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Abstract 
Nanosized alumina has been synthesized by employing two aluminum salts with monovalent anions that is 
aluminum nitrate and aluminum chloride as precursors under identical reaction conditions by homogeneous 
precipitation method. In both the cases, gelation of aluminum hydroxide occurred in comparable pH regime and 
produced alumina nanoparticles with comparable average particle size; however their sintering behavior and 
microstructure of finished products was not comparable. Nanopowders obtained from aluminum nitrate were 
highly consolidable and sinterable producing reasonable final densities conversely to nanopowders obtained 
from aluminum chloride which were less consolidable and sinterable, besides the final products showed 
microstructural flaws including cracks and outgrowths due to inherent passive thermal transformations of 
nanopowders and unavoidable interferences. DSC/TG, TDA, SEM-EDS, XRD techniques were employed to 
characterize the nanopowders and dense products.   
Keywords: Nanoalumina precursors, aluminum chloride, aluminum nitrate, sintering 
 
Introduction 
Nanosized alumina is quintessential ceramic material showing high strength, melting temperature, abrasion 
resistance, optical transparency and electric resistivity. More recent applications of nanosized alumina include 
catalyst substrates, tube of Arc lamps, and laser hosts. Possible new uses of nanoalumina are in electronic 
circuits, optical components, alumina fibers for composite and biomaterials. Traditional uses of alumina are 
furnace machinery, cutting tools, bearings and gem stones [1] 

Ceramic processing to produce ceramic parts with desirable properties is critical to the intrinsic properties 
of ceramic powders. These include average particle size, particle size distribution, shape, surface area and 
impurities. Besides method of synthesis of ceramic powders, their fabrication processing also influences the 
microstructural developments and process of densification.  

There are three main routes to synthesize ceramic nanopowders i.e. gaseous, solid and liquid phase. Among 
these, solution technique is most common and diverse methods to produce nanopowders [2,3]. In the 
homogeneous precipitation of nanoalumina powders, the influence of anions on the formation of aluminum 
hydroxide has been investigated by several authors [4-8]. During formation of aluminum hydroxide pH affects 
critically the crystallinity and morphologies of nanopowder as explained in our previous work [9,10].  It has been 
reported that monovalent anions NO3

1- and Cl1- both get neutralized in comparable pH regime. It has also been 
quantified that at precipitation stage, the ratio of added [OH]1-/[Al]3+¸ in both the cases was more than 2.5 at pH 
value above 5 [4, 11,12]. The present study focuses on the relative effect of monovalent anions primarily on the 
sol-gel processing and particle profile of nanoalumina powders and subsequently on microstructural 
developments while densifying into final sintered alumina products.. 

In the present study alumina nanopowders were produced from aluminum nitrate and aluminum chloride 
under identical reaction conditions to explore relative effect of monovalent anions  

 
Materials and Methods 
Aluminum nitrate nonahydrate Al(NO3)3.9H2O (Fluka) and aluminum chloride hexahydrate AlCl3.6H2O (Fluka) 
were used as starting materials. Molar ratios of aluminum salts and urea (NH2)2CO (Merck) are given in Table 1.  
The sols were heated at 90oC temperature with constant stirring and volume was maintained to 6 liters by adding 
distilled water. The pH of the sols has been monitored throughout the reaction at definite intervals of time. When 
pH value reached 7, the reaction was stopped. Gels were washed several times using distilled water.  A tray type 
freeze drier of Max series was used to sublime gels at -40oC. Nanopowders collected from freeze drier were 
consolidated into green bodies. After presintering at 800oC for 2 hours, the powders were damped with 2wt% 
(related to Al2O3) polyvinyl alcohol PVA (Hoechst, Frankfurt) and uniaxially pressed into 1X0.3” disks. The 
prerequisites and parameters of cold compaction are given in Table 2.   

The green machined compacts were initially dried overnight at room temperature, heated at 100oC for 1 
hour in electric oven and finally thermolysed at 800oC for 1 hour. The digital electric laboratory oven WE 
500HA and high temperature rapid heating electric furnace RHF/3 Carbolite, UK were used. Sintering was 
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carried out up to 1400oC at the heating rate 5oC per minute and soaking time 3 hours. 
For TDA, specimens with 50 mm length and 20 mm width were fired up to 1600oC @ 20oC per minute in 

Horizontal Orton Dilatometer DIL 2016 STD.  
X-ray diffraction measurements were conducted on Siemen’s Diffractometer D5000. X-ray tube operated at 

40 kV and 30 mA. Data was collected with a scintillation counter in the 10-70o range with a step of 0.05o and a 
counting time of 60 s/step. 

A Hitachi S-3700, Japan SEM equipped with EDS, was used to acquire image at the accelerating voltage 25 
kV, working distance 5 mm, tilt angle 0o. To improve image resolution sample was coated with platinum at 0.1 torr and 20 μA for 2 min which has been found optimum for a thin layer coating.  

 
Result and Discussion 
Particle size analysis 
Particle profile in Fig 1a reveals that AN3 and AC3 are nanopowders having comparable average particle sizes 
however; their particle size distribution was different. AN3 has narrower while AC3 has relatively wider particle 
size distribution. Average particle size of both AN and AC compositions tend to increase as a function of 
concentration of aluminum salt:urea molar ratio as depicted in Fig 1b. 
 
TDA Studies of AN compositions 
Dilatometric curve of AN3 is presented in Fig 2. Up to 800oC, the sample shows shrinkage in three steps; first 
percent linear change of 0.16% relates to the evolution of adsorbed water, second 0.58% to the dehydroxylation 
of pseudoboehmite, and third 1.22% to the transformation into gamma alumina with the consequent peaks of 
shrinkage rate at 100, 231 and 325oC, respectively.    

Beyond 800oC, linear shrinkage is 2.14% which depicts that densification begins at 895oC. Almost 80% of 
this shrinkage is complete up to 1100oC and the remaining 20% up to 1300oC. Two broad peaks associated with 
this shrinkage region appeared at 1020oC named T1 and at 1098oC named as T2. This compound peak shows transformation from θ→α with c.c.p. to h.c.p. structural sequence.  

The dilatometric results of AN5, AN7 and AN9 compositions are presented in Fig 3. The general 
appearance of dilatometric curves of three specimens is same. However, linear shrinkage curves onset at 895, 
899, 905, and 911oC, respectively. T1 and T2 peaks are ultimately shifted to higher temperatures by few degrees. 
First peak appeared at 1020, 1024, 1030 and 1036 and second at 1098, 1102, 1109, and 1116oC, respectively. 
Thus sinterability of AN nanopowders increases with decrease in average particle size and vice versa.  
 
TDA Studies of AC compositions 
TDA curve of AC3 in Fig 4 shows that the percentage linear shrinkage due to dehydration is 0.16%, due to 
dehydroxylation is 0.62% and further due to transformation of pseudoboehmite into gamma alumina is 1.21%. 
The peaks of shrinkage rate representing these three stages appeared at 100, 300 and 380oC, respectively. 

Percentage linear shrinkage from room temperature to 800oC is 1.99% and onwards up to 1400oC is 1.85%. 
Densification begins at 1052oC with corresponding shrinkage peak at 1107oC.  

The densification behavior of rest of three AC compositions is shown in Fig 5. The change in sintering 
temperature has not been found in uniform with the change in average particle size. 

AN and AC compositions showed different densification behavior in various aspects. Firstly, densification 
in ANs begins about 200 degrees prior to ACs. Secondly, the rate peak is broad and compound in ANs whereas 
shingle and sharp in ACs. Thirdly, T1 peak representing θ into α transformation appeared in ANs but not in ACs. 
Fourthly and finally, percentage linear shrinkage curve in ACs conversely to ANs runs upward after 1200oC 
showing minor expansion.     
 
SEM studies of AN compositions 
AN compositions sintered at 1400oC are presented in Fig 6 a-d. The micrograph image ascertains that sintering is 
completed. The pores are closed intersecting at the grain boundaries. The grain size is isotropic with almost 
equiaxial grain shape and average size nearly 1micron. The sintering results show compliance with the 
dilatometric results. 
 
SEM-EDS studies of AC compositions 
AC compositions sintered at 1400oC are shown in Fig 7 a-d. During sintering two modes of damages were 
identified. One was cracks which appeared throughout the surface. These appeared due to incomplete 
presintering of AC nanopowders. The green body prepared was defect free while on firing at 1100oC cracks 
appeared due to incomplete presintering of powders. Fig 8a shows green body and Fig 8b shows cracks after 
firing 1100oC. AC3 powder presintered at 800oC for 2 hours in Fig 9a shows pseudoboehmite bands along with 
theta and delta phase. This incompletely dehydroxylated pseudoboehmite produces internal gas pressures while 
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sintering at elevated temperatures and causes cracks. On the contrary the XRD graph of AN3 in Fig 9b had no 
traces of pseudoboehmite showing that presintering of powder is complete. Another mode of damage is due to 
impurities. SEM image and EDS graph are shown in Fig 10a-b. The elements identified are aluminum, oxygen, 
chloride and traces of iron. Since the impurity emerged out randomly from the plane of sample surface at 
frequent places so it seems that minor expansion in the dilatometric curve is related to it.  
 
Conclusion 
Aluminum nitrate-urea and aluminum chloride-urea were homogeneously precipitated under identical reaction 
conditions of concentration, dilution, gelating agent, temperature and stirring to produce alumina nanopowders. 
It was found that both the monovalent anions NO3

1- and Cl1- initiated the gelatinous precipitation at comparable 
pH, the nanopowders so produced had comparable average particle size, however their relative pre- and post- 
sintering behavior was incomparable. Alumina nanopowders obtained from aluminum nitrate had higher 
sinterability as it began at about 200 degrees lower temperature as compared to alumina powders obtained from 
aluminum chloride under identical fabrication conditions. In the presence of nitrate final densities were 
reasonable and increase with decrease in particle size whereas in the presence of chloride final densities are 
neither reliable nor sequential with the change in average particle size as shown in Fig 11. Nanopowders 
produced from aluminum nitrate sintered to develop isotropic grain size with of 1micron with pores completely 
closed whereas under identical sintering conditions, nanopowders produced from aluminum chloride exhibited 
two kinds of flaws. Firstly, cracks due to incomplete dehydroxylation of pseudoboehmite which in turn seems 
related to particle size distribution. Though average particle size in both the cases was same, however 
nanopowders from aluminum nitrate had narrow range of particle size distribution as compare to nanopowders 
from aluminum chloride. Secondly and finally, is the outgrowth of impurities. The source of these two flaws is 
inherent and thus unavoidable as these appear in early stages and intensify with sintering.        
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  Table 1: Molar compositions of aluminum salt and urea. 
  Table 1: Molar compositions of aluminum salt and urea. 

 
 

Table 2: Prerequisites and parameters of cold compaction. 
Sr. 
No. 

Composition  Pre-sintering Temp/Time 
(oC/hour) 

Binder 
(2%) 

Pressure 
(MPa) 

Time 
(seconds) 

1 AN 800/2 PVA 100 3 
2 AC 800/2 PVA 100 3 

 

 
  1  2  3  4 

Salt:urea molar ratios 
Figure 1: a). Average particle size distribution of I). AN3 and II). AC3 nanopowder                                                

and b) Change in average particle size as a function of salt:urea molar ratio.
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Figure 2: Dilatometric Curve of AN3 composition. 
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Figure 3: Dilatometric curve of a) AN5, b) AN7 and c) AN9 composition,  
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Figure 4: Dilatometric Curve of AC3 composition. 
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Figure 5: Dilatometric curve of a) AC5, b) AC7 and  c) AC9 composition,  
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 a.  b. 

 c.  d. 
Figure 6: SEM images of a). AN3, b). AN5, c). AN7 and d). AN9 fired at 1400oC 

a.  b. 

c. d. 
Figure 7: SEM images of a). AC3, b). AC5, c). AC7 and d). AC9 compositions fired at 1400oC. 

a. b. 
Figure 8: SEM image of AC3 composition a). Green body and b). fired at 1100oC. 
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Figure 9: XRD diffractogram of a) AN3 and b) AC3 compositions presintered at 800oC for 2 hours. 

 

 
Figure 10: a). SEM image and b). EDS spectrum of Impurity in AC3 composition   
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Figure 11: Density variations in AN3 composition with temperature.  


