Determining Traces Metal Ions using Porphyrins as a Reagent

Ramla Abdullah
Department of Chemistry, Faculty of second Science, Al-baath University, Syria

Abstract
Porphyrins molecules is a macrocyclic compounds, suitable to be an excellent analytical reagent for spectrum analysis due to its highest molar absorption coefficient, for its complexes with wide range for several metal ions compared with the open chain reagent, so it can be used to determine traces of metal ions which coordinate with it. The multiplicity of the bands for porphyrins reagent itself which reach to five bands cover all the spectrum (350-800)nm create inefficient direct molecular spectrum methods, because of overlap between reagent spectrum and formed complex spectrum, for thought, employment of (HPLC) can separate the excess reagent from the formed complex, and separate the formed complexes from each other, at the same time, because the difference at retention time in the column, and all the formed complexes with porphyrin have a common absorbance band called (Soret band) appear in the range (400-420)nm which allowed to fixing wavelength in the detector on (HPLC), thus enable to record the analytical signal for nano molar concentration for most metal ions which coordinate with porphyrins molecular formed a chelate complexes, these formed complexes are very stable, the dissuasion possibility is less for long storage period, comparing with other reagents, the overlap on spectrum will be minimized.

This research can be a serious procedure to develop analytical high quality method to determine later transition metal ions, using HLPC technique and tetraphenylporphyrin (H$_2$TPP), we have achieved the following:
1- We studied the chromatographic behavior for the H$_2$TPP by using (UV-Vis) in several solvents: (DMF, CH$_2$Cl$_2$, CCl$_4$, C$_6$H$_5$-CH$_3$).
2- The possibility to form a chelating complex between H$_2$TPP and Zn ion has been studied, in addition to all effective factors which include the best formation, we have reach to the optimum conditions. we have known to the chromatographic behavior of formed complex, and reach to the optimum separation condition between the formed complex and the excess concentration of the reagent.
3- we calculated the steichiometric composition for the formed complex by (Molar ratio and continuous method), calculated the molar absorption coefficient for formed complex, its constant formation, the linear relation between the analytical signal (peak surface) and the Zn concentration was achieved, which in contestable to Lambert-Beer law in the wide range.
4- The proposed method was applied on model samples of Zn indented with its actual contain.
5- we reached to the optimum chromatographic peaks separation for formed complexes(Zn-TPP, Ni-TPP, H$_2$TPP, VO-TPP), as the following retention time respectively : t$_R=4.2 < t_R=6 < t_R=6.8 < t_R=12.4$ (min)
6- We can confirmed according to the results which we obtained: (RP-HPLC) to solve spectrums overlap between H$_2$TPP and formed metal complexes, the possibility to insulate analytical chromatography peaks: sharp, symmetric, and related to the metal ions concentration in a wide range and for nanomol ion concentration, consequently it well allow us to determine traces of metal ions.

Keywords: porphyrins , chelate , complex , RP-HPLC , and traces ion.

1- Introduction
Porphyrins chemistry consider an interest subject when using as reagent in spectrum analysis [1,2,3]. Due to high absorption molecular coefficient. and the effect negative method using porphyrins to determine metal ions by direct method [4] is the slow combination reaction between metal ions and porphyrins ring, and low rendement formed complexes. this require a long period to achieve the equilibrium, as well as, related to porphyrins ring symmetry, and a strong stability. It is difficult to deform the porphyrins ring as a previous step to insert metal ions.

we can surmount all above by [4,5]
1- Heating.
2- Add aromatic base hetergeneous such as, Imidazole, or Pyridine.
3- Using reduction substances (Ascorbic acid, Hydroxylamine).
4- Using replacement reaction with Cadmium, or Mercury porphyrins.
5- Using Porphyrins has a substituant on pyrrole nitrogen.
6- Insert a function group to be bound with metal ion near porphyrins core.

Different type of porphyrin has been studied [6] in a different temperature, different solvent: (CCl$_4$, CH2Cl$_2$), the spectrum showed peaks at (475-690)nm, this peaks does not related to any of react substances. React mechanism Mg$^2+$,Fe$^{2+}$ with porphyrin ring has been studied [7] as well as all effective factors and Imidazole has been used to remove protons porphyrin ring. Porphyrin sepration : meso tetra butyl porphyrin, meso tetra ethers butylporphyrin, and porphyrin complexes, has been studied [8], all sepration factors has been studied: type of
Column, and mobile phase were defined. At [9] all factors separation had been clarified for seven kind of bioporphyrin found in human urine, the separation done in 3.2 min using 0.1 M Ammonium citrate, with fluorescence detector for RP-HPLC.

Due to bio-natural origin of porphyrins, it can be used in a wide range in analytical chemistry, there is a kind of porphyrins called petroporphyrins (PPS): A typical chemical fingerprint, can be uses as a biological mark to decide origin and manner formation petroleum, at [10] selective extraction has been used for metalloporphyrin which can be founded in petroleum, the study show the high catalyst on cyclo-dextrinseoxide reaction. At [11] chromatographic method to isolate petroporphyrins with Methyl sulfonic acid has been used, monitoring extraction and purified using UV-Vis to analysis petroporphyrins has been done by. Laser desorption ionization-time of light mass spectrometry

A theoretical study has been applied [12] using (DFT/B3LYP) to be sure about porphyrin structure and stability, this study depends on (Density Functional Theory), this information available in Gaussian94 program.

2- Result and discussion

We studied the reagent tetraphenylporphyrin (H$_2$TPP), figure (1)

![Molecular structure of H$_2$TPP](image1)

Spectrum scanning in several solvent such as (Dimethylformamide (DMF)- Chloroform-Toluene and Dichloromethane), for several concentrations, as show in figure (2), the reagent acts distinct band at Vis named Soret band at 418 nm, and 4Q bands graduated in its intensities and wavelength from right to left.

![Spectrum scanning of H$_2$TPP in DMF](image2)

And to make this peaks very clear we increase the H$_2$TPP concentration, the result show in figure (3), we summarize the result obtained for the study in all solvents in Table (1). And to prevent any interferences between the reagent (H$_2$TPP) peaks, and complex (Zn-TPP) peak, we used High performance liquid chromatography (HPLC) method, figure (4) show the peaks for (H$_2$TPP, Zn-TPP). The complex formed as follow: we used ZnCl$_2$ as a source for Zinc ions, we prepared a stock solution $C_{Zn} = 1 \times 10^{-2}$ M, in distilled DMF. In a flask we put $C_{Zn} = 6 \times 10^{-6}$ M.
Figure(3) : Spectrum scanning of H$_2$TPP in DMF

CH$_2$TPP10,M : 1(1);2(2);3(3);4(4);5(5);6(6);7(7);8(8);9(9);10(10)

Table (1) : Result of spectrum behavior for H$_2$TPP in(CCl$_4$, C$_6$H$_5$CH$_3$, CH$_2$Cl$_2$, DMF)

<table>
<thead>
<tr>
<th>λ(nm)</th>
<th>Solvent</th>
<th>418</th>
<th>515</th>
<th>550</th>
<th>590</th>
<th>645</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C Cl$_4$ Linearity</td>
<td>10^{-5}-10^{-6}</td>
<td>10^{-6}-10^{-4}</td>
<td>10^{-4}-10^{-4}</td>
<td>10^{-6}-5.10^{-4}</td>
<td>10^{-6}-5.10^{-4}</td>
</tr>
<tr>
<td></td>
<td>ε</td>
<td>$5.39x10^5$</td>
<td>$2.00x10^4$</td>
<td>$8.20x10^3$</td>
<td>$6.00x10^3$</td>
<td>$4.20x10^3$</td>
</tr>
<tr>
<td></td>
<td>C$_6$H$_5$.CH$_3$ Linearity</td>
<td>10^{-5}-10^{-5}</td>
<td>10^{-5}-10^{-4}</td>
<td>10^{-5}-10^{-4}</td>
<td>10^{-5}-10^{-4}</td>
<td>10^{-5}-10^{-4}</td>
</tr>
<tr>
<td></td>
<td>ε</td>
<td>$8.70x10^4$</td>
<td>$1.68x10^4$</td>
<td>$6.90x10^3$</td>
<td>$4.90x10^3$</td>
<td>$3.20x10^3$</td>
</tr>
<tr>
<td></td>
<td>CH$_2$Cl$_2$</td>
<td>Linearity</td>
<td>1.10^{-5}-10^{-7}</td>
<td>10^{-6}-10^{-4}</td>
<td>10^{-6}-10^{-4}</td>
<td>10^{-6}-10^{-4}</td>
</tr>
<tr>
<td></td>
<td>ε</td>
<td>$6.70x10^5$</td>
<td>$2.00x10^4$</td>
<td>$9.00x10^3$</td>
<td>$5.60x10^3$</td>
<td>$4.48x10^3$</td>
</tr>
<tr>
<td></td>
<td>DMF Linearity</td>
<td>10^{-5}-10^{-6}</td>
<td>10^{-5}-10^{-4}</td>
<td>10^{-5}-10^{-4}</td>
<td>10^{-5}-10^{-4}</td>
<td>10^{-5}-10^{-4}</td>
</tr>
<tr>
<td></td>
<td>ε</td>
<td>$3.70x10^5$</td>
<td>$1.50x10^4$</td>
<td>$6.60x10^3$</td>
<td>$4.50x10^3$</td>
<td>$3.70x10^3$</td>
</tr>
</tbody>
</table>

Figure(4): Chromatographic peaks : H$_2$TPP ; Zn-TPP

mobile phase: Methanol , $\phi=1.5$ ml/min ; λ_{max} =420 nm

$C_{H_2TPP} = (6 \times 10^{-5} , C_{Zn}= 6x10^{-6})$.M

The reaction proceed under reflex. We determined the ideal condition to form the complex (Zn-TPP) such as [PH, wave length, heating time, the reagent concentration, the molar ratio C_{Zn}/C_{TPP} and it was (1:1). we confirmed it by two methods (Continuous variation, saturation curve)], the results obtained show as figures (5-
10). Table (2) show the ideal condition found.

Table (2) condition found to form Zn-TPP complex

<table>
<thead>
<tr>
<th>Study effect</th>
<th>Result obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Increase PH from 3.1 to 12 well increase the surfer peak 315.6 times</td>
</tr>
<tr>
<td>wave length</td>
<td>$\lambda_{max}=420$ nm</td>
</tr>
<tr>
<td>heating time</td>
<td>1 hour , $T=150^\circ$ C</td>
</tr>
<tr>
<td>H_2TPP concen</td>
<td>$C_{H_2TPP} = (1-10) 10^{-6}; M$</td>
</tr>
<tr>
<td>Molar ratio</td>
<td>Continuous variation</td>
</tr>
<tr>
<td>saturation curve</td>
<td>$0.961 = 1$</td>
</tr>
<tr>
<td>Stability</td>
<td>24 hours</td>
</tr>
</tbody>
</table>

We calculated the absorption molecular coefficient (ξ), and constant formation (β_k) for the formed complex (Zn-TPP) by two methods (Schwarzenbach, Saturation curve). The result by this methods was: $\xi = 1.10^{5}$ L.mole$^{-1}$.cm$^{-1}$ $(\beta_k) = 3.10^7$

Figure (5): The relation between (S) peak surface for the complex Zn-TPP and PH (a), corresponding chromatograms(b), $C_{H_2TPP} = (6 \times 10^{-6}; C_{Zn}= 1\times10^{-6})$ M ;mobile phase: Methanol, $\phi=1$ ml/min, $\lambda_{max}=420$ nm.
Figure(6): The relation between (S) peak surface for the complex Zn-TPP and wavelength (a), corresponding chromatograms(b).

We achieved the linear relation between the analytical signal (peak surface) and the Zn concentration according to Lambert-Beer law in the wide range of (1-10).10^-8 M. Figure(11) The proposed method was applied on model samples of Zn and it was indented with its actual contain. The value of RSD did not excess 7.02%, Table(3)

Table(3): Determination Zinc in Model Samples C_{ZnTPP} , M = 1.10^-6, (n=5, α=0.95) mobile phase: Methanol, φ=1 ml/min

<table>
<thead>
<tr>
<th>Taken x.10^-8, M</th>
<th>Found (\bar{X} ± \DeltaX)10^8 M</th>
<th>RSD%</th>
<th>recovery%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
<td>3.20 ± 0.24</td>
<td>7.02</td>
<td>107.3</td>
</tr>
<tr>
<td>5.00</td>
<td>5.10 ± 0.24</td>
<td>3.26</td>
<td>102.0</td>
</tr>
<tr>
<td>8.00</td>
<td>7.01 ± 0.18</td>
<td>2.18</td>
<td>88.56</td>
</tr>
</tbody>
</table>
Figure(7): The relation between (S) peak surface for the complex Zn-TPP and time heating, \(C_{\text{H2TPP}} = (6 \times 10^6 \times \text{H}_{2}\text{TPP}) \), \(C_{\text{Zn}} = 1 \times 10^6 \text{M} \)

mobile phase: Methanol, \(\phi = 1.5 \text{ ml/min} \), \(\lambda_{\text{max}} = 420 \text{ nm} \)

\(T (\circ C) : 60(1); 90(2); 120(3); 150(4) \).

Figure(8): Effect of excess concentration (H\(_2\)TPP) on the complex formation (Zn-TPP)(a), corresponding chromatograms(b), \(C_{\text{Zn}} = 1 \times 10^6 \text{M} \)

mobile phase: Methanol, \(\phi = 1.5 \text{ ml/min} \), \(\lambda_{\text{max}} = 420 \text{ nm} \)

\(T (\circ C) : 150; t (\text{min}) = 90 \).
Figure (9): (a) Change of surface for chromatographic peak relate to formed complex Zn-TPP with Molar ratio, (b) the Sample of chromatographic relate to the formed complex $C_{\text{H2TPP}} \cdot 10^8, M: 1.5(1); 3.0(2); 6.0(3); 9.0(4); 18(5)$. $\lambda_{\text{max}} = 420 \text{ nm}$, $C_{\text{Zn}} = 8 \times 10^{-8} \text{ M}$

Figure (10): (a) Change of surface for chromatographic peak relate to formed complex Zn-TPP with saturation curve, (b) the Sample of chromatographic relate to the formed complex
Figure (11): The linear range between complex formed Zn-TPP and Zinc concentration, mobile phase: Methanol, φ=1.5 ml/min, $\lambda_{max}=420$ nm, $C_{HTPP}=1 \times 10^{-6}, C_{Zn}\cdot10^8,M:2(1); 4(2);6(3);8(4);10(5)$.

In our study we formed (VO-TPP, Ni-TPP, Zn-TPP), Methanol as a mobile phase did not separate all formed complexes, from the excess reagent so we changed to (Ethyl acetate- Acetonitrile) (75:25), it was suitable for separation, figure (12) shows the corresponding chromatogram.

Figure (12): The Chromatographic peaks related to:
Zn-TPP (1), VO-TPP (2), $H_2TPP(3)$, Ni-TPP(4)
$C_{Zn}=4 \times 10^{-8}, C_{VO}=4 \times 10^{-7}, C_{HTPP}=1 \times 10^{-4}, C_{Ni}=8 \times 10^{-7}, (M)$
The mobile phase is (ACN:EtAC) (75:25) $\lambda_{max}=420$ nm, φ=1 ml/min
We restudied the linear relation between the analytical signal (peak surface) and the Zn concentration, and could reduce the linearity to the range of $C_{Zn} = (2\times10^{-8})$ M, with new mobile phase, Figure (13) shows the achieved new linearity. It is clear from the figure that the coordination coefficient is $R^2 = 0.9987$ and it is rare to find this in the low concentration using another reagent, so it is easy now to determine Zinc concentration as 0.13 µg/L; this is the analytical target we were looking for. We made sure that the formed complex (Zn-TPP) was stable for 24 hours. Again we applied on model samples of Zn and it was indentified with its actual content. The value of RSD did not exceed 0.76%, Table (4).

<table>
<thead>
<tr>
<th>Taken 10^9Mx</th>
<th>Found $(\bar{X} \pm \Delta X) \times 10^9$ M</th>
<th>RSD%</th>
<th>recovery%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
<td>2.99 ± 0.02</td>
<td>0.76</td>
<td>99.5</td>
</tr>
<tr>
<td>5.00</td>
<td>5.05 ± 0.02</td>
<td>0.33</td>
<td>101.1</td>
</tr>
<tr>
<td>8.00</td>
<td>7.08 ± 0.01</td>
<td>0.63</td>
<td>101.1</td>
</tr>
</tbody>
</table>

Our study which we showed, can confirm (RP-HPLC) to solve spectrum overlap between H$_2$TPP as a reagent and formed metal complexes, the possibility to insulate analytical (chromatography peaks) sharp, symmetric, and related to the metal ions concentration in a wide range for nano mol ion concentration. Consequently, this method suitable to determine traces of metal ions.

Figure (13): The linear range between complexes formed Zn-TPP and Zinc concentration, λ_{max}=420 nm, $C_{H2TPP},M=5 \times 10^{-7}$; $\phi=1$ ml/min
The mobile phase is (ACN:EtAC) (75:25)
$C_{Zn},10^{-4}$ M:2(1);4(2);6(3);8(4);10(5).

Finally we indicated that the fascinating chromatogram which show the successful separation (Zn-TPP, Vø-TPP, H$_2$TPP, Ni-TPP), for a various standard concentrations related to formed complexes, by using mobile phase.
(Ethyl acetate- Acetonitrile) (75:25).

Figure (14): The Chromatographic peaks related to:
Zn-TPP, VO-TPP, H₂TPP, and Ni-TPP.
The mobile phase is (ACN:EtAC) (75:25), λ _{max} =420 nm , φ=1 ml/min

References
2-Regimol G. George ; M. Padmanabhan, 2005-Studies on cobalt(II), nickel(II) and copper(II) derivatives of some new meso-aryl substituted octabromoporphyrins , J. Polyhedron, V.24, No. 5,P.679-684.
5--Masaaki Tabata ; Motoharu Tanaka , 1991- porphyrins as reagents for trace-metal analysis , J. Trends in anal.chem., V.10,No.4,P.128-133.
7-Shen Y; Ryde U.,2005- Reaction mechanism of porphyrin metallation studied by theoretical methods., J Chemistry ,V.11,No.5,P.1549-1564.
9- Peter Bozek;Milan Hutta; Barbora Hrivnáková , 2005-Rapid analysis of porphyrins at low ng/L and µg /L leveles in human urine by a gradient liquid chromatography method using octadecylsilica monolithic columns , J. Chromatography , V.1084, P.24-32.
10- Maik Nauka ,2006- Prepration of vanadyl porphyrin complexes from a metal porphyrin petroleum concentration and study of their catalytic activity , J. Petroleum chem., V.46, No.6, P.447-449.