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Abstract 

In this work, the unsteady variable thermal conductivity gravity flow of a power-law fluid with viscous 

dissipation through a porous medium is examined. It is assumed that the fluid has variable temperature-

dependent viscosity. The modified Darcy’s law is considered together with the equation of energy transfer in 

such media. The governing partial differential equations were transformed into ordinary differential equations in 

terms of a suitable similarity variable. Criteria for existence and uniqueness of solution are formulated. Central 

finite difference technique and Galerkin weighted residual method were employed to solve the resulting non-

linear equations. The effects of variable viscosity parameter, Reynolds number, Brinkman number, Prandtl 

number, Peclet number, and those of viscous dissipation parameter on the flow system were reported graphically.  

Keywords: Non-Newtonian fluid , Weighted residual method, Power-law fluid and Viscous dissipation. 

  

1.0: Introduction 

The importance of studies involving gravity flows in porous media cannot be over-emphasized due to its variety 

of usefulness in various fields of human endeavours. Flows through porous media are very prevalent in nature, 

and has attracted the attention of many scientists in the recent times. This is due to its large area of applications 

in engineering practices, particularly in applied geophysics, geology, groundwater flow, food technology, 

geothermal reservoirs, enhanced oil recovery, oil reservoir engineering , oil recovery processes, to mention but 

just a few. Due to the increase in the production of heavy crude oils, and elsewhere where materials whose flow 

behaviour in shear cannot be characterized by Newtonian relationships; it has become necessary to have an 

adequate understanding of the rheological effects of non-Newtonian fluid flows and, as a result, a new stage in 

the evolution of fluid dynamic theory is in progress. 

Kumar and Prasad [1] considered MHD pulsatile flow through a porous medium. Analytical solution 

was employed in solving the system of flow. Their result shows that an increase in the permeability parameter 

and Hartmann number leads to a decrease in the steady state velocity. Vajraveh et al [2] examined fluid flow and 

heat transfer over a permeable stretching cylinder. A numerical method involving second order finite difference 

scheme known as Keller Box method was employed to investigate the velocity and temperature distribution of 

the flow system. Their result shows that increasing values of the fluid viscosity parameter is to enhance the 

temperature. This is due to the fact that an increase in the fluid viscosity parameter results in an increase in the 

thermal boundary layer thickness. The effects of variable viscosity, viscous dissipation and chemical reaction on 

heat and mass transfer flow of MHD micropolar fluid along a permeable stretching sheet was examined by 

Salem [3]. A numerical method involving Runge-Kuta fourth order method and shooting technique were 

employed to investigate the velocity and temperature distribution of the flow system. The results show that as 

Prandtl number and viscosity parameter increases the velocity profile and the temperature profile decreases.  

The effect of variable viscosity and thermal conductivity of micro polar fluid in a porous channel in the 

presence of magnetic field was studied by Gitima [4]. A numerical method involving Runge-Kuta fourth order 

method was employed to investigate the velocity and temperature distribution of the flow system. The results 

show that the velocity and temperature of the fluid increases as Darcy number, thermal conductivity variation 

parameter and magnetic field parameter increases. 

Cortell [5] investigated on unsteady gravity flows of a power-law fluid through a porous medium. He 

analyzed the flow in two direction, one side both thinning and thickening of the fluids and on the other hand, two 

different types of solutions, for the case of a gravity flow generated by the injection of a power-law fluid at the 

well into an empty reservoir of an infinite extent. He employed shooting method to analyze the flow model. The 

result shows that as power-law index increases the velocity profile decreases. Ogunsola and Ayeni [6] 

considered the effects of temperature distribution of an Arrheniusly reacting unsteady flow through a porous 

medium with variable permeability. A numerical method involving shooting method was employed to 

investigate the velocity and temperature distribution of the flow system. Their result shows that as Frank-

Kamenetskii parameter increases the fluid velocity and temperature increases. 

Motivated by these facts, the present work has been undertaken in order to analyze the effects of 

unsteady variable thermal conductivity gravity flow of a power-law fluid with viscous dissipation through a 

porous medium on the flow system. 
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2.0: MATHEMATICAL FORMULATION AND METHOD OF SOLUTION 

Radial Flow in Porous media 
The governing equations are conservation of mass, momentum and energy. In petroleum engineering we are 

often interested in fluid flowing towards a well, therefore it is more convenient to use cylindrical (radial) 

coordinates, rather than Cartesian coordinates. Considering a two dimensional flow in the zx − plane where the 

free surface is a streamline at a point on the surface, we expressed the flow by a modified Darcy’s law. There are 

three basic differential equations of fluid motion: 

+
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 (Mass conservation law-Continuity Equation)  (2.1) 

where Φ=Φ ,2 mgK µρ  being the porosity of the porous medium, which is assumed to be constant in both 

space and time. 

It is a single phase flow where sh ∂∂  is the gradient in the flow direction and K  is independent of the nature 

of the fluid but depends on the geometry of the medium. 

( )
t

h

r

hu

∂

∂
Φ−=

∂

∂

                               (Continuity Equation)                                (2.2) 

Following Hupper (1982) and Hupper & Woods (1995) the local continuity condition is as follows : 
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      (Modified Darcy’s law-Momentum Equation)         (2.4) 

as proposed  by Cortell (2008)  where s is measured along the streamline, 

since hz = , on the free surface. The rheological parameter n is the dimensionless power-law exponent which 

represents Newtonian fluid when 1=n , shear-thinning ( 1<n ) and shear-thickening ( 1>n ) fluids,K is the 

permeability. The Dupuit’s approximation yields xhsh ∂∂≅∂∂     (2.5) 

For small gradients which converts the problem into a one–dimensional problem. This approximation permits to 

assume a horizontal flow with ),( txhh = ( t being the time). 

We consider a semi-infinite reservoir underlain plane horizontal  impermeable surface and bounded on the 

inlet side by a vertical plane perpendicular to the −x axis and passing through the point 0=r . 

The initial head of the fluid in the reservoir is assumed to be negligible, and the fluid is injected through a well 

with a negligibly small radius. So we let the initial head to be equal to zero, i.e. .01 =h  The head at the vertical 

boundary of the reservoir is assumed to vary according to the power-law, ( ) ,,0 ασtth = where 0>σ and α is 

a constant within the range ,21 ∞<<− α we let 
ασ −= th1 . As  the initial fluid level is uniform over the 

whole reservoir, the zero initial and infinity conditions are  ( ) 00 ),(,0, hthhrh =∞= , while the condition at 

the boundary ,0=r is ( ) 0,0 =th . 
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The appropriate initial and boundary conditions  for this work are  

( ) 00, TrT =           

( ) 1,0 TtT = , ( ) 0, TtT =∞                  0>t      (2.7)  

where 

r is the distance of the given point of the reservoir from the axis of symmetry, 

k -Thermal conductivity, Density−ρ ,
pC  

-Specific heat at constant pressure, µ -Dynamic viscosity, 

( )2
ru ∂∂µ is the viscous heating term, u -Component of velocity in the radial direction, 

efµ -Effective 

viscosity, n
 
- Dimensionless Power-law index,

Te -Thermal expansion, −0k The thermal conductivity of the 
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fluid, γ -Thermal expansion exponent, 0T -Initial temperature and it is the reference temperature, T -

Temperature within the boundary layer, ∞TTT ,.....  , 21  
-  Temperature at the plate, ghp ρ= , −h is the height 

of the fluid, g is gravitational acceleration,η -Apparent viscosity, i.e. Similarity variable parameter, f -is a 

dimensionless stream function, −10 korm Flow consistency index,θ -Dimensionless temperature. 

The first two terms on the right hand side of Equation (2.6)  represent the heat conduction and viscous 

dissipation term . 

 

The flow geometry is illustrated below. 

 
 

Figure 2.1: Shows the physical model 

From Equation (2.6),we consider the case when the coefficient of viscous  dissipation term is negligible 

( )1.. 1 <<kei . The equation becomes 
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Following Gitima (2012), we consider a variable thermal conductivity of the form ( ) TekTk γ−= 0    so that 

Eq.(2.8) becomes 
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We introduce the following non-dimensional variables 
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substituting the dimensionless variable (2.10) into Eq. (2.9) we obtain 
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Dropping the primes, we have 

2

22

111

Pr

1

Pr

1

r
e

r
e
rr

e
Pe

Br

t ∂

∂
+

∂

∂
+









∂

∂
−=

∂

∂ −−− θθθ
γ

θ θγθγθγ
    (2.13) 

We seek similarity solution of the form 

( ) αα thtrhthh 331 ,, == ( ) ( ) ( )ηθηη λβ gttrrtf == ,,;                    (2.14)       
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where ℜ∈βα,  are positive constants with dimension time 

and onlyoffunctionaisf η .                                                               

Substituting Equation (2.14) into (2.2) and (2.13) we obtain 
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Since the initial temperature may not necessarily be zero, the above flow is characterized by the existence of a 

moving boundary conditions which in terms of ( ) toleadsf η  

( ) ( ) 1,00 =∞= ff , ( ) 1=∞′f , ( ) ( ) 0,10 =∞= gg      (2.17) 

Case 1.1 

From Equation (3.12) divide through by 
2a and let   12 <<−a  we obtain 
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The result is presented in Figure 2.1 

 
Figure 2.1: Graph of the velocity function f  for various values of power-law index n when 0.1,6.0=α . 

For the original problem we now proceed to obtain a numerical solution for the velocity profile. We solve 

Equations (2.16) subject to (2.17)  using Galerkin-Weighted Residual method as follows:                        
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A maple pseudo code was used to solve problem (2.16)  

The results are presented in Figures  2.2-2.3 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1 1.2

n=0.1

n=1.2

n=2.0



Chemical and Process Engineering Research                                                                                                                                    www.iiste.org 

ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) 

Vol.33, 2015 

 

54 

 
Figure 2.2: Graph of the velocity function f  for various value of porous radial flow with constant viscosity 

when 5.0=α . 

 

 

 
Fig.2.3: Graph of the temperature function g  for various value of g  when

75.0,0.1Re,25.0Pr,0,5.1 ===>= Brnβ . 

                          

In this section, we consider the energy equation through a porous medium with viscous dissipation as follows: 
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The appropriate initial and boundary conditions are  
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substituting the dimensionless variable Eq. (2.21) into (2.20) we obtain 
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( ) ( ) ( ) 0,,1,0,00, =∞== ttr θθθ                   (2.24) 

We seek similarity solution of the form 

       (2.25)    

 

substituting Equation (2.25) into (2.22)  we obtain 
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Since the initial temperature may not necessarily be zero we have 

( ) 10 =φ , ( ) ( )∞∈=∞ ,0,0 ηφ            (2.27) 

EXISTENCE AND UNIQUENESS  

We again examine  the existence and uniqueness of problem (2.26) subject to (2.27) and we have the following 

theorem: 
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Which satisfies 

( ) 10 =φ , ( ) 0=∞φ                                                      (2.29) 

Problem (2.28) subject to (2.29) has a unique solution 

Proof: 

Let 

η=1x , φ=2x , φ′=3x                    (2.30) 

Then  

( ) φα
φ

φβηη
α

α

α

α
φηφφ s

s
e

e

p
Br ′−

















+

−









+
−′−′=′′ +

−

−

− PrRe
1

1

1

2PrRe
1

4
2

012
             (2.31)  

The system of equation (2.31) can be written in vector form using 
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32 xx =′                               ( )3212 ,, xxxf=                  (2.33)

( ) ( ) ( ) ( ) βλαα ηηφθη rtttrfthtrhthh ==== ,,,,, 331



Chemical and Process Engineering Research                                                                                                                                    www.iiste.org 

ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) 

Vol.33, 2015 

 

56 

( )
1

4

1

2

0

1

3

2

331

3
1

1

1

2

1

PrRe

1

PrRe 2

2

+
−

− 
















+

−









+
−−+=′ α

α

α

α

αβ
x

ep

x

xxBr

e

xx
x

sx

sx

   ( )3213 ,, xxxf=
                               (2.34)  

Satisfying 

∞≤≤ 11 x  

222 kxk ≤≤−  

11., 1131 ≤≤−≤≤− ααα eix                   (2.35)

( ) ( ) 0,10 =∞= φφ
                             (2.36)  

Then  

 

22

PrRe
0

)Pr(Re
0 13

1

3

sksx ee

x

x

f
−−

+≤−≤
∂

∂ βαβ
               (2.36)                               

222

2

2

311
5

1

2

0331

1
4

1

2

0

133

2

3

1

1

1

2

1

1

1

1

2
PrRe

PrRe

sksxsk

sx

sx

e

Pe
x

e

Pep

e

Pe

x

pse

e

xx

x

f

−
+

−

−−

+
−

−

≤
















+

+









+
+≤










+

−









+
−≤

∂

∂

βαα

α

α

α

ααβαα

α

α

α

α

βα

α

α

      (2.37)                               

  

     

             

 (2.38)  

 

 

The upper bound ofK , i.e. 

K  (max)
1

2 3

3

3

2

αβ Br

e

Pe

x

f
sk

+≤
∂

∂
=

−
                   (2.39)                                

∴ K
1

2PrRe 3

2

αβ Br

e sk
+=

−
.                    (2.40)                               

The partial derivatives nji
x

f

j

i ,....2,1,, =
∂

∂
  are bounded since there exists Lipschitz constant k. Hence  

3,2,1,, =
∂

∂
ji

x

f

j

i
  are Lipchitz continuous and are bounded in D for every bounded 21 xandx .Therefore; 

problem (2.28) subject to (2.29) has a unique solution. This established the proof. 

We now solve Equation  (2.28) subject to (2.29) using Central finite difference approximations 
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Figure 2.4: Graph of the temperature  function φ  for various values of viscous dissipation parameter when

0,1,0.1RePr,001.0,001.0,001.0 2

00 =<<======−= Brankpαβ  

We now proceed to solve the original Equation (2.28)  subject to (2.29) numerically using Galerkin-Weighted 

Residual Method as follows:  

let
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A maple pseudo code was used to solve problem (2.28)  

The result is presented in Figure 2.5 

 

-35000

-30000

-25000

-20000

-15000

-10000

-5000

0

5000

0 0.2 0.4 0.6 0.8 1 1.2

s= -0.01

s=0.5

s= 1.5



Chemical and Process Engineering Research                                                                                                                                    www.iiste.org 

ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) 

Vol.33, 2015 

 

58 

 

Figure 2.5: Graph of the velocity  function f  for various values of Viscous dissipation parameter when

5.0,5.0,001.0RePr,1.0 0 ===== skβ  

 

3.0: Discussion of Results and Conclusion  

Discussion of Results 
We have considered a suitable model of unsteady variable thermal conductivity gravity flow of a power-law 

fluid with viscous dissipation through a porous medium. The result from Figure 2.1shows that as power-law 

index increases the velocity express in terms of stream function f  increases monotonically. The result from 

Figure 2.2 shows that as power-law index decreases the fluid velocity increases monotonically. From Figure 2.3 

the results show that the temperature decreases monotonically with increase in each of Brinkman number, 

Prandtl number, Reynolds number, 10 , γandsk thermal conductivity parameters. The result from Figure 

2.4 shows that the temperature profile decreases as viscous dissipation parameter increases. From Figure 2.5 the 

result shows that the velocity profile decreases monotonically as power-law index decreases. Physically, increase 

in the Prandtl number is due to an increase in the viscosity of the fluid. On the other hand, from analytical and 

numerical calculations we also see that the parameter Brandpsn εβ ,,Re,Pr,,, 0  affects the flow 

characteristics significantly.  

 

Conclusion 
A set of non-linear coupled differential equations governing the fluid temperature is solved analytically and 

numerically for various parameters. We show that the problem has a solution and the solution is unique. It is 

noted that the influence of viscous dissipation
 
parameter and thermal conductivity parameter on the flow system 

is to increase the fluid temperature.  

It can be concluded that the increase physical parameters i.e. Reynolds number, Prandtl number, 

Brinkman number and Peclet number; thermal conductivity parameter and viscous dissipation parameter leads to 

a corresponding decrease in the viscosity of the fluid. This will be of great importance for the field engineers in 

various processes of oil recovery.  
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