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Abstract. In this investigation a new trigonometric shearodefation plate theory involving only four
unknown functions, as against five functions inecakother shear deformation theories, The theoeggnted
is variationally consistent, does not require stamarection factor, and gives rise to transverseaslistress
variation such that the transverse shear stresgggsparabolically across the thickness satisfyingas stress
free surface conditions. Governing equations amived from the virtual work principle. The closeokin
solution of a simply supported rectangular platejetted to in-plane loading has been obtained iygube
Navier method. The effectiveness of the theories bimught out through illustrative examples.

1 Introduction satisfy the zero traction boundary conditions oa thp
and bottom faces of the plate, and need to usattbar
Composite materials have many advantages overcorrection factor to satisfy the constitutive rielas for
conventional materials such as steel and concmete itransverse shear stresses and shear strains. &se th
structural performance with their superior strerigth ~ reasons, many higher-order theories have beenajeac|
weight ratios as well as stiffness-to-weight ratisr this ~ to improve in FSDT such as Levinson [7] and Reddy [8].
reason, composite materials, especially in the fofm Indeed, Reddy [8] put forward a parabolic shear
laminated composite plates, are becoming increbsing deformation theory (PSDT) which considers not dhly
used in many structural applications for civil transverse shear strains, but also their parabaliation
infrastructure systems. Therefore, it requires doett across the plate thickness. Recently, Tounsi asdcts
understanding of their structural behaviour andufai ~ Workers [9, 10] developed a new simple higher order
conditions for safer and more economical design. theories involving only four unknown functions, as
One of the main failure mechanisms in laminated @gainst five functions in case of Reissner’s anddiin’s
composite plates is buckling. As in the case of anytheories. The accuracy of this theory has been
isotropic homogeneous plates, the presence ofdnepl demonstrated for static bending of plates by Meraac
loadings may cause buckling in orthotropic lamidate al- [9] and Ameur et al. [10], therefore, it seetosbe
plates. The laminates, unlike plates made of caiiwead ~ important to extend this theory to the static bingkl
materials, are inherently anisotropic and inhomeges, behaviour of plate.
thereby making their buckling deformations more In this paper, the new trigonometric shear defoionat
complicated. Thus the accurate knowledge of ciitica Plate theory developed by El meiche et al. [9] Angeur
buckling loads is essential for reliable and lighignt €t al. [10] has been extended to the buckling biebawof
structural design. Many exact solutions for isoitognd ~ ©Orthotropic plate subjected to the in-plane loadidging
orthotropic plates have been developed, most o tten the Navier method, the closed-form solutions hagenb
be found in Timoshenko and Woinowsky-Krieger [1], obtained.Numerical examples involving side-to-tiegs
Timoshenko and Gere [2], Bank and Jin [3], and Kang ratio and modulus ratio are presented to illustitie
and Leissa [4]. In company with studies of buckling accuracy of the present theory in predicting thécat
behaviour of plate, many plate theories have beenbuckling load of isotropic and orthotropic plateEhe
developed. The simplest one is the classical ghatery ~ results based on the present theory are compartfd wi
(CPT) which neglects the transverse normal andrsheathose obtained by the first-order shear deformapitaie
stresses. This theory is not appropriate for thektand theories and classical plate theory. The influencés
orthotropic plate with high degree of modulus rafio several parameters are discussed.
order to overcome this limitation, the shear defaita
theory which takes account of transverse sheactsfie 2 Present refined shear deformation
recommended. The Reissner [5] and Mindlin [6] thesor theory
are known as the first-order shear deform- ablerthe
(FSDT), and account for the transverse shear effgt Unlike the other theories, the number of unknown

the way of linear variation of in-plane displacensen functions involved in the new trigonometric shear

through the thickness. However, these models do nOtdeformation plate theory is only four, as agaifet in

86



Civil and Environmental Research, Vol.5 2013
Special Issue for International Congress on Mate&aStructural Stability, Rabat, Morocco, 27-30\Wmber 2013

case of other shear deformation theories. The yheor on the top and bottom surface of the plate areidern=d.

presented is variationally consistent, does notuireq

Based on the assumptions made in preceding settien,

shear correction factor, and gives rise to trarsvshear  displacement field can be obtained using Eqgs. (4)as
stress variation such that the transverse sheasssis

vary parabolically across the thickness satisfysigar _ ow,, owyg
stress free surface conditions. Uy, 2) =Uo(x,y) ~z—-=~1(2) ==

ow, ow 4
2.1 Assumptions of the present plate theory V(X,Y,2) = Vo (X, Y)—Za—yb‘ f(Z)a—yS ®

Assumptions of the present plate theory are asvisi

W(X, yv Z) = Wb (X! y) +WS(X1 y)

(i) The displacements are small in comparison Where the functionf (z) is chosen in the form
with the plate thickness and, therefore,
strains involved are infinitesimal. (mrz (5)
(i) The transverse displacement includes f(2)= Z‘_S'”[—j
two components of bending,, and shear
Ws. These components are functions of The strains associated with the displacements in(&q
coordinates x, y only. are
W(X, Y, 2) = Wy (X, y) + W (X, ) @) £, =€ +zk2 + f (2K
£, =€9+zk) + f (2K (6)
The t | st i
(iii) e. .ranS\./erse norma S ressflz is Vay =y)?y + Zkgy + f(Z)kfy
negligible in comparison with in-plane s
stressewr, ando,. Ve =9@) Yy,
(iv) The displacementsi in x-direction andv Ve =92 V5,
in y-direction consist of extension, bending, £,=0
and shear components. Where
2 2
U=ug+u,+ug, V=vg+v,+v, (@ gS:auo kb 9 Wo ks——a Ws
ox x> x>
The bending components, and v, are assumed to be £° :% b __ 0w, s — _ 92w, @)
similar to the displacements given by the classidate ooy Y ay? Y ay?
theory. Therefore, the expression fog and v, can be o Uy OV _202Wb . _262Ws
g'Ven as xy ay ax 4 Xy - axay ! Xy - axay
ow ow
ow S = S S = S =1-f'
by =z |y, = 3) V=", V=750 9@=1-1'() and
0x oy
£1(2) = df (2)
The shear componentsu; and vy give rise, in dz
con{unctlon withwy, to the parabolic variations of shear For an orthotropic plate, the constitutive relatiaran be
strains y,,, ¥,, and hence to shear stressgs, 7, written as:
through the thickness of the plate in such a way shear
stressesr,,, Ty, are zero at the top and bottom faces of o, Qu Qp 0 &,
the plate. Consequently, the expression @iqQr and v, 0,0=|Q. Qp 0 |j& and o
can be given as Ty 0 0 Qe ||V ®)
ow, ow, {’} {QM 0 HV}
us:_f(z) ax ) Vsz_f(z)a_y T 0 Q55 Vx (4)

2.2 Displacement Field and Constitutive

Equations

In the present analysis, displacement field models

where (@, 0y, Ty, Ty, Ty) and (&, &, Yy,

Yy, Vy) are the stress and strain components,

satisfying the condition of zero transverse shersses ~ constants in the material axes of the plate, aediefined

as
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E E Nx' Ny' ny hi2 1
Qu = B Qp =2, ©) M2, MS' Mlx)y = J. (ax’ay’rxy z (dz, (11)
1-vvy 1-v v, M:, MS, M5 | -2 f(2)
v,,E
Q=722 Qy =Gy, Qu =Gy, Qs =G "o
12 1-V, vy, 66 12 a4 23 55 13 (Siz,sjz): J-(rxziryz)g(z)dz'

-h/2

in which E,;, E,, are Young's modulusG,,, G,;,
Substituting Equation (8) into Equation (13) and

G, are §hear modulus, and,, v, are Pmssqn S rgtlos. integrating through the thickness of the plate, dtress
For the isotropic plate, these above material pit@®e  regyltants are given as

reduce to E;;=E,=E, G,=G,;=G,;=G,
V,, =V,, =V . The subscripts 1, 2, 3 correspond to X, vy, z

directions of Cartesian coordinate system, respelgti N,| [A, A, 0] &
N, r=|A, A, 0 [e&) ¢,
. . N 0 0 A 0
3 Governing equations vk ]V
M >t() Dll D12 0 k:
W_hen a plate is_subjected to in-plane compressivees Mbol=|D, D, O Hkbl!,
(Fig. 1), and if the forces are small enough, the J J
equilibrium of the plate is stable and the platmains My LO 0 Des][Ky (12)

flat until a certain load is reached. At that loadlled the

M S H S H S O S
buckling load, the stable state of the plate isudized and X 1 12

plate seeks an alternative equilibrium configuratio MJ=|HS H; O v
accompanied by a change in the load-deflection M3 0 0 Hegllky
behaviour.
iRl
Fig. 1.Rectangular plate under in-plane forces. sz 0 Ag Vv
0
Ny and stiffness components are given as:
| I A L | hi2
— (A0, HE)= [Qlez2 f2@)z (i =126)
-h/2
— vi | -
(13)
— = [ — 0 h/2
Na —x Ny A = IQijgz(z)dz (i,j=45)
1 -h/2
» a
Collecting the coefficients ofdu,, dv,, dw, and

ow, in Equation (12), the governing equations are

r T | r1 ' 1 r | obtained as:

M

v
Ouy: N, +N, =0
The governing equations are derived by using thiali
work principle, which can be written for the pla® (14)
Ovy: N +N, =0
(lowae, +a,88,+5,0y, 5,50, 47,8y, Jove+ [[Natwg +wpaaeo a0 B
v A oW, M, +2M2 +M? +N =0

X, XX Xy, Xy

N:{No Pl +w) o vg) o g +Ws)}
X y Xy

' G ody

Ow,: MP +2M3 +M7P +SE +S° +N=0

s " X, XX XY, Xy XZ,X

. The displacement functions that satisfy the equatiof
The stress resultantd , M , and S are defined by boundary conditions (18) are selected as the fatigw
Fourier series:
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W) & (Wi Sin( x) sin(u y) (15) Fig. 2. The effect of modulus Eat|o§ on the crmcql buoli
= , , load of square plate witl/h =20: (a) plate subjected to
We) TS Wan SINA X)sin( y) uniaxial compression; (b) plate subjected to biaxia

compression; (c) subjected to tension intldkrection and
compression in thg direction.

4 Numerical results and discussion 40
In this study, buckling analysis of simply suppdrte 35 ____gggT
rectangular plates by the new trigonometric shear | -~ Present P

deformation plate theory (with four unknown funct) ]
is suggested for investigation. Plate subjectedthi® 251
loading conditions, as shown in Fig. 2, is consdeto

illustrate the accuracy of the present models @djoting 1= 20
the buckling behavior of the plate. Comparisonsraaele ]

with solutions obtained using the first and parabshear 7]

deformation theory (with five unknown functionsh | 10_-

order to investigate the effects of side-to-thicdseatio -

and modulus ratio, the present example is apploed f 51

isotropic and orthotropic square plates. The foifgy 0'

engineering constants are used [11] 5 5 10 15 20 25 30 35 40

@ EJE
E,/E, Varied,G,/E, =G,;/E, =05 (16) 12 p—
G23/E2 =02, Vi, = 025 1 - -—-PSDT

e Present
For simplicity, the non-dimensional critical buaidj
parameter is defined as

N, a
E,h®

2

N = (17)

Where athe length of the square is plate ahdis the
thickness of the plate.

Fig 2 shows that when the orthotropic plate is usied

difference between the present model and CPT will S
increase with the increase of modulus r&dE, . ©® EJE,

Furthermore, the present model (with only four umkn 18

functions) gives identical results to those obtdingth ] ——CPT

PSDT (with five unknown functions) for all value$ o 16 ----PSDT

E, / E,. | - Present

14

1Z 124

10

E/E,

Provide critical buckling loads for simply suppatte
square plate using various plate theories. thdtsesfithe
present theory are close to the results of the éingar
deformation theory (FSDT). Hence, the present new
trigonometric shear deformation plate theory (wiblur
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unknown functions) gives comparable results to ¢hos
obtained with FSDT (with five unknown functions)sA
presented in Fig 2 and Fig 3, the differences betwbe
present model and FSDT with the shear correctiotofa
5/6, and the present model and FSDT with the shear
correction factor 1 are 16.80 % and 2.82 %, respsygt

for the same case of square plate (a= b= 5h and
E,/E, =40). It can be seen from figures 2-3 that the

difference of critical buckling load between theegent
model and FSDT depends on not only the side-to-
thickness and modulus ratios, but also the in-plane
loading conditions

5. Conclusions

The buckling analysis of isotropic and orthotroplates
using a new trigonometric shear deformation plagoty

is presented. The number of primary variables iis th
theory is even less than that of first- and higheter
shear deformation plate theories. The theory takes
account of transverse shear effects and parabolic
distribution of the transverse shear strains thhotige
thickness of the plate, hence it is unnecessange¢oshear
correction factors. It can be concluded that thesent
new plate theory can accurately predict the ctitica
buckling loads of the isotropic and orthotropictpa
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