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ABSTRACT 

Global warming arising from the emission of greenhouse gases, especially CO2, has become a biggest issue all 

over the world in the recent years. Though various CO2 capture technologies have been proposed, chemical 

absorption and adsorption are currently believed to be the most suitable ones for post-combustion power plants. 

In this review paper, we will discuss different physical adsorbents; various mesoporous solid adsorbents 

impregnated with polyamines and grafted with amines are reviewed. The major concern is for CO2 adsorption 

capacity at different temperature and pressure are compared and discussed. More effective and less energy-

consuming regeneration techniques for CO2-loaded adsorbents are also proposed.  

Keywords: CO2 capture technology, adsorbents, micro or mesoporous materials, post-combustion 

 

1. INTRODUCTION 

 

It can be understood that to develop an appropriate CO2 capture adsorbent should satisfy (1) low-cost raw 

materials, (2) low heat capacity, (3) fast kinetics, (4) high CO2 adsorption capacity, (5) high CO2 selectivity and 

(6) thermal, chemical and mechanical stabilities under extensive cycling. A variety of solid adsorbents have been 

proposed to take into account of their structures and compositions, adsorption mechanisms, and regeneration. In 

this article, physical adsorption, mesoporous adsorbents impregnated and grated with amines, grafting using 

supercritical fluid (SCF), and regeneration techniques are reviewed. 

 

1.1. Zeolites 

Zeolitic adsorbents have played a major role in the development of adsorption technology. Zeolites are porous 

crystalline alumina silicates. The zeolite framework consists of an assemblage of SiO
4 

and AlO
4 

tetrahedral, 

joined together in various regular arrangements through shared oxygen atoms to form an open crystal lattice 

containing pores of molecular dimensions into which molecules can penetrate. Table 1 shows the CO2 adsorption 

properties of different zeolites and zeolite-like materials. As seen, the adsorption capacity decreased drastically 

when the temperature increased from 298 to 323 K. In terms of CO2 adsorption kinetics, zeolites are ranked 

among the fastest adsorbents, reaching equilibrium capacity within minutes. Moreover, a large number of studies 

were done on NaX faujasite using different recycling configurations, including temperature swing and pressure 

swing adsorption. Zeolites generally operate without any loss in performance, provided that the feed stream is 

strictly dry. Although low silica materials exhibit high adsorption capacity and selectivity at low pressure with 

favourable isotherms, they are very sensitive to the presence of water, which strongly inhibits the adsorption of 

CO2.The CO2 adsorption capacity on SAPO is lower than X and Y faujasites [1]. At 288 K and 100 kPa, the T-

type zeolite nanoparticles showed 4.01 mmol/g CO2 adsorption capacities, 30% higher than micro-level T-type 

zeolite. The synthesized T-type zeolite nanoparticles have promising adsorption capability and recyclability for 

the separation of CO2/N2 and CO2/CH4 in the potential application to post-combustion CO2 separation or natural 

gas purification process [2]. 

In deduction, because of their often highly favourable CO2 adsorption isotherms, zeolites and zeolite-like 

materials with low Si/Al ratios are among the most promising adsorbents for CO2 capture from flue gas. 

However, because of their highly hydrophilic character, the flue gas needs extensive drying prior to CO2 capture. 

Notice that among zeolites, 13X is has been the most investigated material for the purpose of CO2 capture [1].  
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Table 1:  Literature on CO2 adsorption capacity by zeolites. 

 

 

Name of zeolites CO2 adsorption 

temperature (K) 

Pressure CO2 adsorption 

capacity 

Year References 

NaX/1 298 0.1-0.4 bar 2.8-3.9 2004  [6] 

NaX/1 323 0.1-0.4 bar 1.43-2.49 2004 [6] 

LiX/1 303 0.1-0.4bar 3.1-4.6 2006 [4] 

NaY/2.4 323 0.1-0.4bar 0.45-1.17 2007 [7] 

CsY/2.4 333 0.1-0.4bar 0.86-1.2 2010 [5] 

KY/2.4 333 0.1-0.4bar 0.75-1.6 2010 [5] 

Silicalite/∞ 334 0.1-0.4bar 0.16-0.45 1996 [8] 

H-ZSM-5/30 313 0.1-0.4bar 0.7-1.5 2002 [9] 

Li-MCM-22/15 333 0.1-0.4bar 0.68-1 2009 [10] 

Zeolite 13X 295 100KPa 4.50 2004 [11] 

Zeolite 13X 298 1000KPa 6.52 2004 [12] 

NaX 298 100KPa 4.98 2006 [19] 

NaY 295 100KPa 4.00 1995 [11,13,14] 

Zeolite 5A 298 100KPa 4.73 2010 [18] 

ZSM-5 313 100KPa 2.59 2004 [11,15] 

Chabazite 304 100KPa 3.27 2012 [16] 

Chabazite 304 1200KPa 4.32 2012 [16] 

H-SSZ-13 298 100KPa 3.98 2012 [17] 

Beta 303 100KPa 1.75 2009 [15] 

Beta 308 1100KPa 3.27 2010 [20] 

T-type 288 100KPa 4.81 2013 [2] 

T-type 298 100KPa 3.94 2013 [2] 

Zeolite NaKA 273 101KPa 3.36 2013 [21] 

 

 

1.2. CARBON 

Activated carbons are used because of their wide availability, low cost and high thermal stability. It is largely 

established that activated carbons have advantages over other CO2 adsorbents. Among the carbon based 

adsorbents reported in the literature, activated carbons (ACs) and carbon nanotubes (CNTs) are the most 

investigated materials. CO2 adsorption on activated carbons has been studied experimentally and theoretically 

for a long time and has found commercial applications. There is a wide range of activated carbons with a large 

variety of microporous and mesoporous structures. Activated carbon may be produced from many raw materials 

such as coal, coke pitch, wood or biomass sources (e.g., saw dust, coconut shells, olive stones), often via two 

steps: carbonization and activation. Carbon molecular sieves (CMS), which are a sub-class of activated carbon 

with narrow pore size distribution (PSD), are kinetic-based adsorbents. They have been commercialized mainly 

for the separation of air and the production of high purity N2. However, at low CO2 partial pressure, activated 

carbons exhibit lower adsorption capacity and selectivity than zeolites due mainly to their less favourable 

adsorption isotherms. In spite of the hydrophobic character of carbon-based adsorbents, their CO2 adsorption 

ability is adversely affected by the presence of water vapour[1]. 

  The physically activated carbons (PAC) exhibited a large adsorption of CO2 of 1.45 mmol/g  at a small 

partial pressure of CO2 (10 KPa and a temperature of 0
0
C). These PACs were prepared by activation in a stream 

of CO2 and had significant amounts of ultra micropores, which were established by analysing the adsorption of 

CO2 with a density functional theory. The uptake at such low pressures of CO2 is of most importance for an 

adsorption-driven CO2 capture from flue gas at large power stations, as it is difficult to imagine a pressurization 

of the flue gas. Activated carbons are attractive sorbents as they have high capacities for adsorption of CO2, are 

tolerant to water in the flue gas, and can operate under either kinetic or equilibrium conditions[3]. 
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Table 2: Literature on CO2 adsorption capacity by Activated Carbon 

 

Name 

Carbon Material 

Temperature 

(K) 

Pressure Adsorption  Capacity 

of CO2 

(mmol/g) 

Year References 

AC 298 0.1-0.4bar 0.6-1.5 2001 [22] 

AC 328 0.1-0.4bar 0.25-0.8 2001 [22] 

SWCNT 308 0.1-0.4bar 0.5-1.25 2003 [23] 

MWCNT 333 0.1-0.4bar 0.34-0.9 2009 [24] 

Mesoporous Carbon 298 100KPa 1.5 2010 [26,27] 

Mesoporous Carbon 298 1000KPa 3.0 2011 [26,27] 

Activated Carbon 298 100KPa 2.27 2010 [25] 

Activated Carbon 298 3000KPa 21.29 2010 [25] 

Microporous Carbon 298 100KPa 4.0 2012 [28] 

PAC(grass utility) 273 10KPa 1.45 2013 [3] 

PAC(horse manure) 273 10KPa 1.36 2013 [3] 

PAC(beer  waste) 273 10KPa 1.31 2013 [3] 

 

 

1.3.MOFs and zeolite-like MOFs 

 

Last 20 years have seen a remarkable progress in the design, synthesis, and characterization of metal–organic 

frameworks (MOFs) owing to their various structural and chemical diversity and their potential applications in 

gas storage, ion exchange, molecular separation, and heterogeneous catalysis. These micro porous crystalline 

solids are composed of organic bridging ligands or “struts” coordinated to metal-based nodes to form a three-

dimensional extended network with uniform pore diameters typically in the range 3 to 20. In summary, MOFs, 

ZMOFs and COFs may be promising materials for CO2 removal provided that more favourable CO2 adsorption 

isotherms are obtained. Their selectivity and capacity at low partial pressure of CO2 in gas mixtures are quite low 

and more likely to be suitable for CO2 storage rather than CO2 separation from flue gas. Although in their early 

stages of development, MOFs, ZMOFs and COFs are promising materials for CO2 adsorption showing very 

interesting and adjustable properties[1]. 

 

 

Table 3: Literature on CO2 adsorption capacity by MOF & Z-MOF. 

 

Name of MOF & 

 Z-MOF 

Temperature 

(K) 

Pressure Adsorption 

Capacity of CO2 

Year References 

MOF-508 323 0.1-0.4bar 0.1-0.7 2008 [34] 

Cu-BTC 298 0.1-0.4bar 0.5-2 2007 [35] 

MIL-53 303 0.1-0.4bar 0.5-1.15 2009 [29] 

Ni/DOBDC 296 0.1-0.4bar 2.7-4.01 2008 [32,33] 

Co/DOBDC 296 0.1-0.4bar 2.8-5.36 2008 [32,33] 

Mg/DOBDC 296 0.1-0.4bar 5.36-6.8 2009 [30,32] 

ZIF-78 298 0.1-0.4bar 0.77-1.36 2010 [31,36] 

MOF-177 298 100KPa 1.73 2010 [18] 

MOF-177 298 1400KPa 9.02 2010 [18] 

CD-MOF-2 298 100KPa 2.68 2011 [37] 

MOF-74 298 110KPa 4.86 2005 [38] 

MOF-177 298 4250KPa 33.93 2005 [38] 
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1.4.   Amine-functionalized adsorbents 

 

The technology currently used in industry for CO2 capture is absorption with liquid amine solutions. The 

removal of CO2 by amines occurs via the widely accepted formation of carbamate and bicarbonate species. 

These are reversible reactions that permit the regeneration of amines, typically by heating the CO2-rich solution. 

 

The liquid amine absorption process inspired researchers to use amine-modified solid materials as adsorbents for 

CO2 capture. As far as flue gas treatment is concerned, it was anticipated that supported amines will maintain a 

high selectivity toward CO2 with a negligible uptake of other components, particularly N2. Although the early 

efforts to produce amine functionalized adsorbents were not particularly successful in terms of adsorption 

capacity, but it is the increasing interest in the subject matter.  

We have broadly organized the present section according to the type of interactions between amine groups and 

the support, namely (i) amine-impregnated materials where mostly weak interactions occur, and (ii) covalently 

bonded amine-containing species, obtained typically via surface-grafting of amino silanes. The rationale behind 

such classification is that materials with either strong or weak interactions exhibit a number of common 

characteristics. An example is that grafted materials offer comparatively higher rate of adsorption than amine-

impregnated adsorbents and, in some cases even higher than commercial adsorbents such as 13X. However, the 

organic content of amine-grafted adsorbents depends on the surface density of hydroxyl groups, needed to 

anchor the aminosilane. As for impregnated amines, higher loadings may be achieved, but often accompanied by 

increasingly strong diffusion limitations [1]. 

 

 

Table 4: Literature data on CO2 adsorption capacity of amine-impregnated adsorbents  

 

Support Amine &  

Amine loading 

Temperature Adsorption 

Capacity 

Year References 

MCM-41 PEI(50%) 75 ºC 2.1 2002 [39] 

MCM-41 PEI(50%) 75 ºC 2.84 2005 [40] 

SBA-15 PEI(50%) 75 ºC 3.18 2009 [41] 

KIT-6 PEI(50%) 75 ºC 1.95 2008 [42] 

MONOLITH PEI(65%) 75 ºC 3.75 2009 [43] 

As-synthesized SBA-15 TEPA(50%) 75 ºC 3.25 2006 [44] 

As-synthesized MCM-41 TEPA(50%) 75 ºC 4.54 2008 [45] 

As-synthesized SBA-15 TEPA+DEA (50%) 75 ºC 3.77 2008 [46] 

PE-MCM-41 DEA(76%) 25 ºC 3 2005 [47] 

Mesoporous Al2O3 DETA(40%) 57 ºC 1.4 2008 [48] 

Mesoporous SiO2 PEI(40%) 70 ºC 2.4 2008 [48] 

SBA-15 PEI(50%) 75 ºC 1.36 2009 [49] 

PMMA TEPA(41%) 70 ºC 13.88 2008 [52] 

PMMA Ethyleneamine+acr

ylonitrile 

25 ºC 4.18 2005 [53] 

PMMA DBU(30%) 65 ºC 2.34 2008 [56] 

PMMA(Diaion) PEI(40%) 40 ºC 3.60 2009 [54] 

AOS Carbon PEI(5%) 25 ºC 1.98 2009 [55] 

13X MEA(25%) 75 ºC 0.45 2007 [50] 

Beta-zeolite TEPA(38%) 30 ºC 2.08 2009 [51] 

TiNT Tetraethylene 

pentamine 

303K 4.37 2013 [57] 
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Table 5: Literature data on CO2 adsorption capacity of amine-grafted adsorbents 

 

Support Amine & Amine 

loading(mmol/g) 

Temperature 

    (ºC) 

Adsorption 

Capacity(mmol/g) 

Year References 

Silica Gel AP(1.26) 50 0.89 1995 [58] 

MCM-48 AP(2.3) 25 2.3 2003 [59] 

HMS AP(2.29) 20 1.59 2005 [60] 

HMS TRI(4.57) 20 1.34 2006 [61] 

PE-MCM-41 TRI(7.9) 50 1.59 2010 [62] 

SBA-15 TRI(5.8) 60 1.80 2005 [63] 

MS TRI(5.18) 25 1.74 2008 [64] 

SBA-16 EDA(0.76) 27 1.4 2007 [65] 

SBA-15 AP(2.56) 65 0.45 2007 [66] 

SBA-16 EDA(3.06) 60 0.727 2008 [67] 

SBA-15 AP(2.72) 25 1.54 2008 [68] 

SBA-12 AP(2.13) 25 1.04 2008 [69] 

MS AP(1.6) 30 0.24 2009 [70] 

MSP EDA(0.99) 60 0.73 2009 [71] 

MCM-48 TREN(4) 50 1.36 2010 [72] 

ITQ-6 AP(1.26) 20 0.67 2009 [73] 

SBA-15 Amine-

dendrimers(1.25) 

20 1 2008 [74] 

SBA-15 Azridine 

polymer(9.78) 

75 4 2009 [75] 

 

 

2. Conclusion 

 

New techniques have been achieved towards the development of a CO2 capture technology based on adsorption. 

Physical adsorbents such as zeolites, carbon-based materials and MOFs were found to be suitable, mostly at low 

temperature and high pressure. These adsorbents, however, often adsorb water vapor preferentially over CO2, 

and their CO2 adsorption capacity at low pressure is not sufficiently high. Although these materials may provide 

elegant solutions for CO2 sequestration and storage, they are not particularly suitable for post-combustion gas 

treatment. The strategies being used include surface modification to enhance the interactions with CO2, thus 

increasing the adsorption capacity at low pressure. 

Another route is to design completely new materials such as ZMOFs and COFs with increased tolerance to 

moisture in the gas feed, thus improved CO2 selectivity. Likewise, tremendous progress has been achieved in the 

development of novel chemical adsorbents such as amine-modified materials with large surface area. By 

optimizing the synthesis conditions and using supports with adequate structural properties, it was possible to 

develop materials with superior CO2 adsorptive properties, particularly suitable for flue gas treatment. Typically, 

these materials exhibit large CO2 adsorption capacity even at low pressure, high rate of adsorption and 

desorption, and excellent tolerance to moisture in the feed. Furthermore, contrary to physical adsorbents, the 

selectivity of amine-functionalized materials is not significantly affected by temperature, at least within the range 

of interest for flue gas treatment. While the stability of this kind of adsorbents has been questioned, it was 

recently demonstrated that their stability may be dramatically enhanced during thousands of 

adsorption –desorption cycles, provided that the feed and purge gases contains moisture. The role of moisture is 

to prevent the formation of urea linkages, which is the main source of material deactivation. 

 In this review, it is clearly stated that a steady improvement in the CO2 adsorptive properties at different 

temperature and pressure. The course followed so far has resulted in major achievements that may well pave the 

way for an alternative CO2 capture technology in the near future.s 
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