Synthesis, Characterization and Effect of γ-Ray on Rare-Earth Tb\(^{3+}\) Doped Nano Lithium Manganates (LiMn\(_{2-x}\)Tb\(_x\)O\(_4\))

Morsi M. Abou-Sekkina\(^1\) Abdalla M. Khedr\(^1\) Fouad G. El-Metwaly*\(^{1,2}\)
1. Chemistry Department, Faculty of Science, Tanta University, Tanta - Egypt
2. Chemistry Department, Faculty of Science, Jazan University, Jazan – KSA
* E-mail of the corresponding author: foudmandoor@yahoo.com

Abstract

Pure nano lithium manganese oxide spinel (LiMn\(_2O_4\)) and Tb\(^{3+}\) doped lithium manganese oxide spinels [LiMn\(_{2-x}\)Tb\(_x\)O\(_4\), (x = 0.01%, 0.02%)] are synthesized via solid-state method. The synthesized LiMn\(_{1.99}\)Tb\(_{0.01}\)O\(_4\) was irradiated by γ-irradiation with 30 kGy. The resulting spinel product is characterized by various methods such as thermogravimetric and differential thermal analysis (TG/DTA), infrared spectroscopy, x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive of x-rays analysis (EDAX), electron spin resonances (ESR) studies and DC–electrical conductivity measurements. The XRD and SEM confirm the nano materials size for all prepared samples. DC–electrical conductivity measurements indicates that these samples are semiconductor and the activation energy decreases with increasing rare-earth Tb\(^{3+}\) content; \(\Delta E_a = 0.427\) eV for LiMn\(_{1.99}\)Tb\(_{0.03}\)O\(_4\), \(\Delta E_a = 0.339\) eV for LiMn\(_{1.98}\)Tb\(_{0.02}\)O\(_4\) and decreases to \(\Delta E_a = 0.330\) eV for γ-irradiation of LiMn\(_{1.99}\)Tb\(_{0.03}\)O\(_4\) nano spinel thus in role increases its attractiveness in modern electronic technology. Abou-Sekkina activation energy for the induced γ-irradiation is evaluated for the first time, which was found to be 0.097 eV.

Keywords: Nano lithium manganates, Tb\(^{3+}\) doping spinel, γ–Ray effect

1. Introduction

Nano lithium manganates (LiMn\(_2O_4\)) spinels are an attractive candidate, that required to power portable electronic devices (cell phones, laptop computers, etc.). It store electricity from renewable sources, and as a vital component in new hybrid electric vehicles due to their high electromotive force and high energy density [1–2]. LiMn\(_2O_4\) spinel is preferable positive electrode (cathodes) of rechargeable lithium ion batteries due to its low cost, non-toxic nature, efficient, environmental friendly and ease of preparation when compared with other layered oxides used for rechargeable lithium ion batteries such as lithium cobalt oxide (LiCoO\(_2\)) and lithium nickel oxide (LiNiO\(_2\)) [3–5]. LiCoO\(_2\) has many disadvantages such as high cost, toxicity, a negative environmental impact and a low practical specific capacity against its theoretical value. More recently there are reports by several authors that the capacity of pure spinel LiMn\(_2O_4\) diminishes at high reduction levels [6,7]. The capacity fading is due to various factors such as Jahn–Teller distortion (change of a cubic symmetry in to tetragonal one, a two-phase unstable reaction), slow dissolution of manganese into the electrolyte [8], lattice instability [9] and particle-size distribution [10,11]. To suppress the Jahn–Teller distortion and obtain high cycling capacity, many researchers have studied Li-Mn-O spinels in order to improve cyclability by partially chemical substitution of Mn\(^{3+}\) with various divalent, trivalent and tetravalent-doped cations such as Co, Zn, Ca, Fe, Ni, Cd, Ga, Ti, and Al [12,13]. Ohuzuku et al. [10] and Lee et al. [14], have reported that partial doping of divalent and trivalent cations is more effective in suppressing the capacity fade during cycling. The substitution increases the average oxidation state of Mn above 3.5, hence suppressing Jahn-Teller distortion, this lead to stabilize the crystal structure of spinel. All doping elements are less or close to that of Mn, little report about rare-earth elements. So, in our work we concerned on doping of LiMn\(_2O_4\) spinel with the rare-earth element Tb\(^{3+}\).

2. Experimental

2.1. Materials Preparation
Nano LiMn$_{2-x}$Tb$_x$O$_4$ (x = 0.01%, 0.02%) samples were synthesized by the solid state reaction. Stoichiometric amount of (LiOH.H$_2$O, 99%), manganese carbonate (99.5%) in addition to cautions-doped compounds were mixed and ground thoroughly, pre-sintered at 600°C for 4 hr., then they were reground and pressed in to pellets, sintered in air at 850°C for 8 hr. with a heating rate of 10°C/min. After sintering, cooling with a possible lowest rate, 5°C/min. The prepared spinel materials were identified by x-ray diffraction.

2.2. Instruments and Characterization

The crystal structure of the prepared samples was all analyzed by a Phillips (Holland) x-ray diffractometer (PW 1729 x-ray generator, PW 1840 diffractometer, control, PM 8203 A one line recorder) using Cu Kα radiation (λ = 1.54056 Å) operating at 40.0 kV, 30.0 mA and the datum were collected in the 10–80° 2θ range. The morphology of the products was investigated by scanning electron microscopy (SEM, JSM-5300LV, Japan) with gold coating and the disspowder was visualized by energy dispersive analysis of X-ray (EDAX). The infrared spectra were recorded using a Perkin–Elmer 1430 IR spectrophotometer within the range 1000-200 cm$^{-1}$ for all samples as KBr discs. Room temperature x-band powder electron spin resonance spectra of the complexes were recorded using a Jeol spectrometer model JES-FE2XG equipped with an E101 microwave bridge using DPPH as reference. The thermal gravimetric analysis (TGA) was carried out in a dynamic nitrogen atmosphere (20 ml min$^{-1}$) with a heating rate of 10°C min$^{-1}$ using a Shimadzu TG-50 thermogravimetric analyzer. DTA of green samples (uncalcined) were recorded by a Du Pont instruments 990 thermal analyzer (England) of 1200 DTA cell in air at a rate of 10°C min$^{-1}$ at Central Laboratory, Tanta University. The irradiated samples were exposed to γ-irradiation of 30 KGY with dose rate 3.52 KGY/hr at Atomic Energy Authority –National Center for Radiation Research and Technology by Indian gamma source, Nasser city, Cairo. DC-electrical conductivity for all synthesized samples sintered at 850°C for 8 hr. was measured using the two terminal DC-electrical conductivity method, where the pellets of the samples were coated with silver paste, inserted between the two copper probe of the circuit using (Akeithly 175 multimeter USA). This was done at the temperature range from room temperature up to 350°C. The temperature was measured by a calibrated chromel-alumel thermocouple placed firmly at the sample during measurements.

3. Results and Discussion

3.1. Thermal Studies

Fig. 1 represents TGA /DTA curves of the precursor prepared by solid state to prepare doped nano LiMn$_{1.98}$Tb$_{0.02}$O$_4$ spinel. In TGA curve, 5% weight loss gradually due to moisture in addition losing H as a result of decomposition LiOH to Li$_2$O in the range from 65 to 291°C. There is weak endothermic peak at 63°C in DTA due to departure of the adsorbed water in DTA curve. In the second step the weight loss of 22.5% in the range of 291–665°C attributed to medium sharp exothermic peak at 419°C in DTA due to the combustion of residual organic constituents and the loss of oxygen successive phases transfer steps to reach the most stable spinel phase at 850°C.

3.2. X–Ray Diffraction Studies

The Cu–Kα x-ray Powder diffraction (XRD) patterns of the synthesized, pure and doped spinel with different content of Tb$^{3+}$ are shown in Fig. 2. It can be seen from the patterns, all diffraction peaks are very strong which donates the samples have good cubic crystal structure of spinel made of regular tetrahedron [LiO$_4$] and regular octahedron [MnO$_6$].
The lattice constant and crystal volume of Tb$^{3+}$ doped spinel bigger than pure one and these are increases with increasing dopant contents, the radius of the sixth coordination Tb$^{3+}$ (0.928 Å), bigger than the radius of Mn$^{3+}$ (0.66 Å). This emphasizes that Tb$^{3+}$ locates the position of Mn$^{3+}$ in MnO$_6$ octahedral site in the lattice. The XRD after γ-irradiation with 30 kGy is shown in Fig. 3. It can be seen from the patterns that all diffraction peaks are very strong, indicating that the samples have good cubic crystal structure of spinel put the peaks shifted to lower angle, so the lattice constant and crystal volume of γ-irradiation via 30 kGy increase than non γ-irradiation sample.

Fig. 1. TGA/DTA curves of the precursor that fired to donate LiMn$_{198}$Tb$_{0.02}$O$_4$ nano spinel.

Fig. 2. X-ray diffraction patterns of undoped and doped nano Li-Mn-O spinels (LiMn$_{2-x}$Tb$_x$O$_4$).

Fig. 3. XRD patterns of γ-irradiated LiMn$_{198}$Tb$_{0.02}$O$_4$.
Fig. 3. X-ray diffraction patterns of LiMn$_{1.99}$Tb$_{0.01}$O$_4$ nano spinels. (a) Non irradiated LiMn$_{1.99}$Tb$_{0.01}$O$_4$ spinel and (b) LiMn$_{1.99}$Tb$_{0.01}$O$_4$ spinel irradiated by 30 kGy.

Table 1. Unit cell parameters and crystallite size of LiMn$_2$O$_4$, LiMn$_{1.99}$Tb$_{0.01}$O$_4$ and LiMn$_{1.98}$Tb$_{0.02}$O$_4$ spinels.

<table>
<thead>
<tr>
<th>No</th>
<th>Sample</th>
<th>a (Å)</th>
<th>Unit cell Volume (Å3)</th>
<th>Crystallite Size x 109 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LiMn$_2$O$_4$</td>
<td>8.186</td>
<td>547</td>
<td>18.97</td>
</tr>
<tr>
<td>2</td>
<td>LiMn${1.99}$Tb${0.01}$O$_4$</td>
<td>8.264</td>
<td>564</td>
<td>11.38</td>
</tr>
<tr>
<td>3</td>
<td>LiMn${1.99}$Tb${0.02}$O$_4$</td>
<td>8.310</td>
<td>573</td>
<td>18.95</td>
</tr>
<tr>
<td>4</td>
<td>LiMn${1.99}$Tb${0.02}$O$_4$ γ-irradiated with 30 kGy</td>
<td>8.329</td>
<td>577</td>
<td>12.44</td>
</tr>
</tbody>
</table>

3.3. IR spectral Studies

Fig. 4 shows The room temperature IR absorption spectra of pure nano LiMn$_2$O$_4$ spinel by KBr disc technique, which was prepared by solid state method sintered at 850°C for 8 hours, the strong absorption bands at 220, 513 and 613 cm$^{-1}$ are assigned to vibration modes of MnO$_6$ octahedron. Whereas the band at 260 cm$^{-1}$ is attributable to mixed character of octahedral MnO$_6$ and LiO$_4$ tetrahedral building the cubic lattice of nano LiMn$_2$O$_4$. The obtained infrared spectra of the lattice vibration reveal broad and interfered peaks, where the structure of LiMn$_2$O$_4$ exhibits a charge disproportion such as LiMn$^{3+}$Mn$^{4+}$O$_4$. There are isotropic Mn$^{4+}$O$_6$ octahedron and locally distorted Mn$^{3+}$O$_6$ octahedron due to the Jahn-Teller effect. Thus, we expect to observe stretching vibration of Mn$^{4+}$O$_6$ and Mn$^{3+}$O$_6$ octahedron which provides a shoulder broad peak at about 518 cm$^{-1}$ of ν_{as} (Mn–O) mode. In the low frequency region, the IR bands at 221 and 260 cm$^{-1}$ have mixed character due to the presence of the bending modes of O–Mn–O bands and modes of LiO$_4$ group leading to the interference between peaks.
Fig. 4. IR spectra of undoped and doped Li-Mn-O spinels (LiMn_{2-x}Tb_xO_4) fired at 850°C in air for 8 h. (a) Undoped LiMn_2O_4 spinel and (b) x = 0.02% Tb^{3+}.

Fig. 5. IR spectra of LiMn_{1.99}Tb_{0.01}O_4 spinels. (a) Non irradiated LiMn_{1.99}Tb_{0.01}O_4 spinel and (b) LiMn_{1.99}Tb_{0.01}O_4 spinel irradiated with 30 kGy.
This is a characteristic spectrum of LiMn$_2$O$_4$ spinel in agreement with C.M. Julien et al. \cite{16}, and C.Wu et al. \cite{17}. In conclusion, the spectral features of the LiO$_4$ remains in the 350–450 cm$^{-1}$ and the vibrational modes of the MnO$_6$ expand over 450–650 cm$^{-1}$ in addition to the bending modes in 200–350 cm$^{-1}$. So, the two bands at about 518 and 617 cm$^{-1}$ are spectral feature of cubic nano LiMn$_2$O$_4$ spinel. The IR spectrum of Tb$^{3+}$ doped spinel consists of overlapped peaks characteristic for Li–Mn–O spinel. The main bands red shift from 518 to 515 and from 617 cm$^{-1}$ to 615 this is for nano LiMn$_{1.99}$Tb$_{0.01}$O$_4$ spinel. For nano LiMn$_{1.98}$Tb$_{0.02}$O$_4$, the peaks at 221, 518 and 617 are red shifted to 219, 514 and 615 cm$^{-1}$, respectively. This is an indication for the partial substitution of Mn$^{3+}$ with Tb$^{3+}$ in octahedral position (site). The IR spectra of nano LiMn$_{1.99}$Tb$_{0.01}$O$_4$ spinel doped with Tb$^{3+}$ it observed in Fig. 5 which indicates that the γ-irradiated sample have the same spinel cubic structure and the same modes of vibration but peaks at 515, 615 cm$^{-1}$ blue shifted to 518 and 616 cm$^{-1}$ respectively. These IR spectra give an elucidation the formation of cubic nano pure and doped lithium manganese oxide spinel.

3.4. SEM and EDAX Analysis

The morphology of powdered samples for pure and doped sample fired at 850°C in air for 8 hr., were investigated by scanning electron microscope (SEM) after coating with gold. Fig. 6 represents the observed images for pure LiMn$_2$O$_4$, singly doped LiMn$_{1.99}$Tb$_{0.01}$O$_4$, LiMn$_{1.98}$Tb$_{0.02}$O$_4$ and LiMn$_{1.99}$Tb$_{0.02}$O$_4$ spinel irradiated by 30 KGy. These images reveals that the powder exhibits nano crystals and this agree with the calculated values of crystal size from x-ray pattern using Scherer’s equation, as illustrated in Table 1. The images reveals irregular porous morphology this porous morphology is beneficial for the diffusion of electrolyte into the interior of the particle during fabrication of the battery. Fig. 7 represents the EDAX profile of nano LiMn$_{1.99}$Tb$_{0.02}$O$_4$ spinel. This profile of the reflections corresponding to the constituent elements of prepared sample, thus agree with that published by M. Helan et al. \cite{18}, L. Xiong et al. \cite{19} and Thirunakaran et al. \cite{20, 21}.

![SEM images of LiMn$_{2-x}$Ag$_x$Y$_x$O$_4$ spinels. (a) LiMn$_2$O$_4$, (b) LiMn$_{1.99}$Tb$_{0.01}$O$_4$, (c) LiMn$_{1.98}$Tb$_{0.02}$O$_4$ and (d) LiMn$_{1.99}$Tb$_{0.01}$O$_4$ spinel irradiated with 30 kGy.](image)
3.5. ESR Analysis

The paramagnetic behavior of the synthesized crystals is determined using ESR studies. Fig. 8 shows the ESR spectrum of the nano compound. From the figure it is noticed that the paramagnetic character, the spectrum reveals ESR signal attributed to Mn$^{3+}$ ions centered at 3330 G and the corresponding value of g factor is 1.986, which is in good agreement with the reported value for LiMn$_2$O$_4$. The lone pair electron state is identified from the ESR spectrum. The signal is attributed to Mn$^{3+}$ ions, which are responsible for the paramagnetic entities exist in the compound. Also the ESR signal corresponds to the collective motion of the total magnetic moment of Mn$^{3+}$ and Mn$^{4+}$ spinle systems and this agrees with M. Helan et al. [18].
3.6. DC–Electrical Conductivity Measurements

The DC–electrical conductivity (lnσ) of various samples has been measured as a function of reciprocal of the absolute temperature (1000/T) K$^{-1}$ from room temperature up to 450°C. According the Arrhenius plot of conductivity corresponding to the relation $\sigma = \sigma_0 e^{-\Delta E_a/KT}$, where σ_0 is the electrical conductivity, σ_0 is the pre-exponential factor, K is the Boltzmann's constant 8.61 X 10$^{-5}$ eV K$^{-1}$, T is the absolute temperature, ΔE_a is the activation energy for electric conduction\cite{22}. It observed that the conductivity increase with increasing temperature as in Fig. 9 Which indicates semi-conducting behavior for non-irradiated and γ-irradiation samples. These observation can be explained on the basis conduction in LiMn$_2$O$_4$ nano spinel occurring via small-polaron hopping between Mn$^{3+}$ and Mn$^{4+}$, i.e., unpaired electrons from the eg orbitals of high spin Mn$^{3+}$ (d4) hop to neighboring low-spin Mn$^{4+}$ (d3) ions. Both the eg orbitals of metal ion lie on the same octahedral site so these are equivalent in energy\cite{23}. These samples behaves as extrinsic semiconductor in the range 21–370°C with activation energy $\Delta E_a = 0.427$ eV for LiMn$_{1.99}$Tb$_{0.01}$O$_4$, and activation energy reduces for LiMn$_{1.98}$Tb$_{0.02}$O$_4$ to $\Delta E_a = 0.339$ eV with increasing dopant content thus as shows by Fig. 10. The $\Delta E_a = 0.330$ eV corresponds to irradiated LiMn$_{1.99}$Tb$_{0.03}$O$_4$ nano spinel. So, it clear that γ-ray irradiation reduces the activation energy of conduction of the prepared nano samples. Abou-Sekkina activation energy for γ-induced irradiation is depicted to be 0.097 eV.
Fig. 9. The variation of DC-electrical conductivity (ln\(\sigma\)) versus reciprocal of absolute temperature (\(1000/T\) K\(^{-1}\)) for LiMn\(_{2-x}\)Tb\(_x\)O\(_4\) nano spinels. (a) LiMn\(_{1.99}\)Tb\(_{0.01}\)O\(_4\), (b) LiMn\(_{1.98}\)Tb\(_{0.02}\)O\(_4\) and (c) LiMn\(_{1.99}\)Tb\(_{0.01}\)O\(_4\) irradiated with 30 kGy of \(\gamma\)-irradiation.

Fig. 10. The variation of activation energy of LiMn\(_{2-x}\)Tb\(_x\)O\(_4\) versus increasing Tb\(^{3+}\) content.
4. Conclusion

Pure nano LiMn$_2$O$_4$, rare-earth Tb$^{3+}$ doped lithium manganese oxide spinel [LiMn$_{2-x}$Tb$_x$O$_4$, (x = 0.01%, 0.02%)], non irradiated and irradiated γ-ray samples are synthesized via solid-state method. The x–ray diffraction data reveals the formation of single-phase spinel with cubic crystal structure for all samples. Also, the x–ray diffraction calculation and SEM images indicated that the prepared spinels are nano compounds with porous morphology of nano crystals within 11-19 nm range. The electrical studies indicate that Tb$^{3+}$ doped to lithium manganese oxide spinel and also, γ-ray irradiation improves its electrical properties. The method used for preparation has a great potential for the commercial preparation of pure LiMn$_2$O$_4$ and doped LiMn$_{2-x}$Tb$_x$O$_4$ spinels. Abou-Sekkina activation energy for the induced γ-irradiation is evaluated for the first time, which was found to be 0.097 eV.

References

[11] Song, D., Ikuta, H., Uchida, T. & Wakihara, M. (1999), “The Spinel Phases Li$_{2-x}$Al$_x$Mn$_{2+y}$O$_4$ (y=0, 1/12, 1/9, 1/6, 1/3) and Li$_{1-x}$(Al,M)$_{1/6}$Mn$_{11/6}$O$_4$ (M=Cr, Co) as the Cathode for Rechargeable Lithium Batteries, Solid State Ionics 117, 151-156.

