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Abstract 

In this paper, free convective Magnetohydrodynamics (MHD) flow of a viscous incompressible and electrically 

conducting fluid past a hot vertical porous plate embedded in a porous medium has been studied. The 

temperature of the plate varies both in space and time. The main objective of this paper is to study the effect of 

porosity of the medium coupled with the variation of plate temperature with regards to space and time. The 

effect of pertinent parameters characterizing the flow has been presented through the graph. The most interesting 

finding is that presence of porous media has no significant contribution to the flow characteristics. Further, 

heating and cooling of the plate due to convective current is compensated by the viscous dissipation. 

Keywords：MHD flow/Span wise Co-sinusoidal/Free Convection /Heat transfer, porous medium. 

 

1. Introduction 

Many Industrial applications use Magnetohyrodynamics (MHD) effects to resolve the complex problems very 

often occurred in industries. The available hydrodynamics solutions include the effects of magnetic field which 

is possible as because the most of the industrial fluids are electrically conducting. For example, liquid metal 

MHD takes its root in hydrodynamics of incompressible media which gains importance in the metallurgical 

industry, Nuclear reactor, sodium cooling system ,every storage and electrical power generation[1974-76].Free 

convective flows are of great interest in a number of industrial applications such as fiber and granular insulation, 

geothermal system etc. Buoyancy is also of importance in an environment where difference between land and air 

temperature can give rise to complicated flow patterns. The unsteady free convection flow past an infinite porous 

plate and semi-infinite plate were studied by Nanda and Sharma [1962] .In their first paper they assumed the 

suction velocity at the plate varying in time as 
1/2t−

,where as in the second paper the plate temperature was 

assumed to oscillate in time about a constant non-zero mean. Free convective flow past a vertical plate has been 

studied extensively by Ostrach[1953] and many others. The free convective heat transfer on vertical semi-infinite 

plate was investigated by Berezovsky [1977]. Martynenko et al.[1984] investigated the laminar free convection 

from a vertical plate. 

The basic equations of incompressible MHD flow are non-linear. But there are many interesting cases 

where the equations  became linear in terms of the unknown quantities and may be solved easily. Linear MHD 

problems are accessible to exact solutions and adopt the approximations that the density and transport properties 

be constant. No fluid is incompressible but all may be treated as such whenever the pressure changes are small in 

comparison with the bulk modulus. Mention may be made to the works in [1975,72]. Ferdows et al. [ 2004] 

analysed free convection flow with variable suction in presence of thermal radiation. Alam et al. [ 2006] studied 

Dufour and Soret effect with variable suction on unsteady MHD free convection flow along a porous plate. 

Majumdar et al. [2007] gave an exact solution for MHD flow past an impulsively started infinite vertical plate in 

the presence of thermal radiation. Muthucumaraswamy et al. [2009] studied unsteady flow past an accelerated 

infinite vertical plate with variable temperature and uniform mass diffusion. Recently, Dash et al[2009]  have 

studied free convective MHD flow of a visco-elastic fluid past an infinite vertical porous plate  in a rotating 

frame of reference in the presence of  chemical reaction. 

In the present study we have set the flow through porous media with uniform porous matrix with 

suction and blowing at the plate surface besides the free convective MHD effects and fluctuating surface 

temperature. From the established result it is clear that the suction prevents the imposed non-torsional 

oscillations spreading away from the oscillating surface (disk) by viscous diffusion for all values of frequency of 

oscillations. On the contrary the blowing promotes the spreading of the oscillations far away from the disk and 

hence the boundary layer tends to be infinitely thick when the disk is forced to oscillate with resonant frequency. 

In other words, in case of blowing and resonance the oscillatory boundary layer flows are no longer possible. 

Therefore, in the present study it aims at finding a meaningful solution for a non-linear coupled 

equation to bring out the effects of suction/blowing with varying span- wise co-sinusoidal time dependent 

temperature in the presence of uniform porous matrix in a free convective Magnetohydrodynamic flow past a 

vertical porous plate. 
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2.  Formulation of the problem 

An unsteady flow of a viscous incompressible electrically conducting fluid through a porous medium past an 

insulated, infinite, hot, porous plate lying vertically on the 
* *x z− plane is considered. The 

*x -axis is oriented 

in the direction of the buoyancy force and 
*y -axis is taken perpendicular to the plane of the plate. A uniform 

magnetic field of strength 0B is applied along the y
*
-axis. Let 

* * *( , , )u v w  be the component of velocity in the 

direction 
* * *( , , )x y z  respectively. The plate being considered infinite in 

*x  direction, hence all the physical 

quantities are independent of
*x . Thus, following Acharya and Padhi [1983],

*ω  is independent of 
*z and the 

equation of continuity gives 
*v V= − (constant) throughout . 

We assume the span wise co-sinusoidal temperature of the form   
* * * * * *

0( ) cos( / ),T T T T z l tε π ω∞= + − −                                                                         (1) 

The mean temperature
*T  of the plate is supplemented by the secondary temperature 

* * * * *

0( ) cos( / )T T z l tε π ω∞− −  varying with space and time. Under the usual Boussineques approximation 

the free convective flow through porous media is governed by the following equations: 

          
* * * * * * * 2 * * *

0( ) ( ) / / ,t y yy zz Pu v u u u g T T B u u Kυ β σ ρ υ∞+ = + + − − −      (2) 

 

* * * * * * 2 * 2( ) (( ) ( ) )t y yy zz y z

P P

K
T v T T T u u

C C

µ

ρ ρ
+ = + + +        (3) 

 The boundary conditions are given by  

 
* * * * * * * * * *

0 00 : 0, ( .), ( ) cos( / )y u v V Const T T T T z l tε π ω∞= = = = + − −      (4)  

* * * *: 0, .y u T T∞→ ∞ → →  

Introducing the non dimensional quantities defined in the nomenclature, we get,    

21 1 1
( ) ( ) ,

Re Re Re
t y yy zz

P

u u u u Gr M u
K

ω
θ− = + + − +          (5) 

2 21
( ) Re ( ),

Re Pr Re
t y yy zz y zEc u u

ω
θ θ θ θ− = + + +          (6)  

with corresponding boundary conditions: 

0 : 0, 1 cos( ),

: 0, 0.

y u z t

y u

θ ε π

θ

= = = + −

→ ∞ → →
           (7) 

Since the amplitude, ( 1),ε << of the plate temperature is very small, we represent the velocity and temperature 

in the neighborhood of the plate as   
2

0 1

2

0 1

( , , ) ( ) ( , , ) ( ),

( , , ) ( ) ( , , ) ( ),

u y z t u y u y z t o

y z t y y z t o

ε ε

θ θ εθ ε

= + +

= + +
          (8) 

Comparing the coefficient of like powers of ε after substituting (8) in (5) and (6), we get the following zeroth 

order equations: 

2

0 0 0 0

1
Re ( ) Re ,yy y

P

u u M u Gr
K

θ+ − + = −         (9) 

2 2

0 0 0Pr Re Pr Reyy y yEcuθ θ+ = −          (10) 

For solving the above coupled equations we use the following perturbation equations with perturbation 

parameter Ec, the Eckert number, 

 
2

0 01 02

2

0 01 02

( )

( )

u u Ecu o Ec

Ec o Ecθ θ θ

= + + 


= + + 
          (11) 
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Substituting (11) into (9) and (10) we get the following zeroth and first order equations of Ec . 

2

01 0 01 01

1
Re ( ) Re ,

P

u u M u Gr
K

θ′′ ′+ − + = −         (12) 

01 01Pr Re 0,θ θ′′ ′+ =            (13) 

2

02 02 02 02

1
Re ( ) Re ,

P

u u M u Gr
K

θ′′ ′+ − + = −         (14) 

2 2

02 02 01Pr Re Pr Re ,uθ θ′′ ′ ′+ = −             (15) 

The corresponding boundary conditions are: 

01 01 02 02

01 01 02 02

0; 0, 1, 0, 0,

; 0, 0, 0, 0.

y u u

y u u

θ θ

θ θ

= = = = =

→ ∞ = = = =
        (16) 

The solution of the equations (12) to (15) under the boundary conditions (16) are  

1Pr Re

01 3( ) ( ),m yyu y C e e−−= −           (17) 

Pr Re

01( ) ,yy eθ −=            (18) 

1 1 12 (Pr Re )Pr Re 2Pr Re

02 4 7 8 9 10( ) ,m y m y m yy yu y C e A e A e A e A e− − − +− −= + + + +      (19) 

1 12 (Pr Re )Pr Re 2Pr Re

02 3 4 5 6( ) ,m y m yy yy A e A e A e A eθ − − +− −= + + +       (20) 

The terms of  the coefficient of ε  give the  following first order equations: 

2

1 1 1 1 1 1

1
Re ( ) Re ( ) ,t y yy zz

P

u u u u Gr M u
K

ω θ− = + + − +       (21) 

2

1 1 1 1 0 1

1
Re ( ) Re .

Pr
t y yy zz y yu uωθ θ θ θ− = + +         (22) 

In order to solve (21) and (22),it is convenient to adopt complex notations for velocity and temperature profile as, 
( )

1( , , ) ( ) .i z tu y z t y e πφ −=          (23) 

( )

1( , , ) ( ) .i z ty z t y e πθ φ −=  

The solutions obtained in terms of complex notations, the real part of which have physical significance. 

Now, substituting (23) into (21) and (22) we get the following coupled equations: 

2 2 1
( ) Re ( ) [ ( )] Re ( ),

P

y y i M Gr y
K

φ φ ω π φ ψ′′ ′+ + − − + = −     (24) 

 
2

( ) Pr Re ( ) ( Pr ) 2 Re Pr ,oyy y i uψ ψ ω π ψ φ′′ ′ ′+ + − = −     (25) 

Again, to uncouple above equations we assume the following perturbed forms: 
2

0 1

2

0 1

( ),

( ),

Ec o Ec

Ec o Ec

φ φ φ

ψ ψ ψ

= + +

= + +
        (26) 

Substituting (26) into (24) and (25) and equating the coefficient of like powers of Ec we get the subsequent 

equations: 

2 2

0 0 0 0

1
Re [ ( )] Re ,

P

i M Gr
K

φ φ ω π φ ψ′′ ′+ + − − + = −        (27) 

2

0 0 0Pr Re ( Pr ) 0,iψ ψ ω π ψ′′ ′+ + − =          (28) 

2 2

1 1 1 1

1
Re [ ( )] Re ,i M Gr

K
φ φ ω π φ ψ′′ ′+ + − − + = −        (29) 

2 2

1 1 1 01 0Pr Re ( Pr ) 2 Re Pr ,i uψ ψ ω π ψ φ′′ ′ ′ ′+ + − = − /        (30) 

Where the prime denotes the differentiation with respect to y. 

The corresponding boundary conditions are: 
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0 1 0 1

0 1 0 1

0; 0, 0, 1, 0,

; 0, 0, 0, 0,

y

y

φ φ ψ ψ

φ φ ψ ψ

= = = = =

→ ∞ = = = =
         (31) 

The solutions of equations (29) to (32) under the boundary conditions (33) are: 

32

0 11( ) ( ),
m ym yy A e eφ −−= −           (32) 

 

2

0 ( ) ,m yy eψ −=             (33) 

 

32 1 2 1 2 4(Pr Re )(Pr Re ) ( ) ( )

1 12 13 14 15 16( ) ,
m ym y m m y m m y m yy A e A e A e A e A eψ − +− + − + − + −= + + + +     (34) 

 

3 1 3 32 1 2 4(Pr Re ) ( )(Pr Re ) ( )

1 17 18 19 20 21 22( ) .
m y m m y m ym y m m y m yy A e A e A e A e A e A eφ − + − + −− + − + −= + + + + + (35) 

The important flow characteristics of the problem are the plate shear stress and the rate of heat transfer at the 

plate. The expressions for shear stress (τ ) and Nusselt number ( Nu ) are given by   

* / Re
du

l V al
dy

τ τ µ= =  at y = 0 

   
3 1 4 1 7 8 1 9 10 1( Pr Re ) [ Pr Re 2 Pr Re 2 (Pr Re )]

( )

C m Ec C m A A m A A m

F Cos z tε π α

= − + − + + + + +

+ − +
    (36) 

 

Where 

 r iF F iF= +  

11 3 2 3 22 4 21 17 2 18 3 19 1 2 20 3 1( ) [( (Pr Re ) (Pr Re ) ( ) ( )]A m m Ec m A m A A m A m A m m A m m= − − + + + + + + + + +  

The amplitude and the phase angle are given by  

  
2 2

r iF F F= + , 
1tan i

r

F

F
α −=  

 

*

* *

0( )

q l
Nu

k T T∞

= −
−

=Real 
d

dy

θ
  at y = 0 

 
3 4 1 5 6 1Pr Re [Pr Re( 2 ) 2 (Pr Re )]

( )

Ec A A m A A m

G Cos z t

β

ε π β

= − − + + + + +

− − +
    (37) 

Where   r iG G iG= +  

 

 2 14 16 12 2 13 3 14 1 2 14 1 3[( (Pr Re ) (Pr Re ) ( ) ( )]m Ec m A A m A m A m m A m m= + + + + + + + + +  

The amplitude and the phase angle are given by  

  
2 2

r iG G G= + , 
1tan i

r

G

G
β −= . 

3.  Result and Discussions 

This section analyses the velocity, temperature, and amplitude, phase angle of shear stress and rate of heat 

transfer. The present discussion brings the following cases as particular case. 

 (i) 0,M = represents the case of non-conducting fluid without magnetic field. 

 (ii) ,PK → ∞ represents without porous medium. 

The most important part of the discussion is due to the presence of the sinusoidal variation of surface 

temperature with space and time and the forcing forces such as Lorentz force, resistive force, due to porosity of 

the medium, thermal buoyancy and cross flow due to permeable surface. 

 From equation (5) the following results follows. 
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In the absence of cross flow, 0 Re 0,
Vl

V
υ

 
= ⇒ = = 

 
 the u component of velocity remains unaffected by 

convective acceleration and thermal buoyancy force and the equation (5) reduces to  

( ) 21 1
t yy zz

P

u u u M u
Kω

  
= + − +  

  
 

More over, the viscosity contributes significantly with a combined retarding effect caused by magnetic 

force and resistance due to porous medium with an inverse multiplicity of the frequency of the temperature 

function. Further, 0, ,PM K= → ∞  reduces the problem to a simple unsteady motion given by       

( )1
.t yy zzu u u

ω
= +  

Thus, in the absence of cross flow, that is, in case of a non-permeable surface, frequency of the 

fluctuating temperature parameter 

* 2lω
ω

υ

 
=  
 

acts as a scaling factor.In case of impermeable surface, that is, 

in absence of cross flow, equation (6) reduces to    ( )1
.

Pr
t yy zzθ θ θ

ω
= +   

This shows that the unsteady temperature gradient is reduced by high prandtle number fluid as well as 

increasing frequency of the fluctuating temperature and viscous dissipation fails to effect the temperature 

distribution. 

 
 

 From fig.1 it is observed that maximum velocity occurs in case of cooling of the plate ( )0Gr >  

without magnetic field (curve IX) and reverse effect is observed exclusively due to heating of the plate

( )0Gr <  with a back flow (curve X). Thermal buoyancy effect has a significant contribution over the flow 

field. 

 From curves (VIII & IX), it is seen that the Lorentz force has a retarding effect which is in conformity 

with the earlier reported result [14]. 

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5 2.0

Fig.1 Velocity disrtibution.Kp=1(I-X),Kp=1000(XI-XX)

u

IX

XIX
VII

XVII

II,XII
V,XV

III,XIII

IV,XIV

X,XX

I,XI

        Re      Pr       M      Gr       Ec

I         2.0    0.71    2.0    5.0    0.01

II        4.0    0.71    2.0    5.0    0.01

III       2.0    2.00    2.0    5.0    0.01

IV       2.0    7.00    2.0    5.0    0.01

V        2.0    0.71    4.0    5.0    0.01

VI       2.0    7.00    4.0    5.0    0.01

VII      2.0    0.71    2.0   10.0   0.01

VIII     2.0    0.71    2.0    5.0    0.02

IX       2.0    0.71    0.0    5.0    0.02

X        2.0    0.71    2.0   -5.0    0.02
        

 XI      2.0    0.71    2.0    5.0    0.01

XII      4.0    0.71    2.0    5.0    0.01

XIII     2.0    2.00    2.0    5.0    0.01

XIV     2.0    7.00    2.0    5.0    0.01

XV      2.0    0.71    4.0    5.0    0.01

XVI     2.0    7.00    4.0    5.0    0.01

XVII    2.0    0.71    2.0   10.0   0.01

XVIII   2.0    0.71    2.0    5.0    0.02

XIX     2.0    0.71    0.0    5.0    0.02

XX      2.0    0.71    2.0   -5.0    0.02

VIII,XVIII

POROUS MEDIUM

WITOUT POROUS 

MEDIUM

  y
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 In the present study, velocity decrease is 7 times and there by steady state is reached within a few layers 

of the flow domain. Further, it is seen that flow reversal occurs only in case of heating of the plate (curve X& 

XX) both in porous and non porous medium. 

 Moreover, it is interesting to note that increase in Pr leads to significant decrease of the velocity (curve I 

(air) and IV (water)) throughout the flow field but an increase in cross flow Reynolds number, increases the 

velocity in the vicinity of the plate. Afterwards, it decreases rapidly. From curves, I & VIII it is observed that an 

increase in viscous dissipation increases the velocity at all points. Thus, the energy loss sets a cooling current 

vis-à-vis accelerating the velocity to reach the steady state. 

  These observations are clearly indicated by the additive and subtractive terms in the equation discussed 

earlier.  

 
 

 Fig.2 exhibits asymptotically decreasing behavior of the temperature distribution. For higher Pr fluid 

(Pr =7.0), the temperature reduces drastically (curves I&IV). 

It is interesting to remark that the cooling and heating of the plate (curves I & X) makes no difference in 

temperature distribution which is compensated due to increase in dissipative energy loss. 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0

y

Fig.2.Temperature distribution.Kp=1(I-X),Kp=1000(XI-XX)

IV,VI,XIV,XVI

III,XIII

II,XII

I,V,VIII,X,XI,

XV,XVIII,XX

IX,XIX

VII,XVII

            Re      Pr      M      Gr      Ec

I.          2.0    0.71    2.0    5.0    0.01

II.         4.0    0.71    2.0    5.0    0.01

III.        2.0    2.00    2.0    5.0    0.01

IV.       2.0    7.00    2.0    5.0    0.01

V.        2.0    0.71    4.0    5.0    0.01

VI.        2.0    7.00    4.0    5.0    0.01

VII.       2.0    0.71    2.0   10.0    0.01

VIII.      2.0    0.71    2.0    5.0    0.02

IX.        2.0    0.71    0.0    5.0    0.02

X.         2.0    0.71    2.0   -5.0    0.02

            Re      Pr      M      Gr      Ec

XI.       2.0    0.71    2.0    5.0    0.01

XII.       4.0    0.71    2.0    5.0    0.01

XIII.      2.0    2.00    2.0    5.0    0.01

XIV.     2.0    7.00    2.0    5.0    0.01

XV.     2.0    0.71    4.0    5.0    0.01

XVI.     2.0    7.00    4.0    5.0    0.01

XVII.    2.0    0.71    2.0   10.0    0.01

XVIII.    2.0    0.71    2.0    5.0    0.02

XIX.     2.0    0.71    0.0    5.0    0.02

XX.      2.0    0.71    2.0   -5.0    0.02

porous medium

Non-porous 

medium

θ
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 Fig.3 shows the variation of amplitude of shear stress in both the cases i.e. presence and absence of 

porous medium. Shear stress is almost linear for all values of frequency of fluctuation. For high Reynolds 

number as well as greater buoyancy force shearing stress increases (curves II, XII, VII & XVII).   

 

 
  From fig.4 a steady increasing behavior is marked with an increasing frequency parameter but when ω  

exceed 15.0 (approx.), slight decrease is marked. There is always a phase lead for all the parameters and for all 

values ofω . A decrease in phase angle is marked due to increase in Reynolds number and magnetic parameter 

but the reverse effect is observed in case of Prandtl number .Phase angle remains unaffected due to buoyancy 

effect, dissipative loss and presence of porous medium. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

5 10 15 20 25 30

ω
Fig. 3. The amplitude |F| of the shear stress.Kp=1(I-X),Kp=1000(XI-XX)

|F
|

I,VIII,X,XI,

XVIII,XX

II,XII

III,XIIIIV,XIV

VI,XVI
V,XV

IX,XIX

VII,XVII
            Re      Pr      M      Gr      Ec

I.          2.0    0.71    2.0    5.0    0.01

II.         4.0    0.71    2.0    5.0    0.01

III.        2.0    2.00    2.0    5.0    0.01

IV.       2.0    7.00    2.0    5.0    0.01

V.        2.0    0.71    4.0    5.0    0.01

VI.        2.0    7.00    4.0    5.0    0.01

VII.       2.0    0.71    2.0   10.0    0.01

VIII.      2.0    0.71    2.0    5.0    0.02

IX.        2.0    0.71    0.0    5.0    0.02

X.         2.0    0.71    2.0   -5.0    0.02

            Re      Pr      M      Gr      Ec

XI.        2.0    0.71    2.0    5.0    0.01

XII.       4.0    0.71    2.0    5.0    0.01

XIII.      2.0    2.00    2.0    5.0    0.01

XIV.     2.0    7.00    2.0    5.0    0.01

XV.      2.0    0.71    4.0    5.0    0.01

XVI.     2.0    7.00    4.0    5.0    0.01

XVII.     2.0    0.71    2.0   10.0   0.01

XVIII.    2.0    0.71    2.0    5.0    0.02

XIX.      2.0    0.71    0.0    5.0    0.02

XX.       2.0    0.71    2.0   -5.0   0.02

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5 10 15 20 25 30

ω
Fig. 4. The phase angle Tanα of shear stress,Kp=1(I-X),Kp=1000(XI-XX)

T
a

n
 α

I,VII,VIII,X,XVII,

XVIII,XI,XX

II,XII

III,XIII

IV,XIV

V,XV

VI,XVI

IX XIX
            Re      Pr      M      Gr      Ec

I.          2.0    0.71    2.0    5.0    0.01

II.         4.0    0.71    2.0    5.0    0.01

III.        2.0    2.00    2.0    5.0    0.01

IV.       2.0    7.00    2.0    5.0    0.01

V.        2.0    0.71    4.0    5.0    0.01

VI.        2.0    7.00    4.0    5.0    0.01

VII.       2.0    0.71    2.0   10.0    0.01

VIII.      2.0    0.71    2.0    5.0    0.02

IX.        2.0    0.71    0.0    5.0    0.02

X.         2.0    0.71    2.0   -5.0    0.02

            Re      Pr      M      Gr      Ec
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Fig.5 and fig.6 exhibits the variation of amplitude G  and phase angle tan β  in case of heat transfer. 

Further, G  exhibits three layer characters due to high, medium and low value of Pr. 

 

4. Conclusion 

1.   Heating of the plate leads to back flow. 

2.   Lorentz force has retarding effects. 

3.   Presence of porous medium has no significant contribution. 

4. Viscous dissipation generates a cooling current which accelerates the velocity. 

5. There are three layer variation of amplitude of heat transfer with a phase lead. 

6. A phase lead is marked in case of shear stress and a phase lag for heat transfer which remains 

unaffected by magnetic parameter, Grashoff number and Eckert number. 
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Nomenclature: 

* * *( , , )x y z  Cartesian Co-ordinate system    V  Suction velocity 

l   Wave length    ε  Amplitude of the span  

        wise co-sinusoidal temperature 

υ  Kinematics coefficient of viscosity   µ  Coefficient of viscosity 

*

*

/

/

y y l

z z l

= 


= 
 Dimensionless space variable  θ  Dimensionless temperature 

         
* * * *

0( ) ( )T T T T∞ ∞− −  

β  Coefficient of volumetric expansion  0B  Uniform magnetic field strength 

g  Acceleration due to gravity   β  Coefficient of volume approximation 

*

0T  Temperature of the plate    
*T∞  ambient temperature 

ρ  Density      PC  Specific heat at constant pressure 

K  Thermal conductivity    ω  Frequency of temperature fluctuation-

            
* 2 /lω υ  

Re  Reynolds number- /Vl υ     Pr  Prandtl number- /PC Kµ  

Gr  Grashoff number- 
* * 3

0( ) /g T T Vυ β ∞−   Ec  Eckert number- 
2 * *

0( )PV C T T∞−  

M  Hartmann number- 0B l σ
µ    τ  Dimensionless skin friction 

Nu  Nusselt number     PK  Permeability of the medium  
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