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Abstract 

Manganese-based octahedral molecular sieves of the type K-OMS-2 (cryptomelane structure) were prepared 
either by synproportionation of KMnO4 and Mn2+sulfate salts, in acidic aqueous suspension (reflux method) and 

or by the reduction  of Mn+7 using benzyl alcohol and CTAB (as template) in neutral medium. The prepared K-

OMS-2 materials were characterized using several techniques: X-ray diffraction, Fourier transformer-Infrared & 

Raman spectroscopy, Transmission electron microscopy, differential & gravimetric thermal analysis, H2-

temperature programmed reduction and N2 adsorption-desorption measurements. The results revealed that, the 

two prepared samples are mainly nano-structured cryptomelane materials (crystallite diameter 9- 32.5 nm.). The 
obtained K-OMS-2 material on using the sulfate anion (reflux method) has more available lattice oxygen as 

compared to that prepared by the other method. On using CTAB the obtained cryptomelane material exhibits a 

high thermal stability. The catalytic activity of the prepared K-OMS-2 cryptomelane samples were studied 

towards the oxidation reaction of cyclohexane at reaction temperature: 300-400oC. The catalytic activity for K-

OMS-2 “neutral” is higher (the conversion increases with the increase in reaction temperature from 27 to 95% 
successively) with respect to K-OMS-2 ”reflux” (the conversion increases from 30 to 79% successively). 

Keywords: Cryptomelane, acidic, neutral, lattice oxygen, thermal stability. 

 

Introduction 

Cryptomelane (K-OMS-2), an octahedral molecular sieve, is an allotropic form of manganese oxide having a 

well-defined 2×2 tunnel structure. K-OMS-2 is constructed from edge-shared double chains MnO6 octahedra 
units that are corner connected to form an open tunnel of 4.6 by 4.6Ao size. Potassium ions are situated inside the 

tunnels to provide charge balance and to stabilize the structure (chemical composition = KMn8O16.nH2O). The 

diameters of the tunnel cross sections are in the range of that typical for zeolite pores. Due to its porous structure, 

hydrophobic nature, easy release of lattice oxygen, acidic sites and mixed valence of manganese species, 

cryptomelane has been extensively explored for potential applications such as molecular sieves, a low cost-

efficient, and environmentally friendly catalysts. It has gained a good reputation in redox catalysis alternative to 
the conventional catalysts such as supported noble metals (Suib, 2008). Several different morphologies have 

been synthesized ranging from micrometer long fibers to nano-rod sand paper like materials (Peluso et al., 2008), 

Different methods have been reported for preparing K-OMS-2 depending on refluxing a mixture of potassium 

permanganate and manganese sulfate in an acidic medium (Villegas et al., 2005, Portehault et al., 2009, Zhu et 

al., 2012, Sun et al., 2013, Dharmarathna et al., 2014) . Sithambaramaet et al., (2010)  prepared K-OMS-2 by the 

reflux method and investigated their activity for hydrogen generation via the water-gas shift reaction.  
Sun et al., (2011)  prepared K-OMS-2 materials (by a solid-state and reflux methods) to study the 

catalytic oxidation of toluene. The results established that K-OMS-2 prepared by the refluxing method exhibited 

higher catalytic activity than that by the solid-state reaction method. It was apparent that the high catalytic 

activity of the prepared K-OMS-2 by the refluxing method is attributed to the more available lattice oxygen and 

the higher oxygen mobility.  
Tian et al., (2011) prepared porous manganese oxide K-OMS-2 nano-materials by a simple low-

temperature in neutral medium method.  

Deng et al., (2014) prepared (K-OMS-2) of rod-like, fibrous-like, and nest-like morphologies by solid-

state reaction, reflux and hydrothermal methods, respectively. The materials were characterized and tested for 

liquid-phase oxidation of p-chlorotoluene to p-chlorobenzaldehyde. Over nest-like K-OMS-2, p-chlorotoluene 

conversion was significantly higher than that of the others.  
In the current work, low cost K-OMS-2 materials were prepared via reflux (acidic), and reduction 

(neutral medium) methods.  The diversity of the properties of the obtained materials depending on the 

preparation medium that including morphologies, crystallite size and lattice oxygen were investigated. In 

addition, the catalytic activity of the prepared cryptomelane samples was studied towards the oxidation reaction 

of cyclohexane under the experimental variable conditions.  
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2. Experimental 

2.1. Preparation of K-OMS-2  

2.1.1. Reflux Method “acidic medium” 

K-OMS-2 was prepared through the oxidation of manganese sulfate by potassium permanganate in an acidic 

medium under reflux according to the procedure described by DeGuzman et al., (1994) A solution of 0.4M 

potassium permanganate (13.3 g)  was dissolved in 225 ml of distilled water at room temperature, 6.7 ml of 

nitric acid (65 wt.%) was also added to adjust pH value “3.5”.  This solution was added to a second one 

consisting of 19.8g MnSO4.H2O (1.75 M) dissolved in 67.5 ml of distilled water (under continuous stirring). The 
resulting solution was transferred to a 500 ml round-bottomed flask fitted with a reflux condenser, stirred 

vigorously and refluxed at a temperature of 100 oC for 24 h.  The formed dark brown precipitate is filtered, 

washed until pH= 7 and then dried at 120 oC overnight. The prepared sample is denoted as K-OMS-2RS. 

2.1.2. Reduction Method “Neutral Medium”  

K-OMS-2 was prepared in neutral medium at room temperature, as described by Tian et al., (2014). 0.364 g (1 

mmol) cetyltrimethylammonium bromide (CTAB) and 1.622 g (15 mmol) benzyl alcohol (reducing agent) were 
dissolved in 100 ml of distilled water under stirring, and then a solution of 1.580 g, KMnO4  (1.0 M) dissolved in 

100 ml distilled water, was added to this mixture. The reaction proceeded with the appearance of a brown 

precipitate within a few minutes. After a reaction time of 16 hours, the precipitate was filtrated, washed several 

times with distilled water and alcohol, and dried overnight at 60 oC. The product was then calcined at 550 oC for 

6 hours to get rid of the surfactant. The prepared sample is denoted as K-OMS-2N. 

 

2.2. Structural Phase Changes 

Different techniques were applied to investigate the physico-chemical characteristics of the prepared K-OMS-2 

materials. 

2.2.1. X-ray Powder Diffraction Analysis (XRD) 

The structure and phase purity of the prepared materials were analyzed via X-ray diffraction (XRD). The 
experiments were carried out using a Shimadzu XD-1 diffractometer using Cu Kα radiation (λ = 0.1542 nm) at a 

beam voltage of 40 kV and 40 mA beam current. The intensity data were collected at 25oC in a 2θ range of 10-

70owith a scan rate of 0.7◦s−1. The Joint Committee on Powder Diffraction Society (JCPDS) database was used to 

index the peaks of XRD.  

Average Crystallite Size was calculated from X-ray line broadening using Sherrer,s  equation at 2θ = 37.8o 

characterized the prepared materials. 

2.2.2. Fourier Transformer Infra-Red Spectroscopy 

Fourier transform infrared (FTIR) spectroscopy experiments were performed on a spectrometer Perkin-Elmer –

Spectrum-1 in the range of 4000–400 cm-1 at a resolution of 4 cm-1. The samples were grounded to fine powder 

and dispersed in KBr to compress into pellets before measurement. 

2.2.3. Raman spectroscopy 

Raman spectra were recorded at room temperature in the range of 100–1000 cm-1 with a HR – UV 800 Confocal 
Scanning Spectrometer (Horiba JobinYvon), equipped with a Peltier –cooled charge coupled device (1152x 298 

pixels), the spectral resolution was 0.5cm−1. The Raman scattering was excited using a 632.81 nm excitation 

wavelength supplied by an internal He–Ne laser through an Olympus high-stability BXFM confocal Microscope. 

2.2.4. Thermal Analysis 

Differential thermal (DTA) and thermogravimetric (TG) analyses were performed to study the structural changes 
of the prepared materials with thermal treatment. 10 mg of sample was heated up to 1100 OC, with a heating rate 

of 10oC min-1 in airflow at a rate of 50 ml min-1 on SDTQ-600 (TA-USA) thermo balance instrument.  

2.2.5. High resolution transmission electron microscopy (HRTEM) 

The morphologies of the prepared materials were studied using high-resolution transmission electron microscopy. 

HRTEM images of the materials were obtained in JEOL JEM-2100F microscope operating at voltage of 200 kV. 

The samples were prepared by dispersing in ethanol and sonicated for 20 min. The suspension was then dropped 
on a carbon coated copper grid for TEM observations. 

2.2.6. Temperature Programmed Reduction (TPR) 

Temperature programmed reduction experiment were carried out to investigate the redox properties (the ease of 

reducibility of metal oxide) for the studied materials. The experiments were performed in automatic equipment 

(Chembet 3000, Quantachrome). Typically 100mg of calcined material was loaded into a quartz reactor and 

heated under inert atmosphere (20ml/min N2) at 200oC for 3 hours prior to running TPR experiments, and the 
cooled down to room temperature in N2. Then the sample was submitted to a constant rate of heat treatment 

(10oC/min up to 1000oC) in a gas flow (mixture H2/N2, 5/95 vol%, reducing gas) 80ml/min. A thermal 

conductivity detector (TCD) was employed to mintor the amount of hydrogen consumption. 

2.2.7. N2 Adsorption- Desorption Isotherms 

Surface area and pore structure characteristics of the prepared cryptomelane samples as the specific surface area 
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(SBET), total pore volume (Vp) and average pore diameter (dp Ao) were measured from N2 adsorption-desorption 

isotherms at liquid nitrogen temperature (-198oC) using Quanta chrome Nova 3200 S automates gas sorption 
apparatus. Prior to such measurements, all samples were perfectly degassed at 200oC for 12hr. and under vacuum 

pressure 1.3x 103 Pa. 

 

2.3. Catalytic activity 

The gas phase oxidation of cyclohexane was carried out in a fixed bed vertical downward flow glass reactor 

(internal diameter 6 mm), operated under atmospheric pressure. About 2ml of the pretreated catalyst was placed 
at the hot zone of the reactor supported on either side with a thin layer of quartz wool and ceramic beads. The 

reaction temperature was monitored by a thermocouple placed in the middle of the catalyst bed. The catalyst was 

activated at 250 ◦C for 2 h before reaction in a controlled stream of air as a carrier gas with flow rate of 50 ml 

min-1. The cyclohexane reactant was fed into the reactor with the required flow rate (3ml/hr.) using a syringe 

infusion pump. The collected products in the receiver flask, were analyzed in a gas chromatograph (Shimadzu 

17A) equipped with a DB-5 capillary column (30 m × 0.25 mm × 0.25 mm) and a flame ionization detector.  

 

3. Results and Discussions 

3.1. X-ray Diffraction Analysis (XRD) 

A- Cryptomelane K-OMS-2RS prepared sample 

X-ray diffraction pattern for K-OMS-2RS is depicted in Fig.(1-a). The pattern reveals the appearance of 

diffraction peaks at 2θ=12.8°, 18.5°, 28.9°, 37.5°, 42° and 50°, these peaks are consistent with those of the 
standard cryptomelane (K-OMS-2) material with tetragonal symmetry corresponding to KMn8O16, (JCPDS 29-

1020), which emphasized that the resulting material is a pure mono-phasic cryptomelane structure.   

The average Crystallite Size was calculated from X-ray line broadening using Sherrer,s  equation at 2θ = 37.5o 

and it is found to be 26.6 nm. 

 

B- Cryptomelane K-OMS-2N prepared samples 
X-ray diffraction pattern (Fig.1-b&c) for K-OMS-2N represents broad low intense peaks assigned at 2θ=18.5°, 

28.9° and 37.2o which are characterized for the formation of cryptomelane material.    

It was proposed that benzyl alcohol might be inserted between the molecules of CTAB surfactant 

Durmus et al., (2010), and contributed in the formation of K-OMS-2 material that caps their characteristic lines. 

Accordingly, the interaction between the (CH3)3–N+ hydrophill group of CTAB and the oxygen atoms of the 
formed OMS, cause the pseudo-disappearance of the most of OMS-2 characteristic lines. 

Upon calcination, the XRD pattern reflects the appearance of sharp and high intense diffraction lines.  

The destruction of CTAB upon thermal treatment allows the diffraction lines characterized the cryptomelane 

material to appear at 2θ=12.8°, 18.5°, 28.9°, 37.5°, 42° and 50°. The cryptomelane phase constructed by CTAB 

shows an increase in diffraction line intensities compared to that prepared by the other method.  

In fact, CTAB interacts with the reactant molecules and affects their packing and degree of ordering, 
with the different degrees of the preferred growth orientation along the c-axis as indicating from the high 

crystallinity of the resulting material. Thus, the produced material is a pure cryptomelane-type crystalline phase.  

The crystallite size was found to be 38.74 nm.  Due to the templating effect of CTAB, the primary 

manganese oxide crystallites is easy to agglomerate owing to its high surface energy which resulting in large 

crystallite size, in parallel with the sharpness of XRD lines.    
 

3.2. Fourier Transformer Infrared 

A- Cryptomelane K-OMS-2RS prepared sample 

The FT-IR spectrum for the prepared material via reflux technique is depicted in Fig. (2-a). The spectrum detects 

several bands at 475, 528, 713, 1618 & 3419 cm-1 .These bands are ascribed to the vibrations of the MnO6 

octahedral framework present a clear signature of cryptomelane structure (Gac, 2007). The vibration band 
located at 475 cm-1, can be attributed to the vibration of the manganese species (Mn3+) in the octahedral sites. 

The bands detected at 523 and 713 cm-1 are assigned to the vibration due to the displacement of the oxygen 

anions relative to the manganese ions along the direction of the octahedral chains, and the stretching mode of 

MnO6 octahedra along the double-chain, respectively. The band appeared at 1120 cm-1 is attributed to Mn–O–H 

structural vibrations (Julien etal., 2004).  

Meanwhile, the broad band detected at ~3419 cm-1 is assigned to the stretching vibration of the water 
molecule and OH− in the lattice of cryptomelane material, and that at 1618 cm-1 is assigned to the bending 

vibration of water molecules in the tunnels and hydrogen bounded OH-groups, which implies that the hydroxyl 

groups exist in the prepared material.  

 



Chemistry and Materials Research                                                                                                                                                    www.iiste.org 

ISSN 2224- 3224 (Print) ISSN 2225- 0956 (Online) 

Vol.6 No.12, 2014 

 

30 

B- Cryptomelane K-OMS-2N prepared sample 
FT-IR spectrum for the prepared K-OMS-2N material (Fig.2-b) displayed bands around 450, 510, 600, 710, 963, 
1383 and 3365 cm-1 that are characteristic for cryptomelane material. 

The band assigned at 1531cm-1 corresponds to the C= C stretching vibration in the aromatic benzene 

ring. The intense bands located at 2850 and 2914 cm-1 are assigned to the symmetric and asymmetric stretching 

modes of the –CH2 group of the CTAB surfactant. The symmetric and asymmetric scissoring vibrations of 

(CH3)3–N+ group of CTAB are assigned at 1510 cm-1. The single band located at 930 cm-1 may be assigned to 

the (C–N+) stretching mode of CTAB (Durmus et al., 2010).  
The absence of the vibration band characteristic to benzyl alcohol at 3620 cm-1 established that there is 

an interaction between the oxygen atoms of the Ph-CH2-O-H  and the –CH2 groups belonging to the CTAB 

surfactant(C–H· · · O), which then combines with the hydrophilic head of CTAB and contributes in the formation 

of K-OMS-2,in agreement with XRD results. 

After thermal treatment, the vibration bands corresponding to the surfactant molecules were 

disappeared (Fig.2-c), indicating that all organic groups were destructed via calcination process. On the other 
hand, the IR spectrum clarified the vibrational bands characterize to the cryptomelane material (535, 600, 712, 

1627 & 3466 cm-1).  

More pronounced increase of % Transmittance for the  band  appeared at ~ 3400 cm-1 which is related 

to the increase in the amount of hydroxyl groups or tunnel water species for the prepared materials, it increases 

from sulfate> neutral.  

 

3.3. Raman spectroscopy 

A- Cryptomelane K-OMS-2RS prepared sample 

Raman spectroscopy for the prepared material K-OMS-2RS (Fig.2-a) reveals the appearance of Raman signals 

centered at 142, 250, 360, 544 and 607 cm-1
. Peak detected at 544 cm-1 is assigned to the vibration that due to the 

displacement of the oxygen anion (relative to the manganese ion) along the direction of the octahedral chains, 
whereas the vibration frequency at 607 cm-1 is assigned to Mn-O stretching mode in tetrahedral sites 

environment, as confirmed by FT-IR. Meanwhile, the signal at 142, 250& 360 cm-1 are due to the Mn–O–Mn 

bending vibration in the MnO2 octahedral lattice (Kim, Stair, 2004). From Mn–O stretching range, the two sharp, 

high-frequency Raman bands at 544 &607 cm-1are indicative of a well-developed tetragonal structure with an 

interstitial space consisting of (2×2) tunnels of cryptomelane material ( Julienet al., 2004, Gao et al., 2008). 

 

B- Cryptomelane K-OMS-2N prepared sample 

Raman spectra for the prepared K-OMS-2N material and the calcined one are represented in Fig (2-b&c). The 

spectrum for the prepared material reveals the appearance of two bands at 571 &636 cm-1 which are assigned to 

the Mn–O stretching of MnO6 octahedra that confirm the formation of cryptomelane material. The disappearance 

of the low frequency bands characterize cryptomelane material may be result from the inter-chelation of CTAB 

within the formed material, in agreement with XRD results. 
Upon calcination Raman spectrum reveals the appearance of low and high frequency signals at, 149, 345, 470, 

578 & 627 cm-1  with a low intensity. These signals are characteristics for the formation of cryptomelane 

material. 

 

3.4. Differential and Gravimetric Thermal Analysis (DTA& TGA) 

A- Cryptomelane K-OMS-2RS prepared sample 

Differential and Gravimetric thermal analysis profiles for the sample K-OMS-2RS is represented in Fig. (3-a). 

DTA profile displayed one exothermic peak at 190oC, and three endothermic peaks located at 569, 849 and 967 
oC “centered at 202, 555, 855 & 969 oC, as confirmed from the dDTA profile". The exothermic peak may be 

corresponded to the formation of crystalline phase, i.e. the over oxidation of sulfate anion which may still 

present on the surface of the prepared material. Meanwhile, the endothermic peak at 569 oC is an indication for 
the desorption of water inside the (2x2) tunnels, as stated by Suib (2008). The second and third endothermic 

peaks are corresponding to the phase transformation of MnO2 into Mn2O3 and Mn2O3 into Mn3O4, respectively.  

The previous thermal effects are accompanied by steps of weight losses. TG profile (Fig.3-a) demonstrates that 

5% weight losses at the temperature range 50-250, could be due to the depletion of the physically and 

chemisorbed  water molecules either on the surface and or on the channel structure (Hndel etal., 2013).   With 

the increase in the temperature to 750°C the weight loss increases to  6.6% which is due to the release of the 
water molecules inside the tunnels, besides the desorption of the structural oxygen that closed to the 

surface(related with the formation of lattice vacancies without decomposition of the material).  The weight losses 

“~ 1 at the temperature range 750◦C - 950 ◦C and 2.6% at the temperature up to 950 ◦C” imply the 

transformation of cryptomelane to bixbyite (Mn2O3) and then to Hausmannite (Mn3O4) species (Cheng et al., 

2011), with total weight loss 15.44%. Thus, there are plenty of lattice oxygen species in the produced OMS-2RS 
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material, which become more easy to mobile upon thermal treatment (in agreement with the Raman 

spectroscopic results). 
 

B- Cryptomelane K-OMS-2N prepared sample 
Differential thermal analysis for K-OMS-2N material is displayed in Fig. (3-b) and reflects the appearance of 

three exothermic and one endothermic peaks. The three exothermic peaks are appeared at 186, 212 &490oC 

"centered at 185, 225& 485oC, as confirmed from the d (DTA) profile" are related to the release of weakly 

adsorbed water molecules and to the removal of the organic entities of CTAB surfactant. The thermal 
degradation of the pure CTAB is separately recorded, showing endothermic peaks started from 200 to 500oC. In 

agreement with, Tian et al., (2014) who stated that the degradation of CTAB is completely occurred at 500oC.  

The endothermic peak detected at 880oC is related to the decomposition of cryptomelane to Mn2O3 species. 

The absence of the endothermic peak at 600 oC characterize the labiality of lattice oxygen  

demonstrates a progress in their thermal stability given by CTAB which act as an occupator reinforce toughen 

the oxygen-Mn linkage, and reflect the maintenance of the attached water or the hydroxyl group in the 
cryptomelane tunnel structure (in agreement with FT-IR results). 

TG profile for K-OMS-2N material (Fig. 3-b) shows weight loss steps: at temperature range 50- 280oC 

(47.89%) that related to the decomposition of CTAB moieties. The step in the temperature range 480-800oC is 

due to  the desorption of structural oxygen close to the surface,  this step is accompanied by slight weight gain 

0.75% which implies the stability of the formed material and the restriction of lattice oxygen for desorption. The 

weight loss at 840-920 oC (1.93%) is due to the decomposition of cryptomelane to Mn2O3 species, in parallel 
with the results of differential thermal behavior.  

 

3.5. Transmission Electron Microscopy (TEM) 

A- Cryptomelane K-OMS-2RS prepared sample 

TEM image for nano sized -particles K-OMS-2RS material shows agglomerated or clusters of disorderly stacked 
rod-like crystals with an average diameter 9 nm (Fig.4). In addition, It is evident that the degree of dispersion for 

the prepared cryptomelane particles is high, in agreement with Walanda et al., study (2005). 

 

B- Cryptomelane K-OMS-2N prepared sample 
TEM image for uncalcined K-OMS-2N, Fig.5-a) detects large particles of CTAB around the formed 

cryptomelane rods which seemed to grow with a short length, (in agreement with XRD and Raman spectroscopy 
results). 

For the calcined material at 200oC, the image (Fig.5-b) shows that the cryptomelane rod structure started to be 

lengthening once the CTAB molecules contracted in their size, upon the gradual decomposition up to 200oC. 

After calcination, at 500oC the TEM image (Fig.5-c) shows plates like structures of larger and longer 

particles (32.5 nm.). As well known, the benzyl alcohol contributes in the reaction solubilized in the interfacial 

region of the formed cryptomelane aggregates, which promotes the rod micelles to be larger and longer. 
The discrepancy in the crystallite diameter data (26.6 - 38.74 nm) confirmed by the x-ray diffraction analysis 

with that by TEM (9- 32.5 nm.) is due to the agglomeration among the primary particles. 

 

3.6. H2-Temperature Programmed Reduction  

A- Cryptomelane K-OMS-2RS prepared sample 

H2-TPR profile for OMS-2RS (Fig. 6-a) detects four reduction peaks, two strong peaks at 383, 403oC and the 

other are broad weak at 450, 650oC, according to the postulated studies these peaks are related to the successive 

reduction steps as follow: 

- MnO2 → Mn2O3 

- Mn2O3 → Mn3O4 

- Mn3O4 → MnO 
- MnO → Mn0 

As well known, the Mn-O bonds of K-OMS-2 are relatively weaker and the Mn species in OMS-2 can 

be reduced more easily at reduction temperature below 500oC.  

Besides, due to the bigger negative reduction potential of MnO, no reduction band assignable to the 

MnO→ Mn0 process was observed even up to 750 ◦C. Therefore, the weak reduction peak observed at 650oC 

may be related to the reduction of K2SO4 which may be still inter-chelated in the cryptomelane structure. 
Therefore, it is reasonably deduced that MnO was the final state of cryptomelane -MnO2 reduction. The 

hydrogen consumption was 5.4. 

 

B- Cryptomelane K-OMS-2N prepared sample 
H2-TPR for the material prepared via neutral technique (Fig.6-b) detected two reduction peaks at 372 &419oC, 
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these are overlapped peaks corresponding to two-steps reduction process. Assuming that MnO is the final state in 

the reduction of OMS-2, this reduction peaks indicates that the MnO2 was probably reduced to Mn2O3 then 
Mn2O3/ Mn3O4 to MnO, with hydrogen consumed 2.4 which is lower than that for K-OMS-2RS and implies  the 

reducibility and reactivity of Mn-O bond is lower, in agreement with the previous results. 

 

3.7. Nitrogen adsorption - desorption Isotherms and Porosity Analysis 

The nitrogen adsorption - desorption isotherms of K-OMS-2RS and K-OMS-2N are shown in Figs. (7-a).  The 

texture properties: surface area (SBET), total pore volume (Vp) and average pore diameter, were complied in 
Table (1).  

The pore size distribution for the samples have obtained from the desorption branch following the 

Barrette Joynere Halenda (BJH) procedure illustrated in the form of dV/dD vs. average pore diameter (D, nm) in 

Fig. (7-  b).  

The nitrogen adsorption–desorption isotherms (Fig. 7- a) for the two prepared samples show that the 

adsorption isotherms are related to type II according to Brunauer et al., classification (Brunauer et al., 1940) and 
are characteristic for cryptomelane  materials in accordance with Malinger et al. (2006). The isotherms of the 

samples exhibits H3 type hysteresis loop according to IUPAC classification (Gregg and  Sing, 1982). The type 

indicates the presence of the aggregation of plate-like nano-particles giving rise to slit-shaped pores, due to the 

inter-particle voids of the aggregated K-OMS-2 nano-rods, in agreement with the TEM data.  

 

A - Cryptomelane K-OMS-2RS prepared sample 
Data in Table (1) represents that K-OMS-2RS has high surface area 96.0 m2/g, which reflect the predominate of 

narrow pores.  According to TEM image, the agglomeration of the nano-fibers bunches showing meso-pores 

between the fibers which responsible for the high surface area. In spite, the high surface area value, the average 

pore diameter is shown to be of a high value 12.0 nm. This reflects the diffusion of the strong acidic sulfate 

species (large polar species) towards the narrow meso-pores, which may cause the opening up of some narrow 
regions to furnish a measurable area and expanded the pores. Upon removing the sulphate species, it leaves 

behinds pores with relatively large diameter. 

Pore size distribution curve for K-OMS-2RS (Fig, 7-b) behaves a bi-modal contribution, the first one 

with a mean pore diameter ranging between (1.7- 4.3 nm.) and centered at ~ 3 nm with abundant 0.002, and the 

second broad one (4.3- 29.23 nm.) centered at ~ 12.0 nm with more abundant 0.0028  which demonstrates the 

presence of heterogeneous meso-pores structure. 
  

B- Cryptomelane K-OMS-2N prepared sample 
The surface area for K-OMS-2N stridently decreased, it decreases to 14m2/g compared to K-OMS-2RS. This 

decrement may be   resulting from the aggregation of the primary manganese oxide crystallites via temlpating 

effect of CTAB.  The large crystallites cause tightening and thinning of the meso- pores and a decrease in the 

extent of surface area and total pore volume (0.04 cc/g), in consistent with the large crystallite size and TEM 
images. The average pore diameter, was 2.0 nm, this implies the generation of narrow meso-pores in the spaces 

between the formed large crystallites. 

The pore size distribution for K-OMS-2N (Fig.7-b) exhibits meso-pores with two main different most 

probable diameters at 2 and 5 nm. This pores show a relatively narrow pore size distribution indicating a uniform 

mesopore diameter with abundant 0.0005, and 0.002 respectively. The nature of interaction between templates 
and manganese reactant controls the folding of templating agent, which forms the ordered narrow meso-phase 

during preparation. 

 

3.2. Catalytic Activity  
The gas phase oxidation reaction of cyclohexane was taken as a model reaction to investigate the catalytic 

activity of the prepared nano-structured K-OMS-2RS (9 nm.) & K-OMS-2N (32.5 nm) cryptomelane samples. 
The catalytic oxidation of cyclohexane is performed in a flow type system operating under atmospheric pressure 

and at the reaction temperature varying between 300- 400oC, cyclohexane flow rate 3ml/hr,  liquid hourly space 

velocity 1.5h-1 and with air flow rate of 50 ml/min. The results are graphically illustrated in Figs. (8-11). 

Figure (8-a) clarifies the increase in the catalytic activity of the two prepared K-OMS-2 cryptomelane 

samples, with the increase in the reaction temperature, in agreement with the results of our previous work which 

demonstrated the dehydrogenation of cyclohexane using molybdenum supported mixed oxide catalysts at 
reaction temperature ranged from 250-550oC (Riad and Mikhail, 2008) . 

 K-OMS-2N cryptomelane sample shows a sharp increase in its activity as the reaction temperature 

increases in the range from 300 to 400oC (the conversion increases from 27 to 95% successively). While K-

OMS-2RS sample shows lower activity with respect to the other sample (Histogram in Fig. 8-b), whereas it 

increases as the reaction temperature range from 300- 400 (the conversion increases from 30 to 79% 
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successively). 

The converted products are mainly composed of oxygenated compounds, dehydrogenated compounds, 
alkylated aromatic compounds “liquid product” and gasses that include hydrocarbon gasses (C1-C4) and CO2. 

The converted products by increasing the reaction temperature over the prepared samples follow 

almost the same trend described above, i.e. the liquid and gasses products show a gradual increase with the 

increase in reaction temperature (Fig. 8-a). 

From the relation between the reaction temperature and the distribution of the converted liquid 

products for K-OMS-2N sample, (Fig. 9), it can be observed that cyclohexene increases with the increase in the 
reaction temperature up to 375oC and then decreases with further increase in reaction temperature to  400oC 

which goes parallel with the increase in the formation of benzene and the alkylated aromatic compounds. The 

methanol and cyclohexanol show a gradual increase with the increase in reaction temperature up to 375oC, 

meanwhile, the cyclohexanone product is found to increase gradually with the continuous increase in the 

reaction temperature.  

For K-OMS-2RS sample, the relation between the reaction temperature and the distribution of the 
liquid converted product in Figure (9), reveals that the cyclohexene product increases with the increase in 

reaction temperature up to 350oC. After that, it is sharply decreases (from 35% to 20% at reaction temperature up 

400oC) which is in parallel with the sharp increase in the alkylated aromatics products upon increasing the 

reaction temperature (from 12% at 350oC to 29% at 400oC). 

The production of cyclohexanol and cyclohexanone has the same behavior with respect to K-OMS-2N 

sample.  
In other words, the cyclohexanone product gradually increases with the increase in reaction 

temperature and the cyclohexanol shows a maximum at reaction temperature 375oC.  

Concurrently, from the relation between the reaction temperatures and the selectivity of the K-OMS-2 

cryptomelane samples (Fig. 10) towards the formation of KA-oil (the catalytic oxidation of cyclohexane to 

cyclohexanone “K” and cyclohexanol “A” known as K-A oil). it is obvious that the formation of K-A oil 
gradually increases with the increase in reaction temperature up to 375oC for both samples, and K-OMS-2N 

sample has highest catalytic activity (28%) with respect to K-OMS-2RS sample (19.5%). In agreement with the 

results obtained by Zhou et al., (2014) who investigated the cyclohexane oxidation using molecular oxygen as 

oxidant on Gold nanoparticles (Au@TiO2/MCM-41) and achieving  a  9.87% conversion of cyclohexane, with 

selectivity 33.9 and 34.2% towards the formation of K and A respectively. 

On the other hand for both samples, there is a little CO2 produced at reaction temperature lowered than 
350oC , with increasing the reaction temperature, the CO2 yield rises sharply to ~ 30% at 350oC and then to 50% 

of the total produced gaseous products. 

From the relation between the reaction temperature and the selectivity of the prepared cryptomelane 

samples towards the converted products, it can be observed that the selectivity towards the formation of the de-

hydrogenated products (mainly cyclohexene for K-OMS-2RS) decreases with the increase in reaction 

temperature, which goes parallel with the gradual increase in the selectivity towards alkylated aromatic products 
(Fig. 11). Meanwhile the selectivity towards the oxygenated products increases with the increase in reaction 

temperature (Histogram in Fig. 11). 

The variation in the catalytic activity of the prepared samples towards the cyclohexane conversion may 

be owing to the following: 

The prepared OMS-2RS has:  
         -  a small crystallite size, high exposed surface area, high costituential water, high polarity and high 

adsorbed and dissociated molecular oxygen. 

-  high lattice oxygen close to the surface which increase the formation of lattice vacancies, increases 

unbalanced charges and lattice distortion occur on its surface, implies an increase of the electron 

density around Mn atoms, which result in an easy desorption of cyclohexene from the catalyst surface, 

and  

-   bi-modal pore size with diameter at 3, 12 nm. which may restricted, hindered and delaying the 

obtained products leads to an observed decrease in the total conversion,……… and 

 The prepared OMS-2N has: 

- a large crystallite size, narrow pore size distribution with diameter, 2 & 5 nm, the reaction is mostly 

occurred on the surface, and 

 - low costituential water, low polarity   decrease of the electron density around Mn atoms, which result in 
constrict of the formed cyclohexene to complete the dehydrogenation route to benzene and alkylated 

benzene and consequently an increase in the total conversion is obtained. 

 

4. Reaction Mechanism 

According to the constituent of the converted products either liquid or gaseous that resulted from cyclohexane 
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conversion over the studied cryptomelane samples it may be assumed that the catalytic conversion of 

cyclohexane was accompanied by various reactions like dehydrogenation, oxidation, alkylation, 
disproportionation and cracking reactions. 

The dehydrogenation reaction is preceded by the Mars–van Krevelen reaction mechanism (Gracia et 

al., 2009), in which adsorbed cyclohexane reacts with lattice oxygen and the reduced metal oxide reacts with 

adsorbed, dissociated oxygen. Oxidative dehydrogenation mechanism is discussed as followed: gaseous oxygen 

participates in the reaction only after adsorption in other parts of the catalyst and then migrates through the 

lattice to the active sites by the reoxidation between Mn3+ and Mn4+.  Mn4+-O is responsible for providing the 
center of oxidation for the adsorbed alkyl species, which contributes to a high conversion of cyclohexane and a 

high selectivity to COx, whereas Mn3+ -O is responsible for activating cyclohexane and adsorbing oxygen, which 

attributes a high selectivity to cyclohexene.  

Besides, the facility of oxygen dissociation in metal-based catalyst by transferring an electron to metal 

center, which is then back-donated to the antibonding orbital of the oxygen molecule.  

The adsorbed cyclohexene is still subjected to two postulated ways depending on the available lattice 
oxygen: 

- The intermediate formation of an alcohol by the addition of atomic oxygen to the cyclohexene. The 

alcohol may be either directly oxidized to an aldehyde or ketone, or dehydrated to cyclohexene, which, in turn, is 

oxidized at the double bond into an aldehyde or a ketone. 

- the facile removal of subsequent hydrogen from cyclohexene to give adsorbed cyclohexadiene then 

adsorbed benzene which may be desorbed or converted to alkylated benzene:  toluene, xylene, and tri-methyl 
benzene. 

 

Conclusion  

Nano-structured cryptomelane material (octahedral molecular sieve manganese oxide) with average crystallite 

size (9- 32nm.) are prepared either via reflux of Mn+7andMn+2(sulphate anion) in acidic medium, and or reducing 
of Mn+7 with benzyl in neutral medium in presence of CTAB as template.  

From the study of the structural characterization and the morphology of the prepared cryptomelane samples, it 

may be concluded that: 

- The prepared samples are mainly pure cryptomelane one. 

- The sample prepared via reflux technique (K-OMS-2RS) has a lowest crystallite size (26.6 nm), meanwhile the 

crystallite size for the prepared sample via reduction technique (K-OMS-2N) is 38.6 nm (XRD analysis).  
- The prepared cryptomelane samples have tetragonal structure with an interstitial space consisting of (2×2) 

tunnels.  OMS-2N has the lowest tunnel water and most distorted tunnel structure “FT-IR and Raman 

spectroscopy”. 

- K-OMS-2N sample is the most stable compared to K-OMS-2RS one “TGA” 

- The two prepared samples are formed in the nano-scale range 8 & 32.5 nm for K-OMS-2RSand K-OMS-2N, 

respectively “TEM”. 
- From the study of the catalytic activity of the prepared nano-sized cryptomelane    K-OMS-2RS  &  K-OMS-

2N samples toward the oxidation reaction of cyclohexane, it was found that: 

• The two prepared samples exhibit high catalytic activity towards the oxidative- dehydrogenation  of 

cyclohexane at the reaction temperature range (350-400oC). 

• The two prepared samples have high selectivity towards the formation of cyclohexene at lower reaction 
temperature 300oC which decreases with the increase in reaction temperature which goes parallel with the 

gradual increase in the selectivity towards the alkylated aromatic products. 

In addition, the prepared nano-structured K-OMS-2N cryptomelane catalyst offers an attractive solution for the 

production of K-A oil from the oxidative reaction of cyclohexane.    
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Table1. The textural properties of the K-OMS-2N and K-OMS-2RS prepared samples. 

Sample name 
Crystallite size 

SBET (m2/g) T.Vp(cc/g) Dp(nm) 
XRD TEM 

K-OMS-2N 38.7 32.5 14 0.04 2 

K-OMS-2RS 26.6 9 96 0.3 12 

 

 

 

 
Fig.1. X-ray diffraction patterns of (a) K-OMS-2RS (b) prepared K-OMS-2N & 

(c) calcined K-OMS-2N samples. 
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Fig.2. FT-IR and Raman Spect. Of (a) K-OMS-2RS (b) prepared K-OMS-2N& (c) calcined K-OMS-2N samples. 
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Fig.3. Differential and gravimetric thermal profiles of (a) K-OMS-2RS & (b) K-OMS-2Nsamples. 

 

 
 

Fig.4. TEM image of K-OMS-2RS sample 
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Fig.5. TEM images of K-OMS-2N (a)un calcined (b) calcined at 200 

o
C& (c) calcined at 600 

o
C samples. 

 

 
Fig.6. TPR profiles of (a) K-OMS-2RS & (b) K-OMS-2N samples 
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Fig.7. (A) Nitrogen adsorption –desorption isotherms& 

(B)Pore size distribution patterns of K-OMS-2RS & K-OMS-2N samples.  

 

 
Fig.8. Effect of reaction temperatures on cyclohexane conversion and converted products over K-OMS-RS 

Samples. 
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Fig.9. Distribution of the converted products over OMS-2N and OMS-2RS samples at different Reaction 

temperatures.   

 
Fig.10. effect of reaction temperatures on selectivity of K-A oil over K-OMS-2N and 

 
Fig.11. Effect of reaction temperatures on the selectivity of the converted products over OMS-2N and OMS-2RS 

samples. 
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