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Abstract 

This research project evaluates the problem of flooding in a distillation column that uses sieve tray. Data 

obtained from a typical crude oil refining company in Nigeria were used in the various calculations using the 

Kister and Haas;  as well as the Fair’s correlations. The flooding capacity of the column and its effect on the 

fractional hole area, hole diameter and tray spacing of the column were determined. The flooding capacity was 

determined as 0.104 m/s and 0.121 m/s for the two correlations. The flooding capacity has a directly proportional 

relationship with the tray spacing TS and fractional hole area of the column but has an inversely proportional 

relationship with the hole diameter of the column. Results obtained have shown that the  Kister and Haas; and 

Fair’s correlations experienced 46.38 % and 51.3 % flooding respectively. These results have shown that the 

performance of the column is below capacity utilization. 

Keywords: separation efficiency, downcomer, sieve tray, froth entrainment. 

 

Introduction 

A common problem that can occur in distillation columns is flooding. A typical distillation column is filled with 

a structured packing, showing the liquid flow and vapor flow when the column is operating normally. Liquid 

flows downward over the structured packing countercurrent to the upward flowing vapor. The vapor must follow 

a tortuous path; but, the void space in the packing is predominantly filled with vapor. The vapor is said to be the 

“continuous phase”. The upward flow of the vapor exerts an “aerodynamic drag” on the falling liquid. This drag 

force acts in opposition to the force of gravity and slows the flow of the falling liquid Emerson, (2014). When 

the relative flow rates of the vapor and liquid are such that the drag force is greater than or equal to the gravity 

force; then, the liquid stops flowing down the column. This condition is called flooding. Flooding can begin at 

any vertical location in the column.  

 

The excessive accumulation of liquid inside a distillation column due to flooding has negative impact on the 

maximum capacity of the column. It also leads to sharp increases in column differential pressure and significant 

decrease in separation efficiency. The problem of flooding affects product purity and thus the economics of 

production is severely affected. The issue of flooding is therefore a concern to distillation column operators, 

plant designers and indeed chemical engineers.  

In evaluating distillation column performance, American Institute of Chemical Engineers  (AIChE) Equipment 

Testing Procedures Committee considered the following parameters for the testing: whether column  

performance meets vendor guarantees; identify capacity bottlenecks; troubleshoot performance problems; 

determine operating  range of the column; define optimum operating conditions; develop basic data and 

correlations for new designs; calibrate computer simulations for use in optimizing, bottlenecking, and design 

studies, CEP AIChE, 2013. The work of  Chevemisinoff, (2000)   showed jet flooding from high vapor rates 

which formed liquid seal at the top of the column. This brought about poor separation efficiency and poor 

product quantity and purity. T he test procedure carried out here was on alcohol solutions of commercial interest 

such as ethyl, methyl and isopropyl alcohol solutions. At the end of their analysis it was reported that Isopropyl 

alcohol did not suffer flooding.  Kister (1992),  explained that flooding is caused by one of the following 

mechanisms: spray entrainment flooding; froth entrainment flooding; down -comer malfunctions and large 

diameter columns defects. Details of the mechanism can be obtained from the literature cited.  

Plate efficiency plays an important role in the design of distillation column. For the desired separation of 

mixtures to be achieved in a distillation process, the vapor leaving a plate in the column must be equal to the 

liquid leaving that plate. Therefore, the actual number of plates required for a particular separation duty is 

determined by the efficiency of the plate. This implies that any factor that causes a decrease in the efficiency of 

plate will definitely change the performance of the column. So, it is important to determine the efficiency of 

plate column before carrying out the actual construction/installation of distillation column for separation of 

mixture of crude oil in the refinery. By so doing, it is possible to separate crude oil mixtures that will yield the 

required product purity Ujile and Amagbo (2013).  

 

Souders and Brown (1934) theoretically analyzed entrainment flooding in terms of a droplet settling velocity.  

According to their analysis, flooding occurs when the upward vapor velocity is high enough to suspend a liquid 

droplet, giving rise to the equation below:  
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From Equation 1, the Souders and Brown flooding constant, CSB can be defined as: 
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Where Us,flood is flooding velocity(m/s), CSB is the flooding capacity factor (m/s),  

kg/m
3
,  kg/m

3
 

 

The Fair flood has been the standard of the industry for entrainment flood prediction and was recommended by 

most designers Van  (1967), Holland (1981) . CSB is a function of the flow parameter FLV, tray spacing TS, 

surface tension , and fractional hole area Ah.  CSB is based on the net area AN, and is evaluated from figure 1. 

The flooding vapor velocity is calculated from the equation; 
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The Kister and Haas Correlation is a recent correlation for entrainment flooding prediction presented as follows:  
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 ct
h  is the clear liquid height at the transition from the froth to spray regime, based on the Jeronimo and 

Sawistowski (1973) correction as modified for physical properties by Kister and Haas (1990). 

 

Another methods for predicting froth entrainment flooding was presented by Kister et al (1994). Most of the 

work reported in the literature lumps spray and froth regime entrainment flooding together. Froth entrainment 

flooding is far less common than spray entrainment flooding and occurs mainly at close (< 18inch) tray spacing, 

when the froth envelope can approach the tray above.  Some flood data at close tray spacing that pertains to froth 

entrainment flooding were reported in Mayfield et al (1952). Froth regime entrainment work is also relevant to 

froth entrainment flooding Chatterjee, (1973).  

The factors affecting froth entrainment flooding differ from those affecting spray entrainment flooding.  The 

critical variable is the distance between the top of the froth and the tray above this implies that the flood velocity 

strongly increases as tray spacing is raised, liquid load is lowered and weir height is lowered Smith (1963). 

Some flood and entrainment data confirms this trend Mayfield et al (1952), Friend et al (1960).  On the other 

hand tray geometry variables such as hole diameter and fractional hole area can be expected to have a lesser 

effect (if any) on froth entrainment flooding. This was confirmed by entrainment data but not by flood data 

Friend et al (1960), Kister and Haas (1990). 

Froth entrainment can be predicted using the Fair or Smith (1963) correlations. Both included froth entrainment 

flood data in their data base.  Testing of Fair’s correlation against a handful of more recent data suggests that it 

gives conservative froth entrainment flood predictions Chatterjee (1973),  Smith (1963). The Smith et al 

correlation is claimed to be less conservative.  The Kister and Haas correlation is unsuitable for froth 

entrainment flood predictions, Smith  (1963) .  

Critical analysis of the above researchers’ work shows the following limitations for Kister and Haas 

Correlations:  

1) At pressure above 150 psia, downcomer flood is often the capacity limitation. This limitation is not predicted 

by the correlations. 

2) At high liquid loads (above 7-10 gpm) in downcomer flood is often the capacity limitation. 

3) At lower tray spacing, entrainment flooding may be related to lifting of the froth envelop and to froth rather 

than spray height. 
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4) Clear liquid (water) height at transition from froth to spray regime (hct) water expression does not apply for 

liquid loads lower than 0.5 gpm of weir (Eq. 7) 

 It is therefore imperative to improve on the work of previous researchers by introducing the following 

fundamental principles: 

1) Making calculations based on operating data from the typical crude oil refinery in Nigeria to 

quantitatively demonstrate flooding mechanism. 

2) Emphasizing on the distillation tray malfunctions (flooding, weeping, etc), causes and troubleshooting 

techniques for solving these problems. Discriminating between flooding and dumping mechanisms. 

 

For sieve trays, the entrainment flooding point can be predicted by using the method of Kister and Haas. The 

method is said to reproduce to a large database of measured flood points to within 15 percent. 
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Where, = hole diameter, mm; = surface tension, mN/m (dyn/cm) ; , = vapour and liquid densities, 

kg/m
3
;TS= tray spacing, mm; = clear liquid height at froth to spray transition, mm;  is obtained from the 

equation: 
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In equation 7,  liquid down flow/(h.m weir length) and  fractional hole area based on active 

(bubbling) area; For instance, 
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 The Fair’s correlation for decades has been the standard for the industry for entrainment flood prediction. It uses 

a plot of surface tension corrected Souders and Brown flood factor  against the dimensionless flow parameter 

shown in Fig.1. The flow parameter represents a ratio of liquid to vapor kinetic energies. 

 

5.0.


















L

G

G

L
LG

F



                                                                                       (10) 

 

Low values indicate vacuum operations; high values indicate operation at higher pressures or at high 

liquid/vapour loadings. The liquid/gas ratio is based on mass flow rate. For multi pass trays, the ratio needs to be 

divided by the number of passes. The strength of the correction is at the low flow parameters. At higher flow 

parameters, (high ratios, high pressures and emulsion flow) Fig. 1 gives excessive conservative predictions, with 

the low values of Csbf  to the right likely to result from downcomer flow restrictions rather than excessive 

entrainment. The curves may be expressed in equation form as,   
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where TS = Plate spacing, mm and the equation for gas velocity is expressed as; 
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Where Unf  = gas velocity through the net area at flood, m/s ; Csbf  = Capacity parameter corrected for surface 

tension, m/s. Experimental values have been correlated against a dimensionless flow parameter F LG as shown in 

Fig. 1. The flow parameter represents a ratio of liquid to vapor kinetic energies as shown in Eq. 10. 

 This research therefore involves: 

Quantitative determination of flooding mechanism of a column using trays; and identifying the  distillation tray 

malfunctions (flooding, weeping, etc), causes and troubleshooting techniques for solving these problems.  

 

 
Fig. 1: Fair’s entrainment flooding correlation for columns with crossflow trays (sieve, valve and bubble cap). 
Perry, (2008) Chemical Engineers Handbook  

 

Methodology 

A distillation column that uses sieve tray of 2.591m diameter was considered for the separation of liquefied 

petroleum gas (propane/ butane mixture). Physical properties data obtained from a typical Refinery Company, in 

Nigeria for LPG Merox unit distillation column is tabulated below:  

TABLE 1 Physical properties data for crude oil LPG Merox Unit 

Key Dimensions of the Tray column 

column cross section, m
2
 

down comer area, m
2
 

net area, m
2
  

active area, m
2
  

hole area ,m
2
 

hole diameter, mm 

weir length, m 

weir height, mm 

tray spacing , mm   

  

5.27 

0.6324 

4.64 

4.00 

0.4 

5 

1.916 

50 

900 

Condition and properties at the top tray   

Temperature, 
0
C  

Pressure, kg/cm
2
 

Vapour flow, kg/h  

Vapour density, kg/m
3
 

Liquid flow, kg/h 

Liquid density kg/m
3
 

Surface tension, mN/m  

76.5 

18 

15,334 

0.523 

26,327 

582 

12.46 

Data obtained from a typical crude oil refinery company  

 

The methods employed in predicting flooding capacity in this research project is the Kister and Haas method and 

the Fair’s correlation method. Both methods are proposed by Perry,  (2008). These methods are utilized to 

evaluate, and compare the flooding capacity for a distillation column.  

Kister and Haas gave a correlation which is said to reproduce a large data base of measured flood points to 

within + 15 percent.  CSB, flood is based on the net area.  
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Here equation 5 becomes relevant and hct was obtained subsequently from equation 6.:  

The assumed system (Derating ) Factor (SF) for the crude tower is 0.85 (Perry 2008) 

For Kister & Haas 
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Substituting the values from the plant data, we obtained hct = 13.496 mm, CSB,  flood = 0.104 m/s  

Similarly, applying FAIR’S correlations the following values were obtained, FLV = 0.05147;   CSB flood = 0.133 

m/s and % flood = 51.3 % . 

Considerations of the relationship between Csb and some design parameters: 

 Relationship between Csb and Fractional hole area Af 

Fractional hole area, Af is the ratio of hole area and active area.  

Taking all other terms in equation 13 as constants and varying only Af.  Working with a range of Af = 0.05 to 

0.08, and substituting it into equation 13 these values were obtained for Csb the results shown in Tables 2, 3 and 4 

as well as  figures 2, 3 and 4 respectively were obtained. 

 

Table 2: Values for Csb and Af 

Af Csb 

0.05 0.05 

0.06 0.051 

0.07 0.0515 

0.08 0.0525 

 

 Relationship between Csb and Tray Spacing TS 

Taking all other terms in equation 13 as constants and varying only values for TS (900 to 2000mm) and 

substituting same in equation 13, the following values were obtained for Csb 

 

Table 3: Values for Csb and TS 

TS Csb 

900 0.07 

1000 0.074 

1100 0.079 

1200 0.081 

1300 0.085 

1400 0.088 

1500 0.091 

1600 0.094 

1700 0.097 

1800 0.1 

1900 0.1 

2000 0.104 

 

Relationship between Csb and hole diameter. 

Similarly equation 13 shows that Csb varies with dh according to the following equation, 
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Csb =  
0.1

h
d

0.12
                                                                                                           (16) 

Substituting values for dh into equation 16 starting from dh = 5 mm to 40 mm gives the following values for Csb 

 

Table 4: Values for Csb and dh 

dh (mm) Csb 

5 0.1 

10 0.095 

15 0.092 

20 0.089 

25 0.087 

30 0.085 

35 0.084 

40 0.083 

 

Results and Discussions 

Effect of flooding capacity on tray spacing and productivity  

As shown in Table 3 and Fig 3, CSB rises with tray spacing. Roughly, CSB is proportional to the tray spacing to a 

power of 0.5 to 0.6. At low tray spacing (<15 in), the power may be somewhat higher due to the proximity of the 

froth envelope and/or excessive splashing from the dispersion at the tray. As flooding capacity rises owing to 

increase in tray spacing, it leads to a low degree of distillate product purity thereby resulting in low productivity.  

 
Fig.2: Graph of Flooding Capacity (m/s) against Tray Spacing (cm) 

 

 Effect of Flooding Capacity on Fractional Hole Area and Productivity:  

From Table 2 and Fig 3 Csb increases with fractional hole area. Roughly when fractional hole area is between 

0.05 and 0.08, an increase in fractional hole area of the order of 0.01 will enhance Csb by about 5% as also stated 

by  Lemieux and Scotti (1969).   When the fractional hole area exceeds 0.1, the rate of increase of Csb with hole 

area is substantially lower Stichlmair (1978), Kister (1990). The flooding capacity which rises with fractional 

hole area reduces the degree of distillate product purity which amounts to low productivity of the distillation 

column. 

http://www.iiste.org/Journals/index.php/CPER
http://www.iiste.org/


Chemical and Process Engineering Research                                                                                                                                    www.iiste.org 

ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) 

Vol.25, 2014 

 

22 

 
Fig 3: Effect of Flooding Capacity on Hole Diameter  

 

As shown in Table 4 and Fig 4 CSB increases as hole diameter is reduced. Roughly CSB increases with the 

reciprocal of hole diameter to a power of 0.1 to 0.2 Kirachbaum (1969), Kister and Haas (1990).  

The flooding condition fixes the upper limit of vapour velocity.  A high vapour velocity is needed for high plate 

efficiencies and the velocities will normally be between 70 to 90 percent of that which would cause flooding.  

For design, a value of 80 to 85 percent of the flooding velocity should be used.  

CSB is practically independent of pressure in distillation systems Gerster et al (1942). This suggests that CSB is, at 

the most, only a very weak function of physical properties. Since the relationship between the flooding capacity 

and hole diameter is an inverse relationship, so this effect increases the product purity hence increasing 

distillation column productivity. 

 

 
Fig. 4: Graph of Flooding Capacity (m/s) against hole diameter (mm) 

 

Conclusion 

Distillation Column Flooding is a phenomenon that can cause loss of separation and negatively impact in the 

performance and energy efficiency of the distillation process. The onset of distillation column flooding is 

associated with a change in the flow regimes of the gas and liquids flowing inside the column.  

This work has been able to detail causes of flooding and its effect on the performance of the column. The basic 

calculation guideline on how to evaluate flooding capacity of a column is established. The evaluation has been 

able to highlight the following significant areas: 

(i)Flooding, types and methods of predicting flooding (ii) Causes of flooding (iii) Operating problems arising 

from flooding (iv) Methods of trouble shooting flooding (v) Effects of flooding on the production capacity of a 

distillation column for typical Crude oil Refinery in Nigeria.(vi) Calculation of the flooding capacity.  

 In this project, flooding applicable only to the sieve tray   distillation column was considered. The flooding 

capacity based on the Kister and Haas correlation was determined to be 0.104m/s, while the derated C-factor at 

flood should be 0.088. Percentage flooding using Fair's correlation is 51.3%, while that using Kister and Haas 

correlation is 46.3%. 
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However, for the system since the calculated percentage flooding is less than 80% it is advised that the column 

diameter be reduced. This is because from literature for an effective design and operation the percentage flood is 

determined to be from 80% and above. The low value of the percentage flood indicates that the column is under-

utilized. 
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