www.iiste.org

A NEW INSECT MOULTING HORMONE PHYTOECDYSTERONE TAXISTERONE – B FROM THE ROOTS OF TRICHOSANTHES CUCUMERINA(LINN)

Kumud Shrivastava

Chemistry Department, Govt. M. L. B. Girls P. G. (Autonomous) College Bhopal (M.P.), INDIA

Abstract:

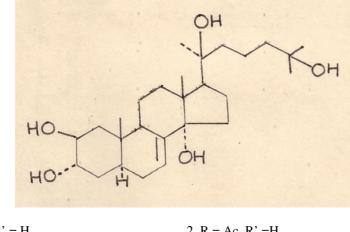
A new phytoecdysterone has been isolated from Trichosanthes Cucumerina Line (Cucurbitaceae), which exhibits strong moulting activity. On the basis of chemical and physico-chemical evidences, it has been identified as; 3 epi-22 deoxy –ecdysterone (I). This is the first example of the presence of naturally occurring insect moulting hormone in this plant .

Key words: Phytoecdysterone, moulting activity, hormone, physico - chemical

Trichosanthes Cucumerina is credited to reputed therapeutic value^{1,2} and some steroidal constituents have already been isolated from the fruits and roots of this $plant^{3,4}$ therefore the leaves of T. cucumerina were investigated resulting in the discovery of a new phyto - ecdystrone.

Air dried and powdered leaves were extracted with 50% ethanol under reflux and the solution concentrated under reduced pressure. The concentrate was treated with Chloroform : methanol (1:2) and the filtrate concentrated to yield a viscous mass and this when chromatographed on silica gel, eluting with chloroform:methanol (3:4) gave Compound (I), mp 115-118°,(α)_c¹⁸ +40.5, C₂₇H₄₄O₆, M⁺ : m/e = 464. It had peeks in IR at 3410 (OH),1655(α , β unsaturated Carbonyl), 2955 (enone), ¹HNMR indicated the presence of 5 methyl groups (0.80, 0.90, 1.29, 1.21 and 1.23 ppm for 18-Me, 21-Me, 26-Me and 27-Me respectively), and signals at 5.02 (2-H), 5.85(7-H), 2.0 and 2.12(OAc) were observed. An additional signal at δ = 4.05(1M, J=8 Hz) was assigned to an α -configuration at C₃⁵.

Compound I formed an acetyl derivative mp 105-107°C, moleculer formula C_{31} H₄₈ O₈ M⁺:548 which exhibited the NMR spectrum which had analogous to those of phytoecdysteroids.


The assignments was done by comparison of its spectrum to that of an authentic sample of 22 -deoxycdysterone $(III)^6$.

Fine signals in the ¹³C-NMR spectrum of the diacetyl derivative (II) of the compound were observed at (90.52 MHz, in CDCl₃ int. standard TMS), $38.2(C_1)$, $67.5(C_2)$, $39.3(C_3)$, $34.0(C_4)$, $50.5(C_5)$, $200.0(C_6)$, $121.0(C_7)$, $164.0(C_8)$, $33.2(C_9)$, $38.0(C_{10})$, $20.0(C_{11})$, $31.0(C_{12})$, $47.0(C_{13})$, $84.9(C_{14})$, $30.8(C_{15})$, $29.8(C_{16})$, $52.2(C_{17})$, $17.7(C_{18})$, $23.5(C_{19})$, $75.1(C_{20})$, $26.6(C_{21})$, $44.5(C_{22})$, $18.9(C_{23})$, $44.8(C_{24})$, $71.5(C_{25})$, $29.6(C_{26})$, $29.5(C_{27})$.

¹³C-NMR spectrum of Compound II showed fine signals at 67.5,39.2,71.5 and 84.9 ppm were indicated of carbon attached to the oxygen functional groups.

The ¹³C-NMR spectrum of II gave signals for 3-cat δ =39.3 ppm which indicated α -configuration at C₃ and differentiated it from the known compound 22 deoxyecdysterone (taxisterone), having B configuration at C₃.

Signals in the mass spectrum of Taxisterone-B were at m/e 464 (parent, peak, weak), 446 $(M-H_2O)^+$, 210 $(M-3H_2O)^+$, 392 $(M-4H_2O)^+$, 377,349,309,283,109,(base peak C₈ H₁₃ O) and further supported its identity as; 3-epi-22-deoxyecdysterone (Taxisterone-B).

 1. R = R' = H 2. R = Ac, R' = H

 3. R = H, R' = H and C_3 - OH β 4. R = Ac, R' = H and C_3 - OH β

Moulting test of Taxistrone-B when carried out on Dysdercus similis freeman (Hetropters, Pyrrhgo) growth, revealed that it has potential moulting effect comparatively more then that of 22 -deoxyecdysterone (Taxistrone), thereby concluding the condition of $C_3\alpha$ -OH group for high moulting activity.

Acknowledgement: We are thankful to the UGC for the financial assistance and R.R.L. Jammu Tawi (India) for recording the spectras .

References:

- 1. R.N.chopra, S.LNayer, and Chopra "glossary of Indian Medicinal plants" CSIR Publication, New Delhi, p248 (1956).
- 2. K.R. kirtikar, B.D. Basu "Indian Medicinal Plants" Lalit Mohan Basu and Co., Allahabad, 2, 1112-1114,(1935).
- 3. Matasuno Takao and Nagata Seiichi, Phytochemstry, 10(8).1949-50(1971).
- 4. Konaoka Matao, Yoshizaki Masao and Fugino Hirolari, Chem. Pharm. Bull., 30(7), 2570-4(1982).
- 5. K. Jemes, A.H. Manchanda J. Dougan and M.J Nagler, Tetrahedron Letters, 16,1475(1974).
- 6. Kimico Nakoni, Toshihiro Mohra, Toshiaki Tomimatsu nad Masaric Mishikawa, Phytochemistry, 21,2749-2751(1982).