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Abstract 

This paper presents an investigation of the hydromagnetic stagnation flow of an incompressible viscous, 

electrically conducting fluid, towards a stretching sheet in the presence of axially in- creasing free stream 

velocity. The Newton-Raphson shooting method along with the fourth-order Runge-Kutta integration algorithm 

has been employed to tackle the third order, nonlinear boundary layer equation governing the problem. The 

results indicate that suction and thermal Grashof number have the same effect on the rate of heat transfer. The 

magnetic parameter has the effect of increasing the skin friction coefficient whilst the reverse is observed for 

increasing the velocity ratio parameter.   
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1.0 Introduction 

The need for cooling has resulted in a major paradigm shift for many chemical engineers, electrical system 

designers and manufacturers. The fluid mechanical properties of the penultimate product depend mainly on the 

cooling liquid used and the rate of stretching. In practice, fluids having better electromagnetic properties are 

normally used as cooling liquid, since imposing a magnetic field on it can control its flow to improve the quality 

of the expected product. As a result of this, MHD boundary layer flow over a stretching surface has attracted 

considerable attention in recent times due to its numerous practical applications. Such applications include hot 

rolling, wire drawing, glass fiber and paper production, drawing of paper films, metal and polymer extrusion.  

The problem of steady two-dimensional boundary layer flow due to stretching sheets was initiated by 

Sakiadis (1971). This triggered many researchers to study heat and mass transfer under various physical 

conditions. To mention a few: Datta, et al. (1985); McLeod and Rajagopal (1987); Gupta and Gupta (1997); 

Cortell (2008); and Ohwada (2009). Yian et al. (2007) discussed the non-orthogonal stagnation point towards a 

stretching vertical plate and found that the flow had an inverted boundary layer structure, when the stretching 

velocity of the surface exceeded the stagnation velocity of the free stream. A review article on the stagnation 

point solutions have been given by Wang (2007).  Kechil and Hashim (2008) studied the boundary-layer 

equation of flow over a nonlinearly stretching sheet in a magnetic field with chemical reaction.  

Fang et al. (2009) presented an analytical investigation of the hydrodynamic boundary layer of slip 

MHD viscous flow over a stretching sheet and concluded that the wall drag force increases with the magnetic 

parameter. Ishak et al. (2009) studied numerically a steady two-dimensional MHD stagnation point flow towards 

a stretching sheet with variable surface temperature. They found that the heat transfer rate at the surface 

increased with the magnetic parameter when the free stream velocity exceeded the stretching velocity. Recently, 

Javed et al. (2012) studied heat transfer of a viscous fluid over a non-linear shrinking sheet in the presence of a 

magnetic field and obtained dual solutions for the exact and numerical solutions in the shrinking sheet problem. 

Computational dynamics of hydrodynamic of hydromagnetic stagnation flow towards a stretching sheet was 

studied by Makinde and Charles (2010). They concluded that the cooling rate of a stretching sheet in an 

electrically conducting fluid, subject to a magnetic field can be controlled and a final product with desired 

characteristics can be achieved.  

Ibrahim and Makinde (2010) investigated the MHD boundary layer flow of chemically reacting fluid 

with heat and mass transfer past a stretching sheet and concluded that both the magnetic field strength and the 

uniform heat source have significant impact in controlling the rate of heat and mass transfer in the boundary 

layer region. Rana and Bhargava (2012) studied the problem of steady laminar boundary fluid flow which 

resulted from non-linear stretching of a flat surface in a nanofluid. Recently, Seini and Makinde (2013) studied 

MHD boundary layer flow due to exponential stretching surface with radiation and chemical reaction and 

reported that the rate of heat transfer at the surface decreases with increasing values of the transverse magnetic 

field parameter and the radiation parameter.  

Seini (2013) investigated the flow over an unsteady stretching surface with chemical reaction and non-

uniform heat source and observed that the heat and mass transfer rates and the skin friction coefficient increased 

as the unsteadiness parameter increases and decreased as the space-dependent and temperature-dependent 

parameters for heat source/sink increase. Alireza et al. (2013) then presented an analytical solution for MHD 

stagnation point flow and heat transfer over a permeable stretching sheet with chemical reaction. Only a limited 

attention has been focused on the combined effects of magnetic field and free stream velocity on the stagnation 

point towards a stretching surface. Stagnation point flow towards a stretching sheet is quite useful and important 
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from practical point of view. This fact motivated the present study to investigate the combined effect of magnetic 

field and suction on a stagnation point flow over a stretching surface. 

 

2.0 Mathematical Model 

Consider a steady two-dimensional flow of an incompressible and electrically conducting fluid towards the 

stagnation point on a porous stretching sheet in the presence of magnetic field of strength		��, applied in the 

positive y  direction as shown in Fig. 1. The tangential velocity wu , and the free stream velocity ∞u  were 

assumed to vary proportional to the distance x  from the stagnation point so that axxuw =)( and bxxu =∞ )( . 

The induced magnetic field due to motion of the electrically conducting fluid and the pressure gradient are 

neglected. The tangential temperature is maintained at the prescribed constant value wT .  

 
The boundary layer equations for a steady incompressible viscous hydrodynamic fluid are: 
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The corresponding boundary conditions are: 

                            At 0=y , bxu = , wTT =  vv −=                                                               (4) 

                                    As ∞→y , axu =  ∞→ TT                                                                  (5) 

Where u  and v  are the velocity components in x  and y  directions respectively, ρ  is the density of the liquid, 

ν  is the kinematic viscosity, 0B  is the strength of the applied magnetic field, α  is the thermal diffusivity, pc

is the specific heat capacity at constant pressure and σ is the electrical conductivity of the fluid.  

Following Nazar et al. (2004), we introduce the following similarity variables and quantities: 
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Substituting (6) into (1), (2), (3), (4) and (5) gives the following nonlinear ordinary differential equations: 

                                            022 =+′−′−′+′′′ λfHaffff                                                      (7) 

                                             0PrPr 2 =′+′+′′ fGHaf Tθθ                                                         (8) 

Where 
b

a
=λ  is the velocity ratio parameter, f  is the similarity function, and θ  is the dimensionless 
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temperature. 

The associated boundary conditions are: 

��0� � 		�
       ���0� 	� 	1       
�0� 	� 	1         ���∞� 	� �       
�∞� 	� 	0                          (9) 

where 	�� � 	 ���
�
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		is the Magnetic parameter,  ��	 � �
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Grashof number and �
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		 is the suction/injection parameter. The skin friction coefficient  '(  , can be 

written as 
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Using non-dimensional variables (6), we get 
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where 	,-� is the local Reynolds number. 

 

3.0 Results and Discussion 

a) Numerical Results 

The systems of equations (7) and (8) with respect to the boundary condition, equation (9) were solved using the 

Fourth-Order Runge-Kutta method along with the shooting techniques. For the sake of the validity of our results, 

we have tabulated a comparison between the present numerical solution and the works of Makinde and Charles 

(2010), and Nazar (2004), See Table 1.  It can be realized that our numerical results are in good agreement with 

that of Makinde and Charles (2010) and Nazar (2004). 

          Table 1. Comparison of Skin Friction Coefficient ( )0f ′′  for λ  when H = 0 

λ  
Makinde and Charles (2010) Nazar (2004) Present Study 

0.01 -0.99802 -0.9980 -0.99802 

0.02 -0.99578 -0.9958 -0.99578 

0.05 -0.98757 -0.9876 -0.98757 

0.10 -0.96938 -0.9694 -0.96938 

0.20 -0.91810 -0.9181 -0.91810 

0.50 -0.66726 -0.6673 -0.66726 

2.00 2.01750 2.0176 2.01750 

3.00 4.72928 4.7296 4.72928 

5.00 11.75199 11.7529 11.7520 

The results of varying parameter values on the skin friction coefficient and the local Nusselt number is 

shown in table 2. It is observed that increasing the velocity ratio parameter decreases both the skin friction 

coefficient and the rate of heat transfer on the surface. Increases in the magnetic parameter tend to increases both 

the skin friction coefficient and the Nusselt number due to the presence of the Lorenz force induced by the 

magnetic field in the flow. Furthermore, both the Prandtl number and the thermal Grashof number do not have 

any effects on the skin friction coefficient. However, both parameters result in the reduction of the local number. 

It is however interesting to note that increasing the suction parameter has the effects on reducing not only the 

skin friction coefficient but also the rate of heat transfer for obvious reasons.  
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Table 2 Numerical results for varying parameter values  

λ  
�� �� �� �. ( )0f ′′−

 
	
��0� 

0 1 0.71 0.1 0.1 1.36509 0.07494 

0.5 1 0.71 0.1 0.1 1.16742 0.05321 

1.0 1 0.71 0.1 0.1 0.63552 -0.07201 

1.0 2 0.71 0.1 0.1 1.08676 -0.08463 

1.0 3 0.71 0.1 0.1 1.43756 -0.07432 

1.0 1 2.00 0.1 0.1 0.63552 -  0.38454 

1.0 1 4.00 0.1 0.1 0.63552 -0.86908 

1.0 1 7.00 0.1 0.1 0.63552 -1.59590 

1.0 1 0.71 1 0.1 0.63552 -1.62013 

1.0 1 0.71 2 0.1 0.63552 -3.34026 

1.0 1 0.71 3 0.1 0.63552 -5.06039 

1.0 1 0.71 0.1 0.5 0.56220 -0.07259 

1.0 1 0.71 0.1 1.0 0.48259 -0.07378 

1.0 1 0.71 0.1 1.5 0.41590 -0.07545 

 

b) Graphical Results 

Velocity and temperature profiles have been plotted to show the behavior of the flow in the boundary layer 

region. Figures 1 – 4 presents the velocity profiles for varying parameters. In figure 1, it is observed that 

increasing the velocity ration tends to increase the velocity boundary layer. It is observed that when the velocity 

ratio is zero, the usual profile at free stream is obtained far away from the surface.  

                
Figure 2. Velocity Profile for Varying Velocity Ratio Parameter. 

…………  λ = 1 

********  λ = 0.8 

+++++++ λ = 0.5 

Oooooooo λ = 0 
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Figure 3. Velocity profiles for varying values of the magnetic parameter 

Figure 3 illustrates the velocity profile when the Hartman number is increased. It is observed that 

increasing the Hartman number reduces the velocity profiles due to the presence of the Lorenz force induced by 

the magnetic field. 

 
Figure 4. Velocity Profiles for varying suction parameter 

 

…………  Ha = 5 

********  Ha = 3 

+++++++ Ha = 1 

Oooooooo Ha = 0.1 

…………  fw = 1.5 

********  fw = 1 

+++++++ fw = 0.5 

Oooooooo fw = 0.1 
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Figure 5. Temperature Profiles for increasing Prandtl number 

 

 
Figure 6. Temperature Profiles for increasing velocity ratio parameter 

…………   λ = 1 

********   λ = 0.8 

+++++++    λ = 0.5 

Oooooooo   λ = 0 

…………  Pr = 7 

********  Pr = 4 

+++++++ Pr = 2 

Oooooooo Pr = 0.71 
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Figure 7. Temperature Profiles for varying thermal Grashof number 

 

Figures 5 – 7 presents the temperature profiles for various parameter variation. In all these figures, it is clear that 

the temperature profiles increases with increasing values of the Prandtl number, the velocity ratio parameter and 

the thermal Grashof number.   

 

4.0 Conclusions 

The MHD thermal stagnation point flow towards a stretching permeable surface has been investigated. 

Numerical results have been compared to earlier results published in the literature and a perfect agreement was 

achieved. Among others, our results reveal that the cooling rate of a porous stretching sheet in an electrically 

conducting fluid, subject to a magnetic field can be controlled and a final product with desired characteristics can 

be achieved. 
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