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Abstract 

Salinity scans were performed for petroleum sulphonate/eugenol ethoxyate mixtures having the same 

composition (0.75 mole fraction of witco TRS 10-80 petroleum sulphonate + 0.25 mole fraction of any of the 

prepared eugenol ethoxylates). Widths of the obtained three-phase (3Φ) microemulsion regions, were determined 

and the optimum salinity (S*) values of these anionic/nonionic systems, were calculated at different oil phase 

alkane carbon numbers (ACN). Phase behaviour diagrams, of the investigated systems, were constructed by 

plotting the width of the 3Φ region against oil phase ACN. From the obtained phase maps, the areas of the 3Φ 

regions, bounded between the upper and lower phase boundaries (UPB & LPB), were located. Also, the areas 

bounded between the UPB and LPB fitted curves for the whole ACN range (from hexane to hexadecane, 3Φ6-16) 

and that for the preferred ACN (from hexane to nonane, 3Φ6-9), were determined through computational 

approach. Linear and polynomial equations were developed to describe the S*-ACN relationship of the 

investigated systems.Results obtained reveal that more pronounced shift, in the 3Φ region, to higher ACN was 

observed when nonionic having longer polyoxyethylene chain was employed. Sulphonate/eugenol ethoxylate 

mixtures gave 3 Φ6-9 regions at a relatively higher salinity ranges if compared with that of sulphonate alone. 

Such mixtures are more beneficial in surfactant flooding for high salinity reservoirs. 

Keywords : Eugenol ethoxylates, Petroleum sulphonates, Phase behaviour, Phase map, Surfactant flooding 

formulation systems. 

 

INTRODUCTION  

"Traditional" surfactant flooding involves the injection of a chemical solution that consists of,  water,  surfactant, 

co-surfactant, and salt. Polymer is added to these formulations to maintain favourable mobility control and hence 

to achieve good sweep efficiency. However, the overall economics of this process was not sufficient to warrant 

wide implementation by the industry (Goddard et al., 2004; Shuler et al., 1989, 1987). 

 One of the lower cost methods for improved oil recovery via surfactant flooding design is to add alkali 

to the surfactant formulation. The process is known as ASP (alkaline-surfactant-polymer) flooding (Shuler et al., 

1989; Mayers, 1992). ASP process has been designed to reduce adsorption of anionic surfactants onto reservoir 

rock. Significant ASP projects have been constructed in China and Indonesia but only small ASP flooding 

process are found in U.S. and Canada (Pitts, 2001). One other approach to reduce the cost of chemical flooding 

process by using low concentrations of surfactant without any added polymer (Berger and Lee, 2002; Austad, 

1993). The process is less efficient in oil recovery than conventional one. Dilute solutions of ethoxylated anionic 

surfactants were attempted for this EOR in sea water (Skauge and Palgren, 1989). The development, of anionic 

surfactant formulations that include a small amount of cationic surfactant, is another laboratory scale process for 

EOR (Wellington, 1993; Jayanti, 2001; Kayali et al., 2010). Significant oil recovery is achieved with much less 

surfactant concentration than that used in formulations developed up to the mid 1980’s. 

 In a similar vein, there is the suggestion for the addition of a so-called linker molecule to the surfactant 

formulation. Linker molecules are amphiplies that segregate near the microemulsion region, near the surfactant 

tail (lipophilic linkers) or near the surfactant head group (hydrophilic linkers). The concept of lipophilic linkers 

was first introduced by Graciaa et al., 1993, the state of art and linker-modified microemulsions have been 

reported by Acosta et al., 2002, Sabatini et al., 2003 and Salager et al., 2005. In three-phase (3Ф) microemulsion 

formulated by polyoxyethylenated alkylphenols. Nonionics and iso-octane oil phase, Graciaa et al., (1993) have 

observed that alkylphenol with one or two ethoxy groups did not participate at the interface, but rather 

segregated near the oil/water interface and between the tails of alkylphenol surfactants with a higher number of 

ethoxy groups. These components are "linking" the oil molecules and the surfactant tails (lipophilic linkers) 

which promote better solubilization of the excess oil by the main surfactant. Also, shorter alkyl chain surfactants 
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are discussed as hydrophilic linkers (Sabbatini et al., 2003; Acosta, 2002) and thought to adsorb at the oil/water 

interface, thereby promoting the surfactant-water interaction, but have a poor interaction with the oil phase. They 

observed a synergistic effect when combining the lipophilic and hydrophilic linkers, which further allows an 

increase in oil solubilization by the surfactant. 

 

EXPERIMENTAL : 

I- SURFACTANTS :- 

I.1- Polyoxyethylenated Eugenol. (4-allyl-2-methoxyphenol), was prepared through the reaction of ethylene 

oxide with eugenol. The prepared nonionic surfactants have the general formula:-  

 

 

 

                    (n – the average number of 

oxethylene units) 

 Delails concerning the oxyethlenation process, purification technique, 

along with spectroscopic analysis of the prepared nonionics are reported elsewhere (Ibrahim, 1998; El-Mergawy, 

1988; El-Kholy, 1993). The prepared nonionies have an average n range from 8.88 to 17.87 as determined from 
1
H NMR measurements, and hydrophile – lipophile balance (HLB) range from 12.80 to 16.55 as determined 

from the well-known Griffin's equation (HLB = % OE/5)   

 

I.2- Witco TRS 10-80 : commereially available petroleum sulphonate manufactured by Witco Chemical 

Corporation- Sonneborn Division. Specifications of this anionic surfactant are given in Table 1 as received from 

the manufactuerer. Witco TRS 10-80 was used after de-oiling and de-salting steps (Ibrahim, 1998; El-Mergawy, 

1988). The purified petroleum sulphonate obtained is a pale yellow hygroscopic powder which was kept in a 

stoppered container under dry conditions.  

 

II- PROCEDURES AND TECHNIQUES 

II.1- Surface Tension ( γ ) and cmc :- 

 Surface tension measurements, of aqueous surfactant solutions, were carried using Dagnon-Abribat 

Tensiometer – prolabo (ElKholy, 1993; Ibrahim, 1998). The cell temperature was controlled by circulation of 

thermostated water. The sensitivity of the instrument is + 0.05 mNm
-1

. The critical micelle concentration (cmc) 

values were determined from surface tension-concentration (γ-Log C) isotherms through the least-squares 

regression analysis (Rosen, 1989; Barakat et al, 1989; El-Mergawy, 1988; Draper, 1968). 

 

II.2- Clear Point of Witco TRS 10-80 :- 

 When this petroleum sulphonate is dissolved in brine, the resulting solution appears cloudy or turbid 

and at higher salinity precipitation observed. Salinity tends to increase clear point while cosolvent (alcohol) 

addition tends to decrease it. (Gale and Sandvick, 1973, Gendy et al., 1994). Solutions of Witco sulphonate in 

brine have clear point above 100°C (Ibrahim, 1998). The minimum amount of added alcohol required to obtain a 

clear sulphonate solution at room temperature (25°C), was determined. In all experiments, an aqueous phase 

containing 1 wt% petroleum sulphonate, a varying amount of NaCl, 3.5 wt % sec-butanol and 0.5 wt% iso-

pentanol, was contacted with one of the liquid n-alkanes (n-pentane-n-hexadecane). Water : oil ratio (WOR) 4 

was used. 

 

II.3- Salinity Sean and Middle Phase Formation :- 

 The formation of the middle phase microemulsion was carried out by contacting 8 ml of an aqueous 

solution containing alcohol, sodium chloride and surfactact with 2 ml of an oil phase (C6-C18 n-alkanes), in 

pipettes (10 ml, 0.1 division, 4 mm i.d., and 300 mm long). Pipettes were sealed, labeled and gently shaken by 

inverting twice every hour for the first 3 days, then the system was left to equilibrate for 4 days in an incubator at 

30°C. The range of salinity, where middle phase microemulsion appeared, was recorded at different oil phase 

alkane carbon numbers (ACN). (Cayias, 1976; Salager, 1977; Schecter and Wade, 1981; Ibrahim, 1998; mead, 

2000). Figure 1 illustrates the formation of 3Ф region through salinity scan. 

 

II.4- Width of Three-Phase Region and Optimum salinity :- 

 When a salinity scan was performed, and the range of salinity, which leads to the formation of three-

phase (3Ф) microemulsion region, was determind, the center of this salinity range can be taken as the optimum 

salinity (S
*
). For a system which exhibits three phases, S

*
 has been defined as the geometric average of the 

minimum and the maximum salinities. (Reed and Healy, 1967; Puerto and Gale, 1977; Salager, 1977; Ibrahim, 

1998. Mead, 2000). Also, salinity range is known as the width of 3Ф region. 

OCH3

O(CH2CH2O) H
n

CH2=CH-CH2
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N.B. In a salinity scan when the middle phase microemulsion occurred at relatively low salinity range (0.5-1.0 

wt% NaCl), it is better to make the scan varying the salinity by 0.05 wt% NaCl. When the salinity range occured 

at higher than 1 wt% NaCl, it is varied by 0.1 wt% NaCl. 

 

RESULTS AND DISCUSSION : 

1- Characterization of the Employed Nonionics : 

The employed nonionics include five members of polyoxyethylenated  eugenol having 6.46, 8.88, 11.45, 14.85 

and 17.87 oxyethylene (OE) units and an HLB range from 12.80 to 16.88. Some physical and surface properties 

of the prepared nonionics are listed in Tables 2-4. The CMC values of these nonionics decrease linearly with 

increasing the number (n) of oxyethylene units. However a non-linearity in CMC-HLB relationship which 

indicates that this nonionic group behaves in a different manner if compared with the reported 

polyoxyethylenated nonionics (Crook et al., 1963; Becher, 1966; El Kholy, 1993, Barakat, 1989). The unique 

behaviour of polyoxyethylenated eugenol is, most probably, due to the short unsaturated hydrophobic tail 

(Ibrahim, 1998; Mostafa, 1996). Also, a linear decrease in CMC with increasing temperature is the same trend 

for many nonionics (Mukerjee et al., 1971), and the increase in γcmc values with increasing polyoxyethylene 

chain, is a nonionic performance. 

Effectiveness (πcmc) and efficiency (pC20) of the employed nonionics in surface tension reduction are calculated 

from the basic surface tension-concentration data (Ibrahim, 1998) following the definitions and formula of Rosen 

(1989):- 

             Effectiveness (πcmc) = γ0 - γcmc 

            where γ0 = surface tension of pure solvent (distilled water) 

          γcmc = surface tension at cmc. 

             Efficiency (pC20) = - Log Cπ=20 

where Cπ=20 is the concentration of surfactant corresponding to 20 mN/m reduction in surface tension 

From the calculated πcmc and pC20 values, changing temperature from 28 to 58°C, has a rather minor 

effect on these quantities in presence or absence of electrolyte (Rosen et al., 1982; Dahanayake et al., 1986; El-

Kholy, 1993). Efficiency, pC20, in long-tailed surfactants, increases with increasing hydrophobic tail, but 

effectiveness, πcmc usually decrease with this change (Lange, 1964; Rosen, 1972). The interpretation of these 

investigators was that surfactant having long hydrophobic tail tends to lower the surface tension of water with 

more efficiency, but much less effectively, than a shorter chain homologue. They have reached a general 

conclusion that increasing effectiveness tends to decrease efficiency and vise versa. The obtained results in Table 

4 reveal that factors which cause a decrease in effectiveness do not cause an induced parallel increase in the 

corresponding efficiency. For example, increasing the polyoxyethylene chain length is usually followed by a 

decrease in efficiency in surface tension reduction which is a typical nonionic performance, whereas, 

effectiveness values (Table 4) give indication that polyoxyethylenated eugenol nonionics follow a pattern which 

is different from this class of nonionic surfactants. 

 In presence of added electrolyte, neither efficiency nor effectiveness results indicate a nonionic 

character. The discrepancy, in surface properties of polyoxyethylenated eugenol is mainly due to the less 

efficient short unsaturated hydrocarbon tail (Swarbrick et al., 1969). 

 

2- Characterization of the Employed Sulphonate 

Witco TRS 10-80 petroleum sulphonate is the anionic surfactant employed in this study, For economic 

considerations, this surfactant has been used in numerous studies (Cayias et al., 1977; Bennett et al., 1981; 

Bourrel and Chambu, 1983, Ibrahim, 1998). The specifications of Witco-petroleum sulphonate are given in 

Table 1 as received from the manufacturer.  

 CMC values of the employed petroleum sulphonate, were determined at different salinities and various 

alcohol concentration (Table 5). The presence of electrolyte in aqueous surfactant solutions, causes a decrease in 

the cmc value (Mysels and Mysels, 1965; Barakat et al., 1997). This decrease in cmc is more pronounced in 

anionic surfactants (e.g. sulphonates) than polyoxyethylenated nonionics (Rosen, 1989). The addition of alcohol 

increases the solubility of surfactant which subsequently decreases the cmc (Table 5). 

 

3- petroleum Sulphonate-Brine – Oil System :- 

Salinity scans were performed by contacting an aqueous solution, containing 1 wt % petroleum sulphonate, 3.5 

wt % sec-butanol, 0.5 wt % iso-pentanol and a varying amount of NaCl, with one of the liquid n-alkanes (n-

pentane-n-hexadecane). In all experiments, water : oil ratio (WOR) 4 was used. Three-phase (3 Ф) 

microemulsion regions were located by increasing the salinity of the aqueous phase and keeping concentrations 

of surfactant and alcohols constant. Figure 1 illustrates the formation of three phase (3 Ф) region through a 

salinity scan. 

 When a salinity scan was performed and the range of salinity, which leads to the formation of 3 Ф 
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microemulsion, was determined, the center of this salinity range can be taken as the optimum salinity (S
*
). The 

optimum salinity of a system has been defined as the geometric average of the minimum and maximum salinities 

for a system which exhibits three phases (Reed and Healy, 1976; Puetro and Gale, 1977, Salager, 1977). In most 

practical cases, there is no significant difference between geometric average and the arithmatic one (Salager, 

1977). 

 Table 6- lists the determind salinity ranges and optimum salinity (S
*
) values of Witco-petroleum 

sulphonate at different oil phase alkane carbon numbers (ACN) and in presence of 3.5 wt% sec-butanol plus 0.5 

wt % iso-pentanol at 30°C. For instance, the determind salinity range of sulphonate-n-hexane-brine systerm, is 

0.625-0.775 wt % NaCl, and the optimum salinity, S
*
, value is 0.70 wt% NaCl. This salinity range is often 

defined as the width of three-phase (3 Ф) microemulsion region. From the determined salinity range data listed 

in Table 6, the width of 3 Ф regions for petroleum sulphonate-n-hexane-brine and petroleum sulphonate-n-

decane-brine systems, are 0.626-0.775 and 1.25-2.10 wt% NaCl, respectively. It can be concluded that the higher 

the alkane carbon number (ACN), The wider the salinity range required for the formation of 3 Ф microemulsion. 

For surfactant flooding formulation systems, determination of salinity range in which 3 Ф microemulsion exists, 

is highly important. It is well-known that the wider the 3 Ф region, the less sensitive the system is to changes in 

reservoir conditions (Barakat et al., 1983a,b; Haque and Scamehorn, 1986). Several investigators have shown that 

essentially all the petroleum sulphonate surfactant, which originally present in the aqueous  phase, ends up in the 

3 Ф region or Type III microemulsion region, Figure 1. (Reed and Healy, 1976; Barakat et al., 1983; Haque and 

Schamehorn, 1986; Barakat and Ibrahim, 2011). 

 

3.1- Salinity-ACN Phase Diagram of Sulphonate 

Figure 2 shows the salinity-ACN phase diagram of Witco TRS 10-80 petroleum sulphonate in the presence of 

3.5 wt% sec-butanol and 0.5 wt% iso pentanol. In this diagram, the formation of 3 Ф region is shown by plotting 

the salinity range versus oil phase ACN. It can be seen that the width of 3 Ф region increases by increasing the 

oil phase ACN. It is also obvious that increasing salinity produces a I→III→II transition, whereas increasing 

ACN produces a II→III→I transition as previously illustrated in Figure 1 (Winsor, 1948; 1952). 

 In Figure 3, by cutting the 3 Ф region with iso-salinity lines at 1.0, 1.25, 1.50, 1.75, 2.0 and 2.5 wt% 

NaCl in the direction of increasing ACN and plotting the obtained ACN range versus the concentration of NaCl 

gives a better view in Figure 3. The three-phase region obtained at the preferred alkane carbon number range 

from hexane to nonane, (3Ф6-9), can be located. In surfactant flooding formulation system, it has been reported 

that the range of 6-9 on the alkane scale is important because these alkane carbon numbers are taken as 

equivalent models for crude oils (Barakat et al., 1983
a
, 1983

b
, 1982; Cayias et al., 1976, 1977; Cash et al., 1977, 

Doe et al., 1976
a
, 1976

b
). 

It is clear from Figure 3 that the 3 Ф6-9 is achieved only at the vicinity of a salinity range of 1.0-1.25 

wt% NaCl. At higher salinities, higher ACN ranges are observed in the 3 Ф regions. A downward shift, in the 

higher ACN ranges, is required to make the investigated petroleum sulphonate suitable for recovering crude oils 

having equivalent alkane carbon number (EACN) of 6-9. Such a downward ACN shift could be achieved by 

increasing the temperature of the system and/or addition of polyoxyethylenated nonionic surfactant (Morgan et 

al., 1977; Schecter and wade, 1980). These investigators have reported that a downward shift of about one and 

half carbon atom per 10°C rise in temperature, has been achieved when they evaluated the phase behaviour of 

Matinez 420 (a commercial petroleum sulphonate) and C15 O-xylene sulphonates over a range of temperature 

from 27 to 70°C. 

 Careful inspection of data in Figure 3 shows that a surfactant such as Witco-petroleum sulphonate 

which gave 3 Ф region when contacted with 9-12 ACN range at 30°C in presence of 1.5 wt% NaCl, will also 

give 3 Ф region when contacted with 6-9 ACN range at 50°C. This means that the investigated Witco-petroleum 

sulphonate formulation system is expected to be more suitable for crude oil recovery and oil field conditions 

when applied at temperature range in the vicinity of 50°C (Morgan et al., 1977). 

 Figure 4 shows that the logarithm of the optimum Salinity, S
*
, is a linear function of the ACN. Thus, a 

correlation of the type : 

Log S
*
 = K(ACN) + A(f) 

is established, where k is the slope and A(f) represents a term which depends upon all other variables, 

particularly alcohol type and concentration. The value of k and A(f) are found to be 0.167859 and-1.24266, 

respectively. The coefficient of determination (R
2
 value) equals 0.985658 which indicate the reliability of the fit.  

 

3.2- Phase Behaviour of Petroleum Sulphonate – Eugenol Ethoxylate Mixtures:-  

For phase behaviour study, four sulphonate/ ethoxylate mixtures, having the same composition (0.75 mole 

fraction of witco TRS 10-80 plus 0.25 mole fraction of any of the investigated eugenol ethoxylate) were 

employed in presence of 3.5% sec-butanol and 0.5 wt% iso-pentanol. All three-phase, 3 Ф, regions are obtained 

by increasing the Salinity of the aqueous phase and keeping the total concentration of surfactant pair constant 



Chemistry and Materials Research                                                                                                                                                    www.iiste.org 

ISSN 2224- 3224 (Print) ISSN 2225- 0956 (Online) 

Vol.6 No.12, 2014 

 

59 

(1.0 wt%). 

 Through salinity scans the width of the 3 Ф regions are determined for petroleum sulphonate/ eugenol- 

6.6, petroleum sulphonate/ eugenol- 8.9, petroleum sulphonate/ eugenol- 11.5 and petroleum sulphonate/ 

eugenol- 14.5 mixtures. The obtained data are given in Table (7). From these data, salinity-ACN phase diagrams 

are plotted for each of the investigated mixtures and are shown in Figures 5-8. 

 Figure (5) shows the salinity-ACN phase diagram of witco  TRS 10-80 petroleum Sulphonate/ eugenol-

6.6 mixture. When this nonionic is added a wider middle phase region is observed if compared with that of 

petroleum sulphonate alone Figure (2). Addition of eugenol-6.6 shifts the 3 Ф region to relatively higher 

concentration of NaCl for the hydrocarbon considered (hexane to hexadecane). Stated in another way, witco TRS 

petroleum sulphonate/ eugenol – 6.6 mixture is preferred, in recovering crude oils from high salinity reservoirs, 

than sulphonate alone. 

 In Figure (5) it is worth nothing that neither the I→III→II transition (which takes place by increasing 

salinity) nor the II→III→I transition one (which takes place by increasing the ACN) is affected by the addition 

of nonionic surfactant (eugenol 6.6). It can also be seen that increasing the ACN necessitates the presence of 

higher salinity ranges to form the 3 Ф micoemulsion region, i.e the 3Ф region is moved up to a higher salinity 

range. This higher salinity range permits partitioning of the employed surfactant mixture into the middle phase 

(Type III). 

 The phase behaviour diagram of sulphonate / eugenol- 8.9, sulphonate / eugenol- 11.5 and sulphonate / 

eugenol- 14.9 mixture are shown in Figure 6,7 and 8 respectively. It is obvious from these Figures that the 3 Ф 

regions are formed at higher salinity ranges than observed in Figure (2), for petroleum sulphonate alone. It can 

also be seen from Figure 5-8 that the measured 3 Ф microemulsion regions, bounded by the upper and lower 

phase boundaries (UPB and LPB), are relatively larger than that observed in Figure (2). 

 For the sake of fair comparison the total 3 Ф microemulsion regions, bounded between the UPB and 

LPB fitted curves for the whole ACN range (from hexane to hexadecane) and that which represents the EACN 

range of crude oils (from hexane to nonane), are determined by integrating the difference between the two fitted 

functions of the UPB and LPB curves in Figures 2,5,6,7,and 8. The measured areas designated 3 Ф6-16 and 3 Ф6-

9, are given in Table (8). The ratio between the 3 Ф6-9 of the employed surfactant mixtures to the 3 Ф6-16 of 

sulphonate alone is calculated to compare the performance between the different micellar flooding formulation 

systems. 

 The calculated ratios, shown in Table (8), reveal that sulphonate/eugenol 8.9 mixture gives the best 

performance with respect to microemulsion formation if compared with the other investigated micllar flooding 

systems. When sulphonate / eugenol - 6.6, sulphonate / eugenol – 8.9, sulphonate / eugenol – 11.5 and 

sulphonate / eugenol – 14.9 are employed, the measured 3 Ф6-9 regions increases approximately 13.36 , 13.53, 

12.72 and 8.12 folds that of sulphonate alone, respectively. 

 The effect of salinity of the aqueous phase on the location of 3 Ф and the preferred 3 Ф6-9 regions is 

illustrated in Figure (9) is better visualized in Figure (10). It can be seen from this Figure that under a given set 

of conditions, the width of the 3 Ф6-9 region the same for sulphonate / eugenol – 6.6 and sulphonate / eugenol – 

8.9 mixtures. However the 3 Ф6-9 regions of the former mixture are formed at relatively higher salinity ranges 

which are more preferable for application in high salinity ranges which are more preferable for application in 

high salinity reservoirs. It is also obvious from Figure (10) that sulphonate / eugenol mixtures give 3 Ф6-9 regions 

at relatively higher salinity ranges if compared with that of sulphonate alone. 

 Figure (10) reavels that when Witco TRS petroleum sulphonate is blended with eugenol ethoxylates 

having approximately 7-9 ethylene oxide (EO) units, wider 3 Ф6-9 regions are formed at relatively higher salinity 

ranges. Increasing the number of EO unit does not improve the performance of the employed sulphonate/ 

ethoxylate micellar flooding system. 

 The optimum Salinity S
*
, values of petroleum sulphonate / eugenol ethoxylate mixtures, at different 

ACNs, are given in Table (9), S
*
- ACN correlation for sulphonate / eugenol – 6.6 and sulphonate / eugenol – 8.9 

mixtures are shown in Figure (11). It can be seen from this Figure that the logarithm of the optimum salinity S
*
 

is a linear function of the ACN. Thus, equations (1) and (2) are developed for sulphonate / eugenol – 6.6 and 

sulphonate / eugenol – 8.9 mixtures, respectively. 

Log S
*
 = 0.0905741 (ACN) – 1.7458   ……………..(1) 

Log S
*
 = 0.127204   (ACN) – 2.45202 ……………..(2) 

The coefficients of determination (R2 values) for equations (1) and (2) are found to be 0.974957 and 

0.994733 indicating the reliability of the fits. 

 S
*
-ACN relationship sulphonate / eugenol – 11.5 and sulphonate / eugenol – 14.9 mixtures are shown in 

Figure 12 and 13, respectively. A polynominal equation (3) of the second degree is developed to describe the S
*
-

ACN relationship of the two mixtures. 

S
*
 =   Σi ai (ACN)

i
  ………………(3) 

 Where ai represent the polynomial coefficients of the fits in Figure 12 and 13 (the polynomial 
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coefficients values are found to be ao = -0.0793744, a1 = 0.0198226 and a2 = 0.00140627 for sulphonate-eugenol 

– 11.5 with R2 value of 0.997051, and ao = -0.142029, a1 = 0.0334144 and a2 = 0.000992285 for sulphonate / 

eugenol – 14.9 with R2 value of 0.998411). 

 The developed equation (3) indicates that these mixtures have different performance if compared with 

sulphonate alone or sulphonate / eugenol – 6.6 and sulphonate / eugenol 8.9. 

 

Conclusions :- 

* The width of the 3 Ф microemulsion region increases with increased oil phase moleoular weight 

(ACN). The wider the 3 Ф region the less sensitive the system to charges in roservoir conditions. 

* For a system which exhibits three phases, a linear relationship exist between the logarithm of 

optimum salinity S
*
, and oil ACN as follows: 

               Log S
*
 = 0.167859 (ACN) – 1.24266 

* When Salinity – ACN phase behaviour diagrams are compared, the 3 Ф microemulsion regions are 

formed at wider salinity ranges in case of petroleum sulphonate / eugenol ethoxylate mixtures than 

that of sulphonate alone.   
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List of tables 

Table 1- The Employed Petroleum Sulphonate (Witco TRS 10-80) 

Manufacturer : Witco Chemicals, Sonneborn Divison 

Type : Petroleum sulphonate sodium salt 

Appearance : Brown viscous liquid
* 

Structure : Unknown, presumed to contain naphthalene and phenanthrene aryl groups, and 

more than one alkyl chain. 

Mean Equivalent Weight : 425 

Active Material : 80 wt % 

Moisture : 9 wt % 

Unsulphonated Oil : 10 wt % 

Inorganic Salts :  1 wt % 

Other : When a solution is left to settle several days, a brown solid residue separates 

from the solution; it was identified as an iron compound by the characteristic 

reaction with KSCN. 

Ibrahim, 1998, Cayias et al 1977 

* After de-oiling, desalting and drying, the 100% active material is pale yellow hygroscopic powder. (Ibrahim, 

1998) 

 

Table 2- Some Physical Properties of Polyoxyethylenated Eugenol 

Nonionic 

designation 
n %OE 

HLB 

(%OE/5) 
Mol.Wt* 

Physical 

Form at 

25°C 

nD
30 

Specific 

gravity, 

30/30°C 

Cloud 

point °C 

@ 

pH of 

1% aq. 

solution 

Appearance 

of 1% aq. 

solution 

Eugenol-2.7 2.70 41.98 8.40 294 liquid 1.5231 1.5231 28 4.9 clear 

Eugenol-6.6 6.64 64.02 12.80 468 liquid 1.5112 1.5112 65 4.8 clear 

Eugenol-8.9 8.88 70.41 14.08 565 liquid 1.5012 1.5012 80 4.8 clear 

Eugenol-11.5 11.45 75.42 15.08 680 liquid 1.4894 1.4894 86 4.6 clear 

Eugenol-14.9 14.85 79.92 15.98 802 Soft waxy 1.4882 1.4882 88 4.5 clear 

Eugenol-17.9 17.87 82.73 16.55 925 Soft waxy 1.4841 1.4841 92 4.5 clear 

     * calculated from the mol.wt.of eugenol (164.2) plus the formula wt of n oxyethylene units as determind from 
1
H NMR analysis. 

     @ for 1 % aqueous solution  
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Table 3- Critical Micelle Concentration (CMC)and Surface Tension at CMC (γcmc) of Polyoxyethylenated 

Eugenol at Different Temperatures and Salinities. 

n 
NaCl 

wt% 

CMC × 10
6
 mol.dm

3 
γcmc , mNm

-1 

28 °C 38 °C 48 °C 58 °C 28 °C 38 °C 48 °C 58 °C 

6.64 - 3296.4 1400.4 1372.8 1049.4 38.9 35.3 35.1 33.7 

8.88 - 4604.6 2724.6 1928.3 1510.3 40.1 37.9 35.1 34.3 

11.45 - 4882.2 4807.9 3409.7 2050.0 41.1 45.1 35.8 35.7 

14.85 - 8210.0 5053.9 4199.1 3520.0 45.9 48.1 42.1 42.0 

17.87 - 8805.0 6200.0 5200.0 4180.0 48.7 47.6 44.0 43.0 

6.64 1.0 716.6 482.8 413.8 385.9 41.4 38.1 35.1 34.1 

6.64 2.0 514.7 472.6 379.4 283.0 34.1 32.3 31.8 31.3 

6.64 3.0 493.6 426.4 388.3 273.2 33.6 31.8 31.3 31.1 

6.64 4.0 453.5 397.0 399.6 278.6 35.1 32.8 32.1 31.8 

6.64 5.0 472.3 362.1 359.8 263.3 35.6 33.8 32.8 32.3 

 

Table 4- Effectiveness (πcmc) and Efficiency (pC20) of the Prepared Polyoxyethylenated Eugenol in Surface 

Tension Reduction at Different Temperatures and Salinities. 

n 
NaCl 

wt% 

πcmc
 

pC20 

28 °C 38 °C 48 °C 58 °C 28 °C 38 °C 48 °C 58 °C 

6.64 - 32.81 34.69 30.86 30.24 5.437 5.266 4.863 4.552 

8.88 - 31.62 32.03 30.86 29.65 4.484 4.233 4.207 4.152 

11.45 - 30.62 31.87 30.12 28.23 4.227 4.081 3.563 3.329 

14.85 - 25.82 24.87 23.86 21.97 3.519 3.303 3.196 3.155 

17.87 - 22.99 22.35 21.95 21.03 3.269 3.157 3.095 3.049 

6.64 1.0 30.32 31.87 30.86 29.85 5.134 4.944 5.226 4.877 

6.64 2.0 38.12 38.17 34.66 32.85 9.230 - - - 

6.64 3.0 37.62 37.67 34.16 32.65 6.080 6.808 6.583 6.626 

6.64 4.0 36.62 37.17 33.86 32.15 5.277 6.389 5.763 5.797 

6.64 5.0 36.32 36.17 33.16 31.65 5.062 5.739 5.244 5.269 

 

Table 5- CMC
*
 values of Witco TRS 10-80 at Different Salinities and  added sec-Butanol concentration 

Additives CMC µ mol/litre 

0.0 wt % NaCl 170 

0.2wt % NaCl 105 

0.5 wt % NaCl 38 

1.0 wt % NaCl 34 

1.5 wt % NaCl 25 

2.0 wt % NaCl 20 

1.0 wt % NaCl + 1.0 wt % sec-Butanol 25 

1.0 wt % NaCl + 2.0 wt % sec-Butanol 20 

1.0 wt % NaCl + 3.0 wt % sec-Butanol 17 

1.0 wt % NaCl + 4.0 wt % sec-Butanol 15 

1.0 wt % NaCl + 5.0 wt % sec-Butanol 13 

1.0 wt % NaCl + 6.0 wt % sec-Butanol 11 

         * Determined at 25°C using de-oiled purified sample. 
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Table 6- Salinity Range and Optimum Salinity (S
*
) at Sulphonate-Brine-Oil System at 30°C

@
. 

Oil Phase ACN 
Salinity range 

(WT % NaCl) 

S
*
 

(WT % NaCl) 

n-Hexane 6 0.625-0.775 0.70 

n-Heptane 7 0.85-1.05 0.95 

n-Octane 8 0.95-1.25 1.10 

n-Nonane 9 1.15-1.50 1.35 

n-Decane 10 1.25-2.10 1.67 

n-Undecane 11 1.45-2.35 1.90 

n-Dodecane 12 1.6-3.00 2.30 

n-Tetradecane 14 1.90-4.10 3.00 

n-Hexadecane 16 2.25-5.50 3.87 

 @ aqueous phase : 1 wt % Witco sulphonate + 3.5 wt % sec-butanol + 0.5 wt % iso-pentanol + wt % NaCl, 

WOR = 4. 

 

Table 7- Width of 3 Ф Regions of Petroleum Sulphonate-Eugenol Ethoxylate  Mixtures at Different ACNs 

Oil ACN 

Width of 3 Ф Regions (Salinity, wt % NaCl) 

Witco TRS 10-80 + 

Eugenol-6.6 

Witco TRS 10-80 + 

Eugenol-8.9 

Witco TRS 10-80 + 

Eugenol-11.5 

Witco TRS 10-80 + 

Eugenol-14.9 

6 1.25-2.50 1.00-2.10 0.75-1.75 0.90-1.55 

7 1.50-2.75 1.00-2.25 0.75-1.90 1.00-1.75 

8 1.75-3.00 1.00-2.35 0.80-2.10 1.15-2.00 

9 1.90-3.25 1.10-2.60 0.90-2.40 1.25-2.25 

10 2.00-3.50 1.20-2.90 1.00-2.60 1.50-2.50 

11 2.25-4.00 1.30-3.25 1.10-3.00 1.60-2.75 

12 2.50-4.25 1.50-3.60 1.25-3.50 1.75-3.25 

14 2.85-5.25 1.75-4.50 1.50-4.25 2.25-4.25 

16 3.50-6.75 2.75-6.50 2.00-6.00 3.00-6.00 

   3 Ф = three-phase microemulsion 

 

Table 8- Salinity Ranges and The Measured 3 Ф6-9 and 3 Ф6-16 Regions 

Surfactant 

Salinity Ranges, 

of 3 Ф6-9 Regions 

(wt% NaCl)  

Measured 3Ф6-9 

Region  

Salinity Ranges, of 

3Ф6-16 Region 

(wt% NaCl)  

Measured 

3Ф6-16 

Region 

3Ф6-9 /3Ф6-16 

Ratio
* 

 

Sulphonate 0.625-1.50 0.061 0.625-5.50 0.285 0.21 

Sulphonate
+
 

Eugenol 6.6 
1.25-3.25 3.807 1.25-6.75 18.402 13.36 

Sulphonate
+
 

Eugenol 8.9 
1.00-2.60 3.857 1.00-6.5 20.724 13.53 

Sulphonate
+
 

Eugenol 

11.5 

0.75-2.35 3.626 0.75-6.00 20.88 12.72 

Sulphonate
+
 

Eugenol 

14.9 

1.00-2.25 2.314 1.00-6.00 14.285 8.12 

   * The 3 Ф6-9 for the investigated sulphonate / eugenol mixture 

      The 3 Ф6-16 for sulphonate only. 
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Table 9- S
*
 Values of Petroleum Sulphonate-Eugenol Ethoxylate Mixtures at Different ACN  

ACN 

S
*
 Values, wt % NaCl 

Sulphonate  

+ 

Eugenol-6.6 

Sulphonate  

+ 

Eugenol-8.9 

Sulphonate 

 +  

Eugenol-11.5 

Sulphonate   

+  

Eugenol-14.9 

6 1.875 1.550 1.250 1.225 

7 2.125 1.625 1.325 1.375 

8 2.375 1.675 1.450 1.575 

9 2.575 1.850 1.650 1.750 

10 2.750 2.050 1.800 2.000 

11 3.125 2.275 2.050 2.175 

12 3.375 2.550 2.375 2.500 

14 4.050 3.125 2.875 3.250 

16 5.125 4.625 4.000 4.500 

  

list of figures 
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1.0 wt % witc TRS 10-80 

3.5 wt % sec-Butanol 

0.5 wt % iso-Pentanol 

WOR = 4     30°C 

3Ф 

(Type-III) 

2Ф 

(Type-II) 
 

2Ф 

(Type-I) 
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1.0 wt % witc TRS 10-80 

3.5 wt % sec-Butanol 

0.5 wt % iso-Pentanol 

WOR = 4     30°C 

0.57 mole fraction Witco TRS 

0.25 mole fraction Eugenol 6.6 
 

3Ф 

(Type-III) 

2Ф 

(Type-II) 
 

2Ф 

(Type-I) 
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3Ф 

(Type-III) 

2Ф 

(Type-II) 
 

2Ф 

(Type-I) 
 

1.0 wt % witc TRS 10-80 

3.5 wt % sec-Butanol 

0.5 wt % iso-Pentanol 

WOR = 4     30°C 

0.57 mole fraction Witco TRS 

0.25 mole fraction Eugenol 8.9 
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3Ф 

(Type-III) 

2Ф 

(Type-II) 
 

2Ф 

(Type-I) 
 

1.0 wt % witc TRS 10-80 

3.5 wt % sec-Butanol 

0.5 wt % iso-Pentanol 

WOR = 4     30°C 

0.57 mole fraction Witco TRS 

0.25 mole fraction Eugenol 11.5 
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1.0 wt % witc TRS 10-80 

3.5 wt % sec-Butanol 

0.5 wt % iso-Pentanol 

WOR = 4     30°C 

0.57 mole fraction Witco TRS 

0.25 mole fraction Eugenol 14.9 
 

3Ф 

(Type-III) 2Ф 

(Type-II) 
 

2Ф 

(Type-I) 
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Figure (10) 

IIIustrates The Width of 3 Ф6-9 Regions for Sulphonate and Suphonate / Ethoxylated Eugenol mixtures 
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1 Sulphonate 

2 Sulphonate + Eugenol 6.6 

3 Sulphonate + Eugenol 8.9 

4 Sulphonate + Eugenol 11.5 

5 Sulphonate + Eugenol 14.9 
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