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Abstract 

In this paper, the effects of heat and mass transfer on an unsteady MHD flow of a Casson fluid past a semi-infinite 

moving vertical plate with heat source/sink are investigated. The governing equations are transformed into a 

system of linear partial differential equations using appropriate non-dimensional variables. The resulting equations 

are solved analytically using perturbation technique. Further the expressions for velocity, temperature and 

concentration are obtained with the help of boundary conditions. Finally the effects of various parameters on 

velocity, temperature and concentration are shown in graphs.  It is found that velocity increases as Casson 

parameter increases and temperature increases as heat absorption coefficient decreases. 

Keywords: Casson parameter, MHD, Heat source/sink, Heat and mass transfer. 

 

1. INTRODUCTION 

The analysis of boundary layer flow of a unsteady heat and mass transfer fluids has been the focus of extensive 

research by various scientists due to its importance in continuous casting, glass blowing, paper production, polymer 

extrusion and several others. One of my refer to recent investigations by Hayat and Qasim [1], Fang et al. [2], 

Khan and Pop [3], and Kandaswamy et al. [4]. On the other hand, mass transfer is important due to its appearance 

in many scientific disciplines that involve convective transfer of this phenomenon are evaporation of water, 

separation of chemicals in distillation processes, natural or artificial sources etc; 

However, there is another model known as Casson model which is recently the most popular one. Casson 

[5] was the first who introduce this model for the prediction of the flow behavior of pigment oil suspensions of the 

printing ink type. Later on several researchers studied Casson fluid different flow situations and configurations. 

Amongst them, Mustafa et al. [6] studied the unsteady flow and heat transfer of a Casson fluid past a moving flat 

plate. Rao et al. [7] considered the thermal hydrodynamic slip conditions on heat transfer flow of a Casson fluid 

past a semi-infinite vertical plate. Heat transfer flow of a Casson fluid past a permeable shrinking sheet with 

viscous dissipation was considered by Qasim and Noreen [8]. 

The objective of this paper is consider unsteady MHD convective heat and mass transfer of a Casson fluid 

past a semi-infinite vertical permeable moving plate with heat source/sink in the presence of Casson parameter, 

heat source parameter effects. Most of previous works assumed that the semi-infinite plate is rest. In the present 

work, it is assumed that the plate is embedded in a uniform porous medium and moves with a constant velocity in 

the flow direction in the presence of a transverse magnetic field.  Chamkha investigated [9] unsteady MHD 

convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption. 

Recently Kim [10] discussed unsteady MHD convective heat transfer past a semi-infinite vertical porous moving 

plate with variable suction. 

 

2. PROBLEM FORMULATION 

We consider unsteady two-dimensional flow of an incompressible, viscous, electrically conducting and heat-

absorbing fluid past a semi-infinite vertical permeable plate embedded in a uniform porous medium which is 

subject to slip boundary condition at the interface of porous medium which is subject to slip boundary at the 

interface of porous and fluid layers. A uniform transverse magnetic field of strength �� is applied in the presence 

of radiation and concentration buoyancy effects in the direction of �∗-axis. The transversely applied magnetic field 

and magnetic Reynolds number are assumed to be very small so that induced magnetic field and Hall Effect are 

negligible. It is assumed that there is no applied voltage which implies the absence of electric field. Since the 

motion is two dimensional and the length of the plate is large enough so all the physical variables are independent 

of 	�∗ . The wall is maintained at constant temperature ��  and concentration 		� , higher than the ambient 

temperature �
 and concentration		
, respectively. Also, it is assumed that there exists a homogeneous first-order 

Casson fluid, heat source and the fluid. It is assumed that the porous medium is homogeneous and present 

everywhere in local thermodynamic equilibrium. Rest of properties of the fluid and the porous medium are 

assumed to be constant. In the above assumptions the governing equations as follows: 
��∗
�∗ = 0        (1) 

��∗
��∗ + �∗ ��∗�∗ = − �

�
��∗
��∗ + �1 + �

�� �
���∗
�∗� + � !"� − �
# + � $"	 − 	
# − � �∗

%∗ −
&
� ��'(∗       (2) 
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�-
��∗ + )∗ �-

�∗ = / ��-
�∗�                                                                                                                    (4) 

Where �∗	and �∗ are the dimensional distances along to the plate. (∗ and )∗ are the components of dimensional 

velocities along �∗	and �∗	directions. g is the gravitational acceleration, �∗	 is the dimensional temperature of the 

fluid near the plate,�
 is the stream dimensional temperature, 	∗ is the dimensional concentration, 	
 is is the 

stream dimensional concentration.  !  and  -  are the thermal and concentration expansion coefficients, 

respectively. 0∗  is the pressure ,	� is the specific heat of constant pressure, �� is the magnetic field coefficient, 1 

is viscosity of the fluid,  2 is the density, K  is the thermal conductivity, 3	 is the density magnetic permeability of 

the fluid, � = 4
�  is the kinematic viscosity, D is the molecular diffusivity,5�	is the dimensional heat absorption 

coefficient and   is the Casson parameter. The fourth and fifth terms of RHS of the momentum Eq. (2) denote the 

thermal and concentration buoyancy effects, respectively. The second and third term on the RHS of Eq. (3) denote 

the inclusion of the effect of thermal radiation and heat absorption effects, respectively. 

(∗ = (�	∗ , � = �� + 7"�� − �
#89∗�∗, 	 = 	� + 7"	� − 	
#89∗�∗		:;		�∗ = 0	  	                       (5)   

  (∗ = <
∗ = <�=1 + 789∗�∗>, � → �
	, 		 → 	
		:@		� → ∞                                                        (6)                                                                                              

    Where <�, 	� 	:BC	��		 are the wall dimensional velocity, concentration and temperature, respectively. 

<
∗ , 	
, :BC	�
	  are the free stream dimensional velocity, concentration and temperature, 

respectively	<�	:BC	B∗are constants. 

    It is clear from Eq.(1) that the suction velocity at the plate surface is a function of time only. Assuming that it 

takes the following exponential form:   

)∗ = −D�"1 + 7E89∗�∗#                                                                                                                  (7)                  

Where E is a real positive constant, 7 and 7E are small less than unity, and D� is a scale of suction velocity which 

has non-zero positive constant. Outside the boundary layer, Eq. (2) gives 

− �
F
GH∗
GI∗ =

GJK∗
GL∗ +

M
F B�'U
∗ + P

Q∗U
∗                                                                                                    (8) 

Introducing the non-dimensional quantities 

 ( = �∗
R, ,  ) =

S∗
T,, 	U=

S,∗
V 	 , <
=

RK∗
R, ,  t=

T,��∗
V , W = !X!	K

!YX!K ,			 	5� =
+Z∗V�"-YX-K#
T,�"!YX!K# ,     

		 = -X-	K
-YX-K , <� =

�.∗
R,  , Sc=	V[,			 \ = T,�%∗

V� 	,   ∅ = +,V
�-.T,�

	 ,                                                             (9) 

^! =	 �_V"!YX!K#�`
R,T,�

, $̂=
�_V"-YX-K#�a

R,T,�
,		b = &Vc,�

�T,�
,   de = V-.

% = V
f			 

In the view of the above non-dimensional variables, the basic field of Eqs. (2)-(4) can be expressed in non-

dimensional form as 

 
��
�� − "1 + 7E89�# ���	g =

hRK
h� + ���

�	g� "1 +
�
�# + ^!W + $̂	 + i"<
 − (#                                  (10) 

 
�j
�� − "1 + 7E89�# �j

�	g	 =
�
kl

��j
�	g� − ∅W + ∅	                                                                               (11) 

 
�-
�� − "1 + 7E89�# �-�	g =

�
m$

��-
�	$�                                                                                                    (12) 

Where,	i = �b + �
%�  

 The corresponding boundary conditions (5) and (6) in dimensionless form are    

u= <� , W = 1 + 789�, C=1 + 789� at U =0                                                                                    (13)                                                                  

u→ <
 = "1 + 789�#	, W → 0, 	 → 0	:@		U → ∞                                                                         (14) 

 

3. PROBLEM SOLUTION 

Eqs. (10)-(12) represent a set of partial differential equations that cannot be solved in closed-form. However, it 

can be reduced to a set of ordinary differential equations in dimensionless form that can be solved analytically. 

This can be done by representing the velocity, temperature and concentration as  

u=n�"U# + 789�n�"U# + o"7'#                                                                                       (15) 

W=	��"U# + 789���"U# + o"7'#                                                                                         (16) 

	 = ℎ�"U# + 789�ℎ�"U# + o"7'#                                                                                    (17) 

Substituting (15)-(17) into Eqs.(10)-(12) and equating the harmonic and non-harmonic terms, and neglecting the 

higher order o"7'#, :BC	 simplifying to get the following pairs of equations for  n�,��,ℎ� and n�,��, ℎ�. 

"1 + �
�#	n�qq + n�q −in� = −i − ^e!�� − ^e$ℎ�                                                                           (18) 

"1 + �
�#	n�qq + n�q − "i + B#n� = −"i + B# − En�q − ^e!�� − ^e$ℎ�                                            (19)           
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	��qq + de��q − Pr∅�� = −Øℎ�                                                                              (20) 

 ��qq + de��q − Pr	"∅ + B#�� = −deØℎ� − deE��q                                                             (21)                     

 ℎ�qq + uvℎ�q = 0																		                                                                                            (22) 

ℎ�qq + uvℎ�q − Buvℎ� = −Euvℎ�q                                                  (23)                                                          

Where the prime denotes ordinary differentiation with respect to y. The corresponding boundary conditionsare                                                                                                                                              

n� = <�, n� �� = 1, �� =1,	ℎ� = 1, ℎ� = 1									:;	U = 0                                                             (24) 

n� = 1,   n� = 1,	�� → 0, 	�� → 0, ℎ� → 0, ℎ� → 0   as  U → ∞.                                          (25)  

Without going into the details, the solutions of Eqs. (18)- (23) With the help of boundary conditions (24) and (25), 

we get 

n� = 1 + \�w8Xxyg − \��8Xxzg − \�'8Xm$g                                                                                 (26) 

n� = 1 + \''8XxZZg + \�{8Xxyg + \�|8Xxzg + \'�8Xm$g + \'�8Xx}g                                     (27) 

�� = \'8Xxzg + \�8Xm$g                                                                                                               (28) 

�� = \|8Xx~g + \�8Xxzg + \�8Xm$g + \{8Xx}g                                                                        (29) 

ℎ��	�����                                                                                                                                          (30) 

ℎ� = 8Xx}g + �m$
9 "8Xx}g − 8Xm$g#                                                                                               (31) 

In view of the above solutions, the velocity, temperature and concentration distributions in the boundary layer 

become 

("�, ;# = "1 + \�w8Xxyg − \��8Xxzg − \�'8Xm$g 	# + 789�"1 + \''8XxZZg + \�{8Xxyg + \�|8Xxzg +
\'�8Xm$g + \'�8Xx}g#                                                                                             (32)                                               

W"�, ;# = "\'8Xxzg + \�8Xm$g# + 789�"\|8Xx~g + \�8Xxzg + \�8Xm$g + \{8Xx}g			#          (33) 

	"�, ;# = 8Xm$g + 	789�"8Xx}g + �m$
9 "8Xx}g − 8Xm$g##                                                             (34) 

The Skin-friction coefficient, the Nusselt number and the Sherwood number are important physical parameters for 

this type of boundary-layer flow. These parameters can  be defined and determined as follows: 

	�� = �Y∗
�R,T, = ����g���	g��  

          ="−�|\�w + \���� + \�'uv# + 789�=−���%�� −�|\�{ −��\�| − uv\'� −�w\'�>(35) 

i(� = �
� �`��∗���	��,
"!YX!K# ⇒ i(� �8�� = ��j�g���	g��="−��\' − \�uv# + 789�"−��\| −��\� − uv\� −�w\{#    

                                                                                                                                                         (36) 

uℎ� = 	�
� �a��∗���	��,	
"-YX-K# ⇒ uℎ� �8�� = ��-�g���	g��=−uv + 789�"−�w + �m$

9 "−�w + uv##                (37)                 

 

4. RESULTS AND DISCUSSION 

Numerical evaluation of the analytical results reported in the previous section was performed and a representative 

set of results is reported graphically in Figs. 1-7. These results are obtained to illustrate the influence of the solutal 

Grashof number $̂ , the heat absorption coefficient Ø , Schmidt number Sc, thermal Grashof number ^!  and 

Casson parameter   on the velocity, temperature and concentration profiles. 

Fig.1 shows that species concentration profiles for different values of Schmidt number Sc. It is clear that 

the concentration boundary layer thickness decreases with Sc, concentration decreases exponentially and attains 

free stream condition for large values of Sc. The temperature profiles for different values of heat absorption 

parameter are depicted in fig. 2. It is noticed that the temperature decreases significantly with the increasing values 

of  ∅, because when heat is absorbed, the buoyancy force decreases the temperature profiles. 

Fig.3 represents the decreases in temperature profiles when the Schmidt number Sc is increases. Also we 

observe that for low values of Sc (0.5) the temperature is very high comparing with higher values Sc (3.0). Fig.4 

represents the decrease in fluid velocity when the heat absorption parameter ∅ is increased, it is clear that the hydro 

magnetic boundary layer decreases as the heat absorption effect increase also observed that in the absence of heat 

absorption the velocity attains maximum peak value. 

Velocity distribution for various values ^! and solutal buoyancy force parameter ^- are plotted in fig.5 

and fig.6. As seen from this figures that the maximum peak value is observed in the absence of buoyancy force, 

this is due to fact that buoyancy force enhances fluid velocity and increase the buoyancy layer thickness with 

increase in the values of ^! and ^-. 
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Fig 1 Effects of Sc on concentration profiles 

A=0.50, E=0.2, n=0.1, t=1.0. 

 
Fig 2 Effects of Ø on temperature profiles. 

Sc=2, A=0.50, 7=0.2, n=0.1, t=1.0, Pr=0.71. 
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Fig 3 Effects of Sc on temperature profiles. 

A=0.50, 7=0.2, n=0.1, t=1.0, Pr=0.71, Ø=1. 

 

 
Fig 4 Effects of Ø on velocity profiles. 

A=0.5, Pr=0.71,M=2, K=0.5, Gt=2, Gc=1, Up=0.5,  =2. 
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Fig 5 Effects of Gc on velocity profiles. 

Sc=0.6, 7=0.2, Pr=0.71, M=5, K=0.5, Gt=2, Up=0.5,  =5. 

 
Fig 6 Effects of Gt on velocity profiles. 

Sc=0.6, 7=0.2, Ø=2, M=2, K=0.5, Gc=1, Up=0.5,  =5. 
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Fig 7 Effects of   on velocity profiles. 

Sc=0.6, 7=0.2, Ø=2, M=2, K=0.5, Gt=2, Gc=1, Up=0.5. 

Fig. 7. represents the velocity profiles for different values of Casson parameter	 . From this figure we 

observe that the velocity profiles increases significantly with an increase in the Casson parameter  .  

Table:1 :Numerical values of Solutal Grashof number ^-   on   	�, 
i(� �8�� , 

uℎ� �8��  for the reference values 

^� = 2, ; = 1, uv = 0.6, ∅ = 2, � = 0.5,  = 2.   

 

^-  

   

	� i(� �8��  
uℎ� �8��  

0 2.7200 -1.7167 -0.8098 

1 3.2772 -1.7161 -0.8098 

2 3.8343 -1.7161 -0.8098 

3 4.3915 -1.7161 -0.8098 

4 4.9487 -1.7161 -0.8098 

The effects of Solutal Grashof number ^-   on the skin-friction coefficient	� , Nusselt number and 

Sherwood number respectively are presented in table 1. From this table it is seen that the effect of ^-		is to increase 

the skin-friction coefficient		� , where as no effect of ^- is observed on nusselt number and Sherwood number 

(see table-1). 

 

5. APPENDIX 

N = �M + 1
K  ,mw = Sc + ¤"Sc' + 4nSc#

2 	 , m� = Pr + ¤Pr' + 4∅Pr
2 ,m� = Pr + ¤Pr' + 4"∅ + n#Pr

2 ,	 
q = �1 + �

¨�,	  
m| = �©¤�©ª«¬

'¬ , m�� = �©¤�©ª"«©#¬
'¬ , K� = X∅

®¯�X°±®¯X°±∅ , K' = "1 − K�#, Kw = APrK'm�,	  
			Kª = �APrScK� − ³®¯

 � , K� = �³®¯ − ∅Pr� , K� =	 Q}
´z�X´z°±X°±	"©∅# , K� =

Qµ
®¯�X®¯°±X°±	"©∅#,				  

			K{ = Qz
´}�X´}°±X°±"©∅# , K| = "1 − K� − K� − K{#, 	K�� = G·K� + G¸, 		K�� = ¹ºQ�

¬´z�X´zX«  

		K�' = QZ,
¬®¯�X®¯X« , K�w = "Up − 1 + K�� + K�'#, K�ª = Am|K�w, K�� = −"Am�K�� + G·K�#,	  

		K�� = −�AK�'Sc + G·K� − ³®¯¹¼
 � , K�� = −�G·K{ + G¸ + ³®¯

 � , K�{ =
QZµ

¬´y�X´yX"©«#,  
	K�| = QZz

¬´z�X´zX"©«# , K'� =
QZ½

¬®¯�X®¯X"©«# , K'� =
QZ~

¬´}�X´}X"©«# , K'' = "−1 − K�{ − K�| − K'� − 	K'�#	  
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