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Abstract 

Mathematical models for predicting the fractional conversion of ethylbenzene and yields of products in a catalytic 

membrane reactor for the dehydrogenation of ethylbenzene were developed. The mathematical models developed 

consisted of nonlinear simultaneous differential equations which were solved numerically using the 4
th

 order 

Runge-kuta algorithm. Prediction by the models of fractional conversion and yields of product compare favorably 

with outputs of an industrial reactor with maximum deviations of 0.175. The models were subsequently used to 

simulate the effects of feed inlet temperature, feed molar ratio of steam and ethylbenzene and inlet pressure on the 

reactor performance.       
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1. Introduction 

Styrene is one of the most important monomers in the petrochemical industry due to its protective, insulative, and 

synthetic ability when polymerized. The world’s production at present is approximately twenty million tons per year 

(Dennis and Castor, 1992). The styrene process was developed in the nineteen thirties and was used for the 

production of many different polymeric materials, the most important being poly-styrene, styrene-acrylonitrile, 

styrene-butadiene latex and acrylonitrile-butadiene styrene resins (ABS). Styrene can be produced by the 

dehydrogenation of ethyl-benzene in the presence of steam over iron oxide based catalyst, as a by-product in the 

epoxidation of propene with ethyl-benzene hydro-peroxide and molybdenum complex base catalyst or by the 

oxidative dehydrogenation of ethyl-benzene (Yee, et al., 2003); however the dehydrogenation of ethyl-benzene 

accounts for over ninety percent of the world’s styrene production (Abashar, 2004). The dehydrogenation process is 

an endothermic reversible reaction and can be operated industrially either adiabatically or isothermally over a fixed 

bed. The demand for higher conversion of ethylbenzene, high yield and selectivity of the desired reaction products 

especially styrene had led to new ingenious configuration and design of reactors for the dehydrogenation process. In 

this regards, multifunctional reactors where reactions combined with separation have received much attention 

(Collins an Way, (1993); Dixon, (1999) and Devoldere and froment, (1999)). Membrane reactors are one of such type 

of multi-functional reactors. Recent advances in materials used at high temperatures have allowed the consideration 

of membranes for integration into reactors for catalytic reactions.  

To accomplish this, a membrane that is permeable to a particular reaction product, but impermeable to all other 

species is placed around the reacting mixture, If reaction is equilibrium limited, the decreased activity of the species 

being removed permits further conversion to occur beyond that which would be possible if no species were removed. 

The permeation of gaseous component through the membrane takes place from a higher partial pressure zone to a 
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lower partial pressure zone for a given component. This can be achieved by either a difference in the total pressure, 

or by diluting the permeate side with enough inert to lower the mole fraction of the permeating species. Hence the 

membrane reactor can be used to achieve conversions greater than the original equilibrium value (Ahari et al., 2004). 

The objectives of this study are to develop the mathematical model for the ethylbenzene dehydrogenation and to 

investigate the effect of operating conditions on an industrial membrane reactor using the developed models. 

1.1 Process Description 

Figure 1a shows a schematic of a typical membrane reactor. The membrane divides the reactor into two zones 

namely; a reaction zone (tube side) packed with catalyst particles where reactant (ethylbenzene) is introduced and a 

permeate zone (shell side) where a non-reactive purge gas (steam) is introduced co-currently to the feed in order to 

send out the permeate gas (hydrogen). Ethylbenzene is first preheated in a heat-exchanger, mixed with superheated 

steam and sent into the membrane reactor. Hydrogen produced within the reactor permeates out of the tube through 

the membrane due to pressure difference between the reaction zone (tube) and the permeate zone (shell). The 

removal of hydrogen reduces side reactions of ethylbenzene with hydrogen. The permeated hydrogen gas is swept 

out of the reactor using steam. In the reaction zone of the reactor, styrene, other aromatic hydrocarbons such as 

benzene and toluene, and lean amount of hydrogen found around the reactor tube are collected at the exit or product 

stream of the reactor.  

 

 

 

 

 

 

 

 

Figure 1a: Transverse section of the catalytic packed bed membrane reactor 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1b: Schematic of differential volume of membrane reactor used for material balance. 
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2. Kinetic Model 

Numerous works on the development, type, composition and activity of various catalysts used in the 

dehydrogenation of ethylbenzene to styrene have been performed: Lee, (1973), Hirano, (1986), Muhler et al., (1992) 

and Wu et al., (1993). Various type of reaction mechanism has been postulated to describe the kinetics of 

ethylbenzene dehydrogenation, a uni-molecular Langmuir-Hinshelwood mechanism, where the reaction rate depends 

on the adsorption-desorption equilibrium of ethylbenzene and styrene was earlier proposed by  Carra and Forni 

(1965) and Sheel and Crowe, (1969); later supported by Sheppard and Maier, (1986) and Pradeep and Elnashaie, 

(2004). Others include the works of Clough and Ramirez, (1976), Wu and Liu, (1992), Wu et al., (1993), Elnashaie et 

al., (1993). Elnashaie et al., (2000) and Ganji, et al., (2004) postulated that the kinetic model for the dehydrogenation 

of ethylbenzene to styrene can be represented by six reversible reactions viz: one main reaction (ethylbenzene to 

styrene) with five side reactions. Sheppard and Maier, (1986) observed that all side reactions were much slower in 

comparison to the main reaction and are far from equilibrium at finite time where the main reaction may get 

completed; therefore all the side reactions could be considered irreversible and the reverse rates excluded from the 

kinetic model. 

The dehydrogenation reaction occurring in the reactor leading to the production of styrene as described by Elnashaie 

et al., (2000) incorporating the conclusions from the observations of Sheppard and Maier (1986) were adapted as the 

reactions occurring in the reactor. The reaction paths for the dehydrogenation process with their respective reaction 

rate expressions as follows: 

Main reaction: 

    C6H5C2H5         
 K1 

         C6H5C2H3 + H2      (1) 

              𝑟1 =  𝐾1 (𝑃𝑒𝑏 − 
𝑃𝑠𝑡𝑃𝐻2

𝐾𝑝𝑒𝑏
)                                       (2)                              

Side reactions: 

                  C6H5C2H5 + H2        
K2

         C6H5CH3 + CH4        (3) 

       𝑟2 =  𝐾2(𝑃𝑒𝑏𝑃𝐻2
)                                     (4) 

    C6H5C2H5 
              K3

         C6H6 + C2H4       (5) 

             𝑟3 =  𝐾3(𝑃𝑒𝑏)                    (6) 

    H2O + 
1

2
C2H4           

K4
         CO + 2H2       (7) 

             𝑟4 =  𝐾4(𝑃𝐻2𝑂𝑃𝐶2𝐻4
0.5 )                   (8) 

            H2O + CH4                   
K5

         CO + 3H2             (9) 

       𝑟5 =  𝐾5(𝑃𝐻2𝑂𝑃𝐶𝐻4
)                   (10) 

    H2O + CO                 
K6

                CO2 + H2       (11) 

       𝑟6 =  𝐾6(𝑃𝑇 𝑇2⁄ )(𝑃𝐻2𝑂𝑃𝑐𝑜)                       (12) 

The reaction rate constants in these equations are obtained as: 

𝐾𝑗 (𝑚𝑜𝑙𝑘𝑔−1𝑠−1𝑏𝑎𝑟−𝑛) =  103𝑒𝑥𝑝 (𝐴𝐼 −
𝐸𝑖

𝑅𝑇
)                        (13) 

𝐾𝑝𝑒𝑏 = 𝑒𝑥𝑝 (
−∆𝐻

𝑅𝑇
)                                     (14) 

∆H = a + bT + cT2                                   (15) 
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a(jmol−1) b(Jmol-1K-1 ) c( Jmol-1K-2) 

122725.16 -126.27 -2.19E-03 

 

3. Reactor Model       

3.1 Model Assumption 

The following conditions are imposed on the reactor and process in developing the mathematical model of the 

reactor. 

The mass transfer in radial direction through the membrane is negligible. An axial one-dimensional steady state 

model was developed; axial diffusion of mass is negligible because the ratio of reactor length to the particle size is 

large, Radial temperature gradient across the membrane is neglected (adiabatic operation), The catalyst pellet 

equations are discarded because concentration gradients in catalyst pellet are neglected due to small pellet size 

(Zeynali, 2010), the catalyst deactivation is minimal, thus, effectiveness factor is equal to unity, The temperature of 

the fluid phase and the solid phase are the same (Babu and Gujarathi, 2010), The system operates isothermally, the 

effect of pressure drop on the performance of the reactor is negligible (Wu and Liu, 1992). Hence, isobaric 

conditions are assumed to prevail in the tube and shell sides, therefore PtT and PsT are constant.  

Based on these assumptions a pseudo-homogeneous one-dimensional model was developed for the reacting species 

by taking a component mole balance of a differential element of the reactor as shown in Figure 1b thus:  

TUBE SIDE: Transportation of reacting components and products through the tube: 

The mole balance for a reacting component i through reaction path j flowing through the tube is: 

𝐹𝑖

𝑑𝐶𝑖,𝑗

𝑑𝑍
=  −2𝜋𝑅1𝐽𝑖  ±  𝜋𝑅1

2𝜌𝑟𝑗                                    (16) 

In terms of fractional conversion: 

𝑑𝑋𝑖,𝑗

𝑑𝑍
=  

1

𝐹𝑖𝐶𝑖
(2𝜋𝑅1𝐽𝑖 +  𝜋𝑅1

2𝜌𝑟𝑗)                             (17)   

The basic reactants to be considered for the six reactions are ethylbenzene and steam. These two are not permeating 

through the membrane, thus the permeate term is zero and equation (17) becomes,    

𝑑𝑋𝑖,𝑗

𝑑𝑍
=  

1

𝐹𝑖𝐶𝑖
𝜋𝑅1

2𝜌𝑟𝑗                                       (18) 

Equation (18) was used to write the model equation for each reactant in the six reaction scheme. 

For ethylbenzene: i = 1;  j = 1, 2, 3  

For steam: i = 2  j = 4, 5, 6 

Equation (18) is the steady state one-dimensional model equation for the membrane reactor describing the fractional 

conversion of reactant i along the reactor length.  

𝑑𝑋1,1

𝑑𝑍
=  

1

𝐹1𝐶1
𝜋𝑅1

2𝜌 (𝐾1 (𝑃𝑒𝑏 − 
𝑃𝑠𝑡𝑃𝐻2

𝐾𝑝𝑒𝑏
))                                                   (19) 

𝑑𝑋1,2

𝑑𝑍
=  

1

𝐹1𝐶1
𝜋𝑅1

2𝜌 (𝐾2(𝑃𝑒𝑏𝑃𝐻2
))                           (20) 

𝑑𝑋1,3

𝑑𝑍
=  

1

𝐹1𝐶1
𝜋𝑅1

2𝜌(𝐾3(𝑃𝑒𝑏))                                (21) 
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𝑑𝑋2,4

𝑑𝑍
=  

1

𝐹2𝐶2
𝜋𝑅1

2𝜌 (𝐾4(𝑃𝐻2𝑂𝑃𝐶2𝐻4
0.5 ))                               (22) 

𝑑𝑋2,5

𝑑𝑍
=  

1

𝐹2𝐶2
𝜋𝑅1

2𝜌 (𝐾5(𝑃𝐻2𝑂𝑃𝐶𝐻4
))                            (23) 

𝑑𝑋2,6

𝑑𝑍
=  

1

𝐹2𝐶2
𝜋𝑅1

2𝜌 (𝐾6(𝑃𝑇 𝑇2⁄ )(𝑃𝐻2𝑂𝑃𝑐𝑜))                       (24) 

SHELL SIDE: Permeation of hydrogen gas through the membrane and transportation of steam plus hydrogen gas 

through the shell. 

Similarly since no reaction occurs within the shell of the reactor, a non-reactive component mole balance was 

developed for hydrogen gas as: 

𝑑𝐶𝐻2

𝑑𝑍
=  

2𝜋𝑅2𝐽𝐻2

𝐹𝐻2

                                      (25) 

The permeation flux of hydrogen (𝐽𝐻2
) through a palladium-palladium alloy composite membrane had been 

determined by Moustafa and Elnashaie, (2000) as:   

𝐽𝐻2
=  

𝑃𝑚𝐻2

𝛿
(𝑃𝑡𝐻2

𝑛 −  𝑃𝑠𝐻2
𝑛 )                             (26) 

The permeability of hydrogen (𝑃𝑚𝐻2
) as a function of the equilibrium solubility and its diffusivity in palladium is 

given by the expression of Elnashaie et al., (2000) as: 

𝑃𝑚𝐻2

𝛿
=  

𝐷𝐻𝐶𝑂

𝑅2√𝑃𝑂𝑙𝑛
𝑅2
𝑅1

                                     (27) 

Substituting equations (26) and (27) into equation (25), the component mole balance of hydrogen through membrane 

becomes: 

𝑑𝐶𝐻2

𝑑𝑍
=  

2𝜋𝐷𝐻𝐶𝑂

𝐹𝐻2√𝑃𝑂𝑙𝑛
𝑅2
𝑅1

(𝑃𝑡𝐻2
𝑛 −  𝑃𝑠𝐻2

𝑛 )                            (28) 

Where n is a constant; DH (m
2
s-

1
) Fick’s diffusion coefficient of hydrogen dissolved in palladium and CO (mole m

-3
) 

the solubility or standard concentration of dissolved hydrogen in palladium. 

These constants have been determined by Elnashaie et al., (2000) as: 

𝐷𝐻 = 2.3𝑋 10−7𝑒𝑥𝑝 (
2610

𝑇
)                                (29)  

𝐶𝑂 =  3.03 𝑋 105 𝑇−1.0358                             (30)   

PO is the pressure at permeate side in atm.  

4. Methodology 

The component partial pressures in the model equations were converted to mole concentrations of the components 

using the following relationships: 

Tube side 

𝑃𝑖 =  𝑌𝑖𝑃𝑡 =  (
𝑁𝑖

∑ 𝑁𝑖
) 𝑃𝑡                                    (31) 

Shell side 
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𝑃𝑖 =  𝑌𝑖𝑃𝑠 =  (
𝑁𝑖

∑ 𝑁𝑖
) 𝑃𝑠                                   (32) 

Where: Yi = mole fraction of component i, Ni = molar concentration of component i 

The molar concentrations of each component (𝑁𝑖) in equations (31) and (32) of the reaction path for the 

hydrogenation process were obtained using expressions that are functions of the fractional conversion for each 

reactant as given in Table 2.  

If the components are assumed to behave as ideal gases, then the mole fractions of the reactants and products (𝑌𝑖) in 

equations (31) and (32) can be obtained by the expressions given in Table 3 using the molar concentrations obtained 

from Table 2. The component partial pressures (equations 31, 32) with the component mole fractions given in Table 3 

were substituted into the model equations (equations 19 – 24) to obtain model equations in terms of molar 

concentrations. The fourth order Runge-Kuta algorithm was adopted to develop a visual basic program to solve the 

final model equations using industrial plant data of Elnashaie and Elshishini, (1994) given in Table 4.   

The following boundary conditions apply: 

At z = 0:    𝑋𝑖,𝑗 = 0      for i = 1, 2;      j = 1, 2,…..,6 

                   𝑃𝑡 =  𝑃𝑡𝑖   (𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡);      𝑃𝑠 =  𝑃𝑠𝑖  (𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡)  

The results of the model equations gave the fractional conversions of the reacting components along the reactor 

length. Substitution of these values into the expressions in Table 2 gave the amount (moles) of reactants and yields of 

products along the reactor length.  

Industrial plant data was used to test the suitability of the models in predicting the conversion of ethylbemzene and 

yield of the products. The effects of the flowing process variables: Feed Temperature, Feed molar ratio of steam to 

ethylbenzene (𝐻2𝑂/𝐸𝐵) and Pressure on the models developed was then investigated. 

The major products of this process are styrene, benzene and toluene, therefore only the results for these products are 

presented.  

5. Discussion of Results 

5.1 Model Validation 

The results from the model equations for the yield of the products (styrene, benzene and toluene) and the conversion 

of ethylbezene as predicted by the model equations in comparison with industrial results of Elnashaie and Elshishini, 

(1994) are presented in Table 5. 

The results showed a reasonable agreement between the model predictions and the industrial plant data. The models 

predicted the conversion of ethylbenzene and the yield of styrene very accurately. The fractional conversion of 

ethybenzene and yield of styrene, benzene and toluene along the reactor length as predicted by the models are shown 

in Figure 2. The fractional conversion of ethylbenzene increased continuously along the reactor length, the yield of 

styrene rose rapidly initially and gradually reached equilibrium towards the reactor exit, benzene and toluene 

formation rate are much slower compared to that of styrene, toluene formation is slower than benzene formation 

because hydrogen produced from subsequent reactions which permeates to the shell side are required for its 

formation. Selectivity can be expressed as the ratio of product formation to the rate of ethylbenzene consumption. 

Figure 3 is a plot of the yield of products against conversion of ethylbenzene and shows the relative selectivity of 
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styrene formation over benzene and toluene formation. 

5.2 Model Simulation 

The effects of temperature of the feed mixture at the reactor inlet, pressure at the entrance to the reactor and feed 

ratio of steam to ethylbenzene (H2O/EB) on the models developed were investigated. The effects of varying each of 

these parameters on the reactor performance are presented. 

5.2.1 Effect of inlet Feed Temperature 

Figure 4 depicts the effect of an increase in feed temperature on conversion of ethylbenzene and yield of styrene, 

benzene and toluene. Dehydrogenation of ethylbenzene is an endothermic reaction and high temperatures have been 

reported by Mousavi et al., (2012) as necessary for high ethylbenzene conversion because of its thermodynamics. In 

the temperature range examined, ethylbenzene conversion increased continuously and linearly with corresponding 

increase in the yields of styrene, benzene and toluene. 

Table 6 shows the percentage increase in the conversion of ethylbenzene and the yield of products as the feed 

temperature was increased. There was a decrease in the percentage increase in the conversion of ethylbenzene and 

yield of products as the feed temperature was increased in the interval of 850K to 950K. At 950K the conversion of 

ethylbenzene and yield of styrene were only 6.49% and 0.53% higher than at 925K compared to a 19.02% and 16.11% 

increase in conversion of ethylbenzene and yield of styrene obtained by increasing feed temperature from 850K to 

875K.  Therefore beyond 925K the increase in products yields compared to increase in feed temperature might not 

be economical.  

5.2.2 Effect of Feed Molar Ratio of Steam to Ethylbenzene (H2o/Eb) 

Figure 5 shows the effect of the feed molar ratio of steam to ethylbenzene on the conversion of ethylbenzene and the 

yield of the products. An increase in the steam to ethylbenzene ratio means a decrease in the feed rate (F1) keeping 

the stem rate (F2) constant, figure 5 shows that when the steam to ethylbenzene ratio was increased, there was a 

minimal increase in ethylbenzene conversion and a selective increase in styrene yield. This is in agreement with Le 

chateliar’s principle which predicts that the system will attempt to oppose the change affected to the original state of 

equilibrium, since ethylbenzene dehydrogenation into styrene is a reversible reaction with increasing number of 

moles, a reduction in ethylbenzene feed rate will shift the equilibrium in the direction of increased concentration, that 

is the equilibrium shifts to the right. A decrease in the steam to ethylbenzene ratio means an increase in the feed rate 

(F1) keeping the stem rate (F2) constant. The reverse trend is expected in this case. Simulation results also predicted 

a reduction in benzene and toluene yields. (Toluene formation requires hydrogen which is selectively withdrawn by 

the membrane to the shell side of the reactor). Similar trends were also reported in the works of Shuka and Anand, 

(2011). Figure 5 also indicates a drop in conversion of ethylbemzene and yield of styrene above a steam to 

ethylbenzene ratio of 7. Minimal amount of steam is recommended in terms of plant economics as the cost of 

producing steam is reduced.  

5.2.3 Effect of Operating Pressure 

Figure 6 shows the effect of variation of inlet pressure on the conversion of ethylbenzene and the yield of styrene, 

benzene and toluene. Figure 6 predicted an initial minimal increase then a continuous gradual decrease in the 

conversion and yield of ethylbenzene and styrene respectively. This trend is correct as the equilibrium conversion of 
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styrene from the rate equation is inversely proportional to the pressure (p). (The reverse reaction as indicated by rate 

equation is proportional to p
2
, while the forward reaction of styrene formation is proportional to p). Figure 5 also 

predicts that the yields of benzene and toluene also increased minimally with pressure. This trend Le chateliar’s 

principle also predicts; that an increase in system pressure due to decreasing volume will favor the reaction which 

involves a reduction in pressure (the reaction will shift to the side with fewer moles of gas). That is to the left, 

resulting in a decrease in conversion of ethylbenzene as predicted by the simulation results. 

6. Conclusion  

Mathematical models that can be used to predict the performance of industrial membrane reactors used for the 

dehydrogenation of ethylbenzene were successfully developed. The accuracy of the developed models was tested 

using industrial plant data as inputs to solve the model equations. The results of the models (conversion of 

ethylbenzene and yield of styrene, benzene and toluene) compared favorable with output values from the industrial 

reactor. Therefore the models could be used to simulate industrial reactors for the dehydrogenation of ethylbenzene. 

Simulation of the effects of feed inlet temperature, feed molar ratio of steam to ethylbenzene and inlet pressure was 

performed. The simulation studies have shown possible new operating conditions with improved performance 

(conversion and yield values). However, final selection of best operating conditions are usually based on the overall 

process economics. 

Nomenclature 

  DH  Fick’s diffusivity coefficient of hydrogen, m
2
/sec 

  Pmi  Permeability coefficient of component i, mole.m/m
2
.sec.atm 

  P  Total pressure of gaseous mixture, atm 

  Pti  Partial pressure of component i in tube, atm 

  Psi  Partial pressure of component i in shell, atm 

  Pi  Partial pressure of component i, atm 

  r    Radial coordinate, m 

  R1  Internal diameter of tube, m 

  R2  Outer diameter of tube, m 

  R3  Internal diameter of shell, m 

  rj   Rate of reaction j, mol/sec.kg of catalyst 

 Xtij  Fractional conversion of reactant i by reaction j in tube 

  Z  spatial coordinate, m 

  Ni  Permeation rate of component i through membrane, mole/sec 

  Ji   Molar flux of component i through membrane, mole/sec.m
2
 

  Ftio  Molar flow rate of component i in feed to tube side, mole/sec 

 Ki  Rate constant for reaction (i), mole/kg catalyst.sec.atm 

 Keb  Equilibrium constant for reaction (1), atm 

  Co  Solubility or Standard concentration of dissolved H2, mole/m
3
 

  Aj  Dimensionless pre-exponential factor 

  Ej  Activation energy of reaction j, J/mole 
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Greek Symbols 

  𝛿       Thickness of membranes, m 

  ρ     Density of catalyst, kg/m
3 
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REACTION KINETIC PARAMETER 

PATH Ei(J/mol) Ai 

1 83357 0.75 

2 100555 0.77 

3 188630 12.19 

4 103996 0.12 

5 65723 -3.21 

6 73628 21.24 

Table 1: Kinetic Parameters in Rate expression for the six reactions (Elnashaie et al., 2001) 

Component Molar concentration (mole/sec) 

Ethylbenzene (C6H5C2H5)                                     𝐹1(1 − 𝑋1,1 − 𝑋1,2 − 𝑋1,3)  

Styrene (C6H5C2H3) 𝐹1𝑋1,1  

Toluene (C6H5CH3) 𝐹1𝑋1,2  

Benzene (C6H6) 𝐹1𝑋1,3  

Hydrogen (H2)                                                               𝐹1(𝑋1,1 − 𝑋1,2) + 𝐹2(2𝑋2,4 + 3𝑋2,5 + 𝑋2,6)  
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Steam (H2O) 𝐹2(1 − 𝑋2,4 − 𝑋2,5 − 𝑋2,6)  

Ethylene (C2H4) 𝐹1𝑋1,3 −
1

2
𝐹2𝑋2,4  

Methane (CH4) 𝐹1𝑋1,2 − 𝐹2𝑋2,5  

Carbon monoxide (CO) 𝐹2(𝑋2,4 + 𝑋2,5 − 𝑋2,6)  

Carbon dioxide (CO2) 𝐹2𝑋2,6  

Total moles (∑ 𝑁𝑖) 𝐹2(1 + 𝑋1,1 + 𝑋1,3) + 𝐹2(1 + 1.5𝑋2,4 + 2𝑋2,5)  

Table 2: Table of Molar Concentrations for Reactants and Products 

Component     Mole Fraction (𝒀𝒊) 

Ethylbenzene (C6H5C2H5) 
𝐹1(1−𝑋1,1−𝑋1,2−𝑋1,3)

𝐹1(1+𝑋1,1+𝑋1,3)+𝐹2(1+1.5𝑋2,4+2𝑋2,5) 
  

Styrene (C6H5C2H3) 
𝐹1𝑋1,1

𝐹1(1+𝑋1,1+𝑋1,3)+𝐹2(1+1.5𝑋2,4+2𝑋2,5) 
  

Toluene (C6H5CH3) 
𝐹1𝑋1,2

𝐹1(1+𝑋1,1+𝑋1,3)+𝐹2(1+1.5𝑋2,4+2𝑋2,5) 
  

Benzene (C6H6) 
𝐹1𝑋1,3

𝐹1(1+𝑋1,1+𝑋1,3)+𝐹2(1+1.5𝑋2,4+2𝑋2,5) 
  

Hydrogen (H2) 
𝐹1(𝑋1,1−𝑋1,2)+𝐹2(2𝑋2,4+3𝑋2,5+𝑋2,6)

𝐹1(1+𝑋1,1+𝑋1,3)+𝐹2(1+1.5𝑋2,4+2𝑋2,5) 
  

Steam (H2O) 
𝐹2(1−𝑋2,4−𝑋2,5−𝑋2,6)

𝐹1(1+𝑋1,1+𝑋1,3)+𝐹2(1+1.5𝑋2,4+2𝑋2,5) 
  

Ethylene (C2H4) 
𝐹1𝑋1,3 − 

1

 2
𝐹2𝑋2,4

𝐹1(1+𝑋1,1+𝑋1,3)+𝐹2(1+1.5𝑋2,4+2𝑋2,5) 
  

Methane (CH4) 
𝐹1𝑋1,2− 𝐹2𝑋2,5

𝐹1(1+𝑋1,1+𝑋1,3)+𝐹2(1+1.5𝑋2,4+2𝑋2,5)
  

Carbon monoxide (CO) 
𝐹2(𝑋2,4+𝑋2,5−𝑋2,6)

𝐹1(1+𝑋1,1+𝑋1,3)+𝐹2(1+1.5𝑋2,4+2𝑋2,5) 
  

Carbon dioxide (CO2) 
𝐹2𝑋2,6

𝐹1(1+𝑋1,1+𝑋1,3)+𝐹2(1+1.5𝑋2,4+2𝑋2,5) 
  

Table 3: Table of Mole Fraction for Reactants and Products. 

 

S/N QUANTITY NUMERICAL VALUE 

1. Reactor diameter 1.95m 

2. Reactor Length 1.7m 

3. Catalyst bulk density 2146 kg/m
3
 

4. Catalyst particle diameter 0.0047m 

5. Bed void fraction 0.445 
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6. Catalyst composition 62% Fe2O3, 36% K2CO3, 2% Cr2O3 

7. Inlet pressure 2.4 bar 

8. Inlet temperature 922.59 K 

9. Ethyl benzene in the feed 36.87 kmol/h 

Table 4: Operating Conditions for the Industrial reactor (Elnashaie and Elshishini, 1994) 

 

 

 

 

PARAMETER MODEL 

PREDICTION 

INDUSTRIAL 

DATA 

% DEVIATION 

Ethylbenzene Conversion (%) 80.23 82.13 2.37 

Yield of Styrene (%) 70.62 71.67 1.54 

Yield of Benzene (%) 8.85 9.8 10.73 

Yield of Toluene (%) 0.81 0.66 -17.5 

Table 5: Comparison of Model Predictions with Industrial Data. 

 

S/No. Parameters 
Temperature (K) 

850 875 900 925 950 

1 Yield of styrene (%) 53.30 61.89 68.37 71.92 72.30 

 % Increase  16.11 10.48 5.19 0.53 

2 Yield of Benzene (%) 2.34 4.23 7.07 10.96 15.9 

 % Increase  80.74 67.17 55.17 45.01 

3 Yield of Toluene (%) 0.35 0.53 0.72 0.89 1.02 

 % Increase  50.05 35.99 23.97 14.26 

4 Conversion of Ethylbenzene (%) 55.99 66.64 76.16 83.78 89.22 

 % Increase  19.02 14.28 10.01 6.49 

Table 6: Percentage increase in Conversion of Ethylbenzene and Yield of products with Feed Temperature. 
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Figure 2: Fractional Conversion of Ethylbenzene and Yield of Styrene, Benzene 
and Toluene along Reactor Length. 
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Figure 4: Effect of Feed Temperature on the conversion of Ethylbenzene and yield 
of Styrene, Benzene and Toluene  
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Figure 5: Effect of Steam to Ethylbenzene ratio on Conversion of Ethylbenzene 
and Yield of Styrene, Benzene and Toluene   
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Figure 6: Effect of Operating Pressure on the conversion of Ethylbenzene and the 
yield of Styrene, Benzene and toluene 
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