres and ionic liquid/starch bonding agent, 

was relative-weak, but it-can-find good-use, in-packaging light-items, which do-not require excessive-handling.  

(3) The-nonwoven-structure developed with Synemul TB-341-resin, exhibits very-good mechanical 

properties, which satisfied most of the requirements, for shopping-bags, on the-Kenyan-market.  

(4) There is opportunity of blending luffa cylindrica fibres with other-fibres, in order to avail more-

potential-alternatives as regards substitutes to polyethylene- bags on the Kenyan-market.  

(5) There is an-opportunity, for exploring different-designs, of shopping-bags, made from the proposed-

nonwoven-structure, and subsequent-testing of these-bags, since this was outside of the-scope, of this-concise-

study.  
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