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Abstract 

Bond distances, vibrational frequencies, electron affinities, ionization potentials and dissociation  energies  of  3d 

transi tion metal monofluorides  in neutral, positively and negatively charged ions  were studied by the  use of 

density functional  method (B3LYP). The basis set used 6-311++  G(3df). The calculated results were  compared 

with previously reported theoretical studies.  Ground states for each molecule were determined.  For some 

molecules it was found that low- lying state is much close to the ground state. In this case,  further  studies both 

experimentally and  theoretically are necessary in order to find the true global minimum.  Dipole  moments for 

the  neutral form of 3d transition metal monofluorides are obtained. A comparison was  made between  the 

electron  affinities, ionization potentials and dipole moments of  3d transition  metal  monofluorides with those 

reported  previously for  3d transition metal  monoborides and  for  3d  transition metal  monolithides.  
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1. Introduction 

Knowing the nature of chemical bonds in mixed clusters between transition metals and  main  group  elements is 

one of great interest in many areas of science such as surface chemistry,  catalysis,  astrophysics 

and  organometallic chemistry. This is because compounds that containing   3d-metal atoms  are theoretically one 

of the most  interesting electronic systems. Therefore, several  studies that focused on  the diatomic molecules of 

3d metal with the main group elements are  reported recently. For example,  similarities and differences in the 

structure of 3d-metal  monocarbides and  monoxides were studied by  diverse density functional methods (DFT) 

(Gutsev et al. 2003).  The electronic Structures of 3d- Metal  Monolithides were  investigated (Wang & Wu 2005). 

Density functional  study of 3d-metal monoborides  were reported   (Wu 2005). An excellent review paper for 

diatomics of 3d  metal with main group elements H,  Li, B, C, N, O and F,  were reported somewhere else 

(Harrison 2000).  

For a long time, minor attention has been paid to the use of metal fluorides due to their will-

 known  poor  electronic conductivity arising from the highly ionic character of the metal halogen  bond. However, 

as  a  result of recent developments, several investigations have been suggested  about the use of 

metal  fluorides  either in primary or in secondary Li batteries (Amatucci & Pereira 2007). 

Transition  element  fluorides MF2 and MF3 compounds   (with M = Ti, V, Fe, Mn, Ni…) have been studied 

as  positive materials   (Arai et al. 1997, Badway et al. 2003, Makimura et al. 2006, Li et al. 2004).  

In the present work, we focus on the 3d transition metal monofluorides, TMF (TM=Sc–Zn),  in  neutral,  positively 

and negatively charged ions . For TMF , we are unaware of any  systematic  studies  both experimentally and 

theoretically. Limited studies were only available for  specific species (Langhoff et  al. 1988, Carlson & Moser 

1967, Harrison 1983, Scott & Richards 1974, Harrison & Hutchison 1999,  Steimle & Brazier 1982, 

Schwerdtfeger et al. 1990, Hayashi et al. 2008, Moravec et al. 2001, Boldyrev &  Simons 1998, Sheridan et al. 

2003, Ram et al. 1996, Katoh et al. 2004, Okabayashi & Tanimoto 1996,  Sheridan & Ziurys 2003, Pouilly & 

Schamps 1978). The  systematic study of 3d-metal monofluorides will  allow us to extract  the changes of 

properties and bonding  nature across the 3d metal series. We will also  compare  our results with those reported 

previously (Langhoff et al. 1988, Carlson & Moser 1967, Harrison   1983, Scott & Richards 1974, Harrison & 

Hutchison 1999, Steimle & Brazier 1982, Schwerdtfeger et al.   1990, Hayashi et al. 2008, Moravec et al. 2001, 

Boldyrev & Simons 1998, Sheridan et al. 2003, Ram et al.   1996, Katoh et al. 2004, Okabayashi & Tanimoto 

1996, Sheridan & Ziurys 2003, Pouilly & Schamps   1978). It is also hoped that our computational results  will 

stimulate further experimental  studies on these   3d metal monofluorides.  
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2. Computational Details 

Optimization of the geometries were conducted by the use of Gaussian03 program (Frisch et 

al .   2003).  Ionization potential (IP), bond  distance, vibrational frequency, dissociation energy, 

and  electron  affinity (EA) were determined for the TMF molecules by  use of density functional 

method  B3LYP   (Becke 1993, Lee et al. 1988). This hybrid functional consists of a mixture of a 

traditional  Hartree– Fock-like  exchange energy, the Slater exchange functional, with gradient corrections due to 

Becke   (1993),  and the correlation potential of Vosko, Wilk, and Nusair, with gradient corrections due to Lee 

et  al.   (1988). The basis set used is 6-311++ G(3df) in which diffuse functions (++), 3 sets of d  functions and 

one  set of f functions (3df) are included. The population analyses were done by  natural bonding orbitals 

(NBO)  schemes. To avoid trapping at local minima of the potential  energy surface, a number of different 

initial  geometries (bond distances) are used. The calculation  of energies were corrected by the zero-

point  vibrational energies.  The dissociation energy was  computed as the difference in the total energies Etot of 

the  diatomic TMF (TM=3d element)  and  its constituent atoms, e.g. for neutral species, it 

is  De(TMF)=Etot(TM)+Etot(F)-Etot(TMF), and  similar definitions for  cations and anions.  

 

3. Result and Discussion 

Since the total energies of F and 3d-metal atoms and their ions are required to compute  the  dissociation  energies, 

it is appropriate to investigate them before we proceed the calculations on  the title  molecules. The  IP and EA of F 

atom were studied by use of exactly the same method  and basis set as in  the TMF molecules.   Our calculated EA 

value of F atom is  3.46 eV. This value  is agree with the previously  obtained experimental values 3.34   (Atkins & 

Paula 2006) and 3.57 eV (Moiseiwitsch 1954). Our  computed  IP of F atom (21.39 eV) is larger than that 

previously reported   (Lide 2004). A comparison of  the IP and  EA  of  3d-metal atoms obtained by different 

methods was published  recently (Wu 2005). Also  a more  details concerning the DFT description of neutral 3d-

metal atoms and their  anions is given  elsewhere   (Pouilly et al. 1978).  

 

3.1 Ground States and Spectroscopic constants of TMF molecules 

The theoretically obtained results for the title molecules were listed in Tables 1-4. In order to 

find  the  global  minimum or ground state for each TMF molecule in neutral, cation and anion forms,  the 

molecules  were calculated at various possible spin multiplicities. The obtained results  were  given in Table 1. EA, 

IP,  dipole moment of the neutral species and dissociation energy from  the  ground state of the  TMF 

molecules  were collected  in Table 2  

For neutral ScF molecule,  is the ground state. This result is different from the assignment that based on ab 

initio  methods (Carlson & Moser 1967, Harrison 1983), in which  is the ground state. However, The second 

lowest conformer is  singlet state and 0.16 eV higher than the ground state. The calculated bond distance, 

vibrational frequency  and dissociation energy are 1.854 Å, 646 cm
-1

 and 6.23 eV (Table 1 and 2), respectively. 

Our calculated  bond distance     is  very close to that reported in previous work  (Harrison 1983). Also for this 

molecule it is notable  from Table 1 that the triplet state of ScF has the longest bond length as compared to the 

other studied  TMF molecules. The electron affinity and ionization potential is 0.99 and 7.04 eV, respectively.  

For cation form of ScF molecule,   is the ground state. The bond distance of the cation is shorter by 0.089 Å 

than that of  neutral one.   For the anion form of ScF molecule,  is the is the ground state and its bond distance 

is longer by 0.045 Å than  that of neutral  one.  

 For the neutral TiF  is the ground state (Table 3). Doublet state is found to be the second  lowest conformer 

and it has  0.274  eV higher than the ground state (Table 1). A previous theoretical study  based on CCSD(T)/6-

311++G(2d,2f) method on the quartet and doublet states of TiF has been reported   (Boldyrev & Simons 1998). 

The result of this study supports a quartet ground state of TiF which is in agreement with our result.  Also the 

pure rotational spectrum of TiF in its quartet  ground state has been studied using millimeter/sub- millimeter wave 

direct absorption techniques (Sheridan 2003). Our calculated bond distance   1.786 Å    and 

vibrational  frequency    688   cm
-1

 (Table 1) are close to the result of CCSD(T)  study (1.832  Å, 638 cm
-1

)  (Boldyrev 

& Simons 1998)  .  It should be  mentioned that the TiF molecule has the highest vibration frequency value than the 

other studied TMF  molecules. The electron affinity, ionization potential and dissociation energy are  0.95 ,  7.16  

and 7.56 eV   (Table 2), respectively.  The  ground state of the cation species of TiF has a shorter bond length 

by 0.036 Å  and higher vibrational frequency  by 27 cm
-1

 than those of neutral one. The opposite situation 
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was  observed in the case of  ground state of the anion form ( ). For  the bond length is 1.829 Å       and 

vibrational frequency is  613  cm
-1

.  

For neutral VF   molecule  is the ground state which is  0.755  eV lower in energy than the triplet. 

The  calculated bond distance, vibrational frequency and dissociation energy are  1.793  Å,  655  cm
-1

 and 7.61 

eV   (Table 1 and 2),  respectively.  The electron affinity and ionization potential is   0.95   and   7.51   eV,  respectively . 

For the cation and anion species the ground state were found to be  and ,  respectively. The obtained bond 

length and vibrational frequencies are 1.731     Å  and 766 cm
-1

 for the  molecule and 1.840 Å and 574 cm
-1

 for 

the .  

For neutral CrF  is the ground state (Table 3). This result is in agreement with both experiment (Katoh et al. 

2004, Okabayashi & Tanimoto 1996) and previous assignments of multi-reference configuration interaction 

(MRCI) and coupled cluster  with  perturbative triples (RCCSD(T)  methods (Harrison 1999). The calculated bond 

distance, vibrational frequency  and dissociation energy are found 1.801 Å, 635    cm
-1

 and  10.36    eV (Table 1 and 

2), respectively. Among  all the TMF molecules under study the CrF molecule has the highest dissociation energy. 

This results indicates  that this molecule is the most stable one as compared to the other TMF molecules. The 

next lowest spin- state is a quartet and is 0.981 eV higher in energy than the ground state. For ,  gives 

the  lowest conformer.  is the ground state for the .  The CrF bond length shortened in cation form of CrF 

by   0.078 Å, whereas it is longer by 0.045 Å in anion one.  

Table 1. Calculated bond distances d ( ), vibrational frequency  (cm-1) and relative stability  (eV) of neutral diatomic 

TMF and charged species ,  (TM=3d transition metal element) at possible spin multiplicities S. 

S 
ScF  VF  MnF  CoF  CuF 

d    d    d    d    d   

1 
1.79

2 

71

4 
0.160 

 1.72

9 

70

1 
2.056 

 1.76

7 

64

0 

4.26

9 

 1.73

8 

64

1 
2.102 

 1.77

2 

60

0 
0.000 

3 
1.85

4 

64

6 
0.000 

 1.77

1 

64

9 
0.755 

 1.74

4 

66

7 

2.31

1 

 1.75

4 

62

1 
0.000 

 1.78

3 

59

1 
2.192 

5 
3.27

8 
26 7.656 

 1.79

3 

65

5 
0.000 

 1.78

6 

60

1 

1.36

0 

 1.79

7 

61

6 
0.272 

 1.79

8 

51

0 

10.47

9 

7 
2.88

5 

19

7 

20.79

4 

 3.47

2 
27 5.682 

 1.84

3 

61

1 

0.00

0 

 1.83

0 

50

8 
7.782 

 2.31

5 
73 

21.58

3 

9 - - - 
 

- - - 
 2.97

0 
67 

7.09

7 

 2.34

7 

17

1 

15.31

7 

 2.98

7 

18

0 

31.98

3 

 
TiF  CrF  FeF  NiF  ZnF 

d    d    d    d    d   

2 
1.77

5 

64

5 
0.274 

 1.73

9 

68

4 
3.356 

 1.74

0 

63

5 

2.84

5 

 1.75

9 

62

1 
0.000 

 1.79

8 

58

7 
0.000 

4 
1.78

6 

68

8 
0.000 

 1.77

9 

68

1 
0.981 

 1.75

9 

66

1 

0.04

5 

 1.76

6 

64

2 
1.025 

 2.76

2 
59 7.013 

6 
4.31

4 
17 6.094 

 1.80

1 

63

5 
0.000 

 1.79

1 

65

0 

0.00

0 

 1.81

3 

61

7 
8.632 

 2.81

0 
84 

18.66

7 

8 
2.80

1 

19

5 

20.37

7 

 4.18

5 
16 4.971 

 1.75

9 

69

1 

5.46

5 

 2.58

0 

12

7 

17.26

0 

 2.96

4 

18

9 

31.48

1 

 

         

d    d    d    d    d   

2 
1.76

5 

73

8 
0.000 

 1.66

8 

85

0 
2.014 

 1.69

6 

71

6 

4.47

1 

 1.70

8 

60

1 
2.068 

 1.74

8 

60

1 
0.000 

4 
2.42

2 

19

9 
5.345 

 1.73

1 

76

6 
0.000 

 1.67

4 

81

1 

2.16

6 

 1.72

0 

73

5 
0.000 

 1.78

9 

49

5 
4.927 

6 
3.89

5 

10

2 

17.95

8 

 
- - - 

 1.74

3 

73

4 

0.00

0 

 1.68

8 

74

1 
2.998 

 
- - - 

8 
2.85

5 

26

0 

40.21

8 

 
- - - 

 2.67

9 

11

6 

4.02

6 

 2.26

8 

20

5 

12.71

3 

 
- - - 

 
         

d    d    d    d    d   

1 
1.72

1 

80

2 
0.713 

 1.73

3 

73

0 
4.001 

 1.67

9 

77

5 

3.33

3 

 1.70

0 

72

3 
1.952 

 1.72

0 

72

2 
0.000 

3 
1.75

0 

71

5 
0.000 

 1.72

9 

74

3 
1.864 

 1.73

0 

65

7 

1.64

2 

 1.69

5 

74

9 
0.000 

 2.45

2 

14

4 
2.625 

5 
2.43

6 

17

4 
5.324 

 1.72

3 

77

5 
0.000 

 1.74

5 

71

8 

0.00

0 

 1.77

8 

57

9 
4.472 

 
- - - 

7 3.60 10 16.13  2.39 16 3.569  1.71 75 1.84  - - -  - - - 
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7 8 5 9 5 8 1 6 

9 
2.80

8 

25

3 

39.96

9 

 3.44

0 

10

7 

12.26

1 

 2.31

4 

23

1 

9.09

1 

 
- - - 

 
- - - 

 

         

d    d    d    d    d   

2 
1.89

9 

57

3 
0.000 

 1.77

2 

61

5 
1.987 

 1.82

6 

55

9 

2.79

5 

 1.85

2 

48

9 
0.140 

 1.86

2 

45

1 
0.000 

4 
1.86

4 

59

0 
1.465 

 1.84

0 

57

4 
0.000 

 1.83

3 

52

0 

1.70

8 

 1.82

1 

52

4 
0.000 

 1.83

5 

51

2 
4.268 

6 
3.91

2 
21 8.430 

 1.91

0 

49

0 
0.453 

 1.90

2 

49

9 

0.00

0 

 1.85

9 

51

3 
2.344 

 1.82

0 

48

3 

11.88

8 

8 
3.00

8 

17

8 

21.40

9 

 3.42

5 
31 7.207 

 1.89

9 

51

8 

1.80

3 

 1.75

0 

64

4 
7.773 

 2.88

2 

12

4 

22.59

1 

 
         

d    d    d    d    d   

1 
1.81

6 

63

1 
0.799 

 1.71

4 

68

4 
4.992 

 1.79

7 

55

8 

3.40

2 

 1.75

7 

60

2 
0.533 

 1.94

4 

38

9 
0.000 

3 
1.82

9 

61

3 
0.000 

 1.84

6 

54

9 
1.935 

 1.83

4 

50

6 

1.87

0 

 1.83

9 

49

7 
0.000 

 1.86

5 

48

3 
2.705 

5 
1.91

4 

48

8 
0.759 

 1.84

6 

55

9 
0.000 

 1.84

5 

54

0 

0.00

0 

 1.81

9 

54

7 
3.210 

 3.72

7 
27 9.255 

7 - - - 
 1.95

4 

44

0 
0.297 

 1.84

0 

56

1 

2.17

5 

 1.83

3 

52

0 
9.947 

 3.40

5 
70 

20.36

2 

9 - - - 
 4.28

6 
18 4.747 

 1.79

5 

62

8 

4.85

2 

 
- - - 

 3.03

0 

16

6 

30.98

6 

 

For neutral MnF the ground state is  which is 1.360 eV lower in energy than the next lowest  spin state 

quintet (Table 1). The calculated bond length  1.843  Å,  are very close to that reported  experimentally by Sheridan 

and Ziurys (2003).  They concluded also that among all 3d transition metal  fluorides, MnF has the longest bond 

distance. However, according to our calculation MnF has the second  longest bond distance (see Table 1).  

and  is the ground states for  and  , respectively .  The bond length shortened in cation form by 0.1 

Å, whereas it is longer  by 0.059 Å in anion one. The calculated  vibrational frequencies for MnF, , and 

anion  are  611, 734 , and  499 cm
-1

, respectively . The calculated dissociation energy of the neutral MnF 

molecule  is  8.45  eV.  

For neutral FeF,  has the lowest energy state with a bond length of 1.791 Å and a vibrational frequency of 

650  cm
-1

. It is also seen from Table 1 that quartet state is only  0.045 eV higher than the lowest energy 

structure,  suggesting that it is a strong competitive candidate for the ground state. However,  ground state 

of  FeF is in agreement with both experimental and previous ab initio SCF-CI results [Pouilly & Schamps 1978]. 

The calculated  dissociation energy for the neutral FeF is  8.25  eV (Table 2).  and  are the ground state for 

 and  , respectively. The bond length of the cation and anion forms of FeF are  1.745  Å and 1.845   Å, 

respectively.   

The lowest spin state of the neutral CoF molecule is triplet ( ) and is 0.272 eV lower in energy than 

the  second lowest spin state quintet (Table 1). Thus, quintet state is a strong competitive candidate for the ground 

state.   The calculated bond length, vibrational frequency and dissociation energy for this molecule 

are  1.754  Å,  621  cm
-1

 and 4.47   eV, respectively (Table 1 and 2)  .  The cation and anion forms of CoF  has the same 

lowest ground state, which is . The calculated bond distance is 1.720  and  1.821   Å  for  and , 

respectively. The vibrational frequency of the neutral,  cation and anion forms of CoF are  621 ,  735   and   524  cm
-1

 

(Table 1), respectively.   

For neutral NiF,  state is the ground state (Table 3). The second lowest spin state is the  quartet, which is 

higher in energy by 1.025 eV than that of ground state. The calculated bond distance,  vibrational frequency and 

dissociation energy are 1.759 Å, 621 cm
-1

 and  5.69   eV (  Table 1 and 2),  respectively.  state is the ground state 

for  and its calculated bond distance  and vibrational  frequencies are 1.695  Å and 749  cm
-1

, respectively.   

   is the ground state for   with a bond length of 1.839 Å and and vibrational frequency of 497 cm
-1

.  

  is the lowest ground state for the neutral CuF molecule with bond distance of  1.772  Å and  vibrational 

frequency  of 600  cm
-1

 (Table 1 and 3). These values are very close with the conclusion of  configuration 

interaction with single and double excitations study (CISD) (Schwerdtfeger et al. 1990). The calculated 
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dissociation  energy for the neutral CuF is  4.07    eV (Table 2).    The second lowest spin state for CuF molecule is 

the triplet,  which is  2.192  eV higher  in energy than the singlet ground state.  is the lowest ground state  for 

the anion and cation forms of the CuF molecule. The bond distance and vibrational frequencies in the  cation 

form of CuF is 1.748 Å and 601 cm
-1

, respectively. These values are very close to that of neutral one. 

The  corresponding bond length and vibrational frequencies of the  are  1.862 Å  and  451  cm
-1

, 

respectively,  which are in agreement with the conclusion of MP2 study (1.876 Å ,450cm
-1

) (Schwerdtfeger et al. 

1990).  

For neutral ZnF molecule,  is the ground state. The second lowest  spin state for ZnF molecule is the quartet, 

which is  7.013  eV higher  in energy than the singlet  ground state.  The neutral ZnF has the smallest  dissociation 

energy (2.95 eV) due to the close shell of Zn (3d
10

4s
2
).  For both cation and anion forms of ZnF molecule,  is 

the ground state. The ground state obtained in our study of  neutral and anion forms of the ZnF molecule is in 

perfect agreement with the previous experimental results  and Ab initio calculations (Hayashi et al. 2008, 

Moravec et al. 2001). The bond distance, vibrational frequency and EA  of neutral form of ZnF molecule are 

found to be 1.798  Å, 587   cm
-1

 and 2.04 eV,  respectively.  The experimentally reported vibrational frequency and 

EA values are 620 cm
-1

 and 1.974 eV   [18], which are very close to our calculated values. The ZnF bond length is 

shortened by 0.078 Å in the  cation form, whereas is longer by 0.146 Å in anion one (Table 1).      

 

3.2 Dissociation energy  and ionization potential of TMF molecules 

In order to calculate the dissociation energy of charged species of the TMF molecules, we  chose two channels 

for the cation forms and two channels for the anion one. The two channels for the cation are  → +F and 

→TM+ and the two channels for the anion are →TM+   and → +F. For the cation 

forms of all TMF, channel  → +F gives lower  dissociation energy than that of →TM+  (Table 

2) and is, therefore, preferred. It is not surprising to  get such a result. This is because F atom has larger IP 

compared with all metal atoms. The calculated IP  value in our study of F atom is 21.39 eV and the reported IP 

values of the 3d metal atom in a previous  study [3] that used same of our calculation method are 6.56, 6.40, 6.74, 

7.03, 7.52, 7.79, 7.72, 7.91, 8.04  and 9.43 eV for Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn, respectively. From 

Table 2 one cane note also  that the channel  →TM+  gives lower dissociation  energy than that of 

→ +F. This result  indicated that the channel  →TM+  is the preferred one for all the anion 

forms of TMF molecules. This is a  logically conclusion since our calculated EA value of 3.46 eV for F atom is 

larger than that of all 3d  metals. It should be mentioned that the reported EA values of the 3d metal atom in a 

previous study (Wu 2005)  that used same of our  calculation method are -0.16, 0.68, 0.68, 0.64, -0.53, 0.41, 1.03, 

1.14, 1.21 and -1.03  eV for Sc,  Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn, respectively.   

Table 2. Calculated dipole moment (Debye (D)) of the neutral species, ionization potential IP (eV), electron 

affinity EA (eV) and dissociation energy De, De11, De12, De21 and De22 (eV) from ground state geometry. 

 ScF TiF VF CrF MnF FeF CoF NiF CuF ZnF 

µ 3.02 3.20 3.35 4.16 2.58 2.20 4.92 4.88 5.13 3.13 

IP 7.04 7.16 7.51 8.19 7.99 9.17 8.84 9.63 10.78 9.54 

EA 0.99 0.95 0.95 0.93 1.34 1.58 1.46 1.42 1.35 2.04 

 
De 6.23 7.56 7.61 10.36 8.45 8.25 4.47 5.69 4.07 2.95 

 
De11 7.30 6.15 7.46 7.72 8.54 5.53 5.64 2.57 1.33 2.84 

 
De12 20.58 21.80 21.49 23.57 21.85 20.47 17.03 17.45 14.69 14.81 

 
De21 3.77 5.06 5.11 7.84 6.33 6.38 2.47 3.65 1.96 1.54 

 
De22 7.39 6.96 8.89 9.00 9.60 7.75 7.14 4.60 4.21 6.03 

 

Figure 1 compare the EA values of TMF molecules with those previously  reported for 3d-metal monoborides 

(TMB)  (Wu 2005)  and 3d-Metal Monolithides (TMLi) (Wang & Wu 2005). As can be seen in  Figure 1, EA 

energies for neutral TMF molecules are higher than that all molecules of TMLi and TMB  except the case of ScB 
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and TiB.   In comparing the range of electron affinity, it is wider for  TMF molecules   (1.11 eV) than that for TMB 

(0.91 eV) and  TMLi  (0.62 eV) molecules.   
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Figure 1.  EA value of the TMF, TMB and TMLi molecules versus atomic number of the corresponding 3d-

transiton metal   (Sc-Zn). EA values of TMLi and TMB molecules are  obtained from the references 

(Wu 2005) and (Wang & Wu 2005), respectively.  

 

Figure 2 compare the IP values, of TMF molecules with that previously  reported  for 3d-metal monoborides 

(TMB)  (Wu 2005)  and 3d-Metal Monolithides (TMLi) (Wang & Wu 2005).  As shown in Figure 2,  the IP 

energies of TMF molecules are higher than those of TMLi and TMB molecules . Also, the range of IP energies  of 

TMF molecules (3.74 eV) is wider  than that for TMB (1.44 eV) and  TMLi (1.99 eV) molecules.    
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Figure  2. IP value of the TMF, TMB and TMLi molecules versus atomic number of the corresponding 3d-

transiton metal   (Sc-Zn). IP values of TMLi and TMB molecules are  obtained from the 

references  (Wu 2005) and (Wang & Wu 2005) , respectively.  
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3.3 Bonding Analysis of TMF molecules 

The bonding types are complex for these systems which are included covalent, ionic and dative  components. If 

the bonding were purely ionic, the dipole moment of ScF would be 8.89 D, but it is  3.02    D   (Table 2) , which 

shows that other components of the bonding are dominant. Therefore, besides ionic  component, covalent bonds 

are formed between the transition metal 3d orbitals and the fluorine 2p  orbitals. From Table 2, it is seen that the 

dipole moment of the neutral molecules increases from ScF to  CrF, and then decreases sharply to it minimum 

value (2.20 D) which is for FeF molecule. From FeF to CuF  the dipole moment increases again to its maximum 

value (5.13 D) which is for CrF molecule and then  decreases again to the value of 3.13 D in the case of ZnF 

molecule. This results suggests that the covalent  or ionic character of the bond are varied across the series.  This 

phenomenon was also observed in neutral  TMLi molecules (Wang & Wu 2005) as shown in the comparable 

Figure 3. Figure 3 shows also that covalent or ionic  character across the series of the bonds for neutral TMB 

molecules  (Wu 2005) are  different from those of TMF  and TMLi. The reported dipole moment for neutral TMB 

molecules  (Wu 2005)  suggests the increase of the  covalent bond across the series from ScB  to ZnB. It is also 

notable from Figure 3 that the values of the dipole moment  of the TiF,  MnF and FeF are very close to those of 

TiB, MnB and FeB, respectively.  
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Figure 3. µ value of the TMF, TMB and TMLi molecules  versus atomic number of the corresponding 3d-

transiton metal   (Sc-Zn). µ values of TMLi and TMB molecules are  obtained from the 

references  (Wu 2005) and (Wang & Wu 2005) , respectively.  

From Table 3, it can also be seen that the spin multiplicity is very regular for neutral, anion and cation  species 

from ScF to FeF. For these molecules and ZnF molecule, we also noted that the spin multiplicity of  anion and 

cation is obtained by -1 compared with the corresponding neutral one. For CoF, NiF and CuF  the spin 

multiplicity of the anion and cation is obtained by +1 compared with the corresponding  neutral  species. It is 

notable also that the spin multiplicity is regular for neutral, anion and cation species from  CoF  to ZnF.   
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Table 3. Ground state occupations of the neutral and charged 3d-metal monoflourides 

Neutral Cation Anion 

 State 
Electronic 

configuration 
 State 

Electronic 

configuration 
 State 

Electronic 

configuration 

ScF         
TiF         
VF         
CrF         
MnF         
FeF         
CoF         
NiF         
CuF         
ZnF         
 

3.4 Mulliken and Natural Orbital Population Analyses Charges 

The calculated atomic charges from Mulliken and natural orbital population analysis are collected along  with 

natural orbital electron configurations in Table 4. In all the neutral molecules, the charge on metal  atom is 

positive and that on the fluorine atom is negative. For all TMF molecules studied here, Mulliken as  well as 

natural orbital population analysis charges show that when an electron is removed from the neutral  dimer to 

generate cation, most of the total positive charge localized on transition metal atom. Similarly,  when an electron 

is added to the neutral molecule to from anion, most of the negative charge localized on  fluorine atom.  

The natural orbital electronic configuration for neutral molecules in Table 4, it can be said that for ScF,  TiF, VF, 

MnF, FeF, CoF and NiF molecules, electrons originally localized on 4s atomic orbitals of transition  metal atoms 

have been transferred to the 3d orbital of the corresponding transition metal atoms and to the   2p orbitals of the 

fluorine atoms. For CrF and, CuF molecules, the electrons originally localized on the 4s  and 3d orbitals of these 

transition metal atoms have been transferred to the 2p orbitals of fluorine atoms.  For the ZnF molecule, electrons 

originally localized on the 4s  orbitals of Zn have been transferred to the 2p  orbitals of fluorine .  
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Table 4. Atomic charges from Mulliken and natural orbital population analysis and natural orbital electronic 

configuration of first-row transition metal monofluorides at B3LYP/ 6-311++ G(3df)  level. 

 Atom Mulliken Natural Natural orbital electronic configuration 

ScF Sc 0.553 0.843 [core] 4s0.90 3d1.19 4p0.06 

 F  -0.553  -0.843 [core] 2s1.99 2p5.84 3s0.01 

 Sc 1.427 1.744 [core] 4s0.27 3d0.98 

 F  -0.427   -1.744  [core] 2s1.99 2p5.74 3s0.01 3d0.01 

 Sc -0.360 -0.075 [core] 4s1.82 3d1.16 4p0.10 

 F -0.640 -0.925 [core] 2s1.99 2p5.88 3s0.04  

TiF Ti 0.489 0.597 [core] 4s0.87 3d2.50 4p0.02  4d0.01  

 F -0.489 -0.597 [core] 2s1.95 2p5.62 3s0.02 3d0.01  

 Ti 1.315 1.506 [core] 4s0.46 3d2.03  

 F  -0.315   -0.506  [core] 2s1.96 2p5.53 3d0.01  

 Ti -0.396 -0.331 [core] 4s1.81 3d2.45 4p0.05 5s0.01 4d0.01  

 F -0.604 -0.669 [core] 2s1.96 2p5.66 3s0.05 3d0.01  

VF V 0.511 0.474 [core] 4s0.86 3d3.59 4p0.09  

 F -0.511 - 0.474  [core] 2s1.92 2p5.51 3s0.01 3p0.02 3d0.01  

 V 1.349 1.309 [core] 4s0.46 3d3.24  

 F -0.349  -0.309  [core] 2s1.94 2p5.35 3d0.01  

 V -0.360 -0.476 [core] 4s1.81 3d3.52  4p0.13 5s0.02 4d0.01  

 F -0.640 -0.524 [core] 2s1.93 2p5.54 3s0.02 3p0.03 3d0.01  

CrF Cr 0.551 0.821 [core] 4s0.46 3d4.69 4p0.03 

 F -0.551 - 0.821  [core] 2s1.99 2p5.82 3p0.01  

 Cr 1.359 1.607 [core] 4s0.04 3d4.34 4p0.01  

 F -0 .359  -0.607 [core] 2s2.00 2p5.60 3d0.01  

 Cr -0.322 -0.104 [core] 4s1.44 3d4.53 4p0.10 5S0.02  

 F -0.678 -0.896 [core] 2s1.98 2p5.88 3s0.03  

MnF Mn 0.542 0.837 [core] 4s0.94 3d5.12 4p0.10  

 F -0.542  -0.837  [core] 2s1.98 2p5.81 3s0.03 3d0.01  

 Mn 1.360 1.687 [core] 4s0.12 3d5.18 4p0.02  

 F -0.360 -0.687 [core] 2s1.99 2p5.68 3d0.01  

 Mn -0.323 -0.081 [core] 4s1.83 3d5.16 4p0.08 5s0.01  

 F -0.677 -0.919 [core] 2s1.99 2p5.86 3s0.06 3d0.01  

FeF Fe 0.495 0.808 [core] 4s0.95 3d6.14 4p0.09  

 F -0.495 -0.808 [core] 2s1.99 2p5.79 3s0.02 3d0.01  

 Fe 1.320 1.672 [core] 4s0.21 3d6.09 4p0.01 4d0.01  

 F -0.320 -0.672 [core] 2s1.99 2p5.65 3s0.01 3d0.01  

 Fe -0.341 -0.096 [core] 4s1.72 3d6.27 4p0.08 5s0.01 4d0.01  

 F -0.659 -0.904 [core] 2s1.98 2p5.86 3s0.05 3d0.01  

CoF Co 0.582 0.752 [core] 4s0.45 3d7.78 4p0.01 4d0.01  

 F -0.582 -0.752 [core] 2s1.98 2p5.76 3p0.01 3d0.01  

 Co 1.289 1.612 [core] 4s0.18 3d7.19 4p0.01  

 F -0.289 -0.612 [core] 2s1.99 2p5.59 3s0.01 3d0.01  

 Co -0.302 -0.145 [core] 4s1.43 3d7.60 4p0.10 5s0.01 4d0.01  

 F -0.698 -0.855 [core] 2s1.97 2p5.82 3s0.05 3p0.01 3d0.01  

NiF Ni 0.582 0.816 [core] 4s0.30 3d8.86 4p0.02  

 F -0.582 - 0.816  [core] 2s1.99 2p5.81 3d0.01  

 Ni   1.242 1.527 [core] 4s0.12 3d8.34 4p0.01  

 F -0.242 -0.527 [core] 2s2.00 2p5.51 3s0.01 3d0.01  

 Ni -0.296 -0.095 [core] 4s1.32 3d8.66 4p0.09 5s0.01  

 F -0.704 -0.905 [core] 2s1.98 2p5.88 3s0.03  

CuF Cu 0.580 0.835 [core] 4s0.23 3d9.92 4p0.02  

 F -0.850 -0.835 [core] 2s1.99 2p5.83  

 Cu 1.164 1.265 [core] 4s0.07 3d9.66 4p0.01  

 F -0.164 -0.265 [core] 2s2.00 2p5.26 3d0.01  

 Cu -0.287 -0.074 [core] 4s1.09 3d9.87 4p0.10 5s0.01  

 F -0.713 -0.926 [core] 2s1.99 2p5.91 3s0.02  

ZnF Zn 0.520 0.504 [core] 4s1.48 3d10.00 4p 0.02  

 F -0.520 -0.504 [core] 2s2.00 2p5.50  

 Zn 1.315 1.720 [core] 4s0.27 3d9.98 4p0.02  

 F -0.315 -0.720 [core] 2s1.99 2p5.71 3d0.02  

 Zn -0.331 -0.013 [core] 4s1.92 3d10.00 4p0.09 5s0.01  

 F -0.669 -0.987 [core] 2s2.00 2p5.95 3s0.03  
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5. Conclusion 

Density functional method B3LYP was used to compute the spectroscopic constants of 3d-metal monofluorides. 

Part  of our calculated results are in reasonable agreement with previous theoretical and experimental studies. For 

ScF, TiF,  FeF and CoF, competitive candidate for the ground state was found, in particular for FeF (0.045 eV 

higher than the  ground state). This indicates that both experimental study and advanced computations are 

necessary in order to locate  the global minimum. Weak bonding was obtained for neutral ZnF because of the 

closed-shell metal Zn. The population  analyses appear to be a very useful in understanding the trends of the 

chemical bonding of the neutral species and the  behavior of the dipole moment for the neutral series. Our 

calculated electron affinity energies for the neutral 3d-metal  monofluorides molecules are higher than that 

reported for all molecules of  3d transition metal  monoborides and for  3d  transition metal  monolithides  except the 

cases ScF and  TiF.  Also our calculated ionization potential energies for the  neutral 3d-metal monofluorides 

molecules are higher than that reported  3d transition metal  monoborides and for  3d  transition metal  monolithides 

molecules .   
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