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Abstract. Bridge plays an important role in a transportation system, and is directly linked to the country’s 

development as well as people’s daily living. However, it is subjected to the damaging effects of the daily traffic 

and freight trains. Experience shows that bridges with fundamental natural frequencies in the range f=2.0...4.0 Hz 

respond more strongly to the dynamic action of heavy commercial traffic than other bridges. To achieve better 

insight into the processes occurring during the passage of a vehicle over a highway bridge with a critical natural 

frequency dynamic load tests have been performed. This article is about the dynamic analysis of bridges under 

moving vehicles. In the first phase, dynamic equation of motion with the moving load for simply supported beam 

is solved by the analytical method of moments and then the results are compared with the time domain method. 

Secondly experimental analysis is presented in which the beam is divided into 20 stations and the deflection at 

mid-span is recorded while the mass moves at constant velocity through different stations with the help of 

oscilloscope. The result obtained is plotted in the form of graphs for different velocities of mass. Finally the 

dynamic amplification of displacements was extracted and compared with recommendations of current design 

codes.   

1 Introduction 

Bridges are lifeline structures. They act, as an important 

link in surface transportation network and they carry 

people and vehicles across natural or man-made 

obstacles. Bridges in service are subjected to the 

damaging effects due to a combination of various 

external loads resulting both from the live loads and 

exposure of the structures to the weather and 

environmental effects of nature [1], among which a very 

important load is the traffic load. The dynamic vehicle 

load information is very important for designing new 

bridges, assessing the condition of existing bridges, and 

maintaining old bridges when the applied loads cannot be 

measured directly, while the responses can be measured 

easily [2–5], especially when modern railway vehicles 

become lighter, run faster and carry heavier loads than 

ever before (Zhai, 2007). 

Dynamic effects due to moving loads on bridges are 

of most concern at shorter spans. They are essentially 

transient effects. The magnitude of the forcing function 

will be changing with time and will have a definite 

beginning and end. Therefore, it is more convenient to 

analyze bridge dynamic response in the time domain by 

performing a ‘time history’ analysis rather than by using 

a spectral analysis approach in the frequency domain. 

Furthermore, it is preferable to use recorded wheel data 

rather to mathematically characterize it and regenerate it 

using a Monte Carlo simulation approach. Regeneration 

of continuous records from frequency domain spectral 

analysis data has been criticized because it ‘tends to 

produce too many peaks’ (Elnashai, 1995). 

Various commercial finite element method (FEM) 

programs are available with the ability to perform time 

history calculations. It is not always easy to model 

multiple loads which are changing in space and time, and 

it is useful to consider more economical and simpler 

alternatives. These may also provide means of obtaining 

results for a variety of structures relatively quickly and 

economically. It is possible to analyze the structural 

response to a particular loading history independently in 

each of a number of independent modes of vibration, and 

use the principle of mode superposition to combine them. 

This would require prior analysis (using FEM or classical 

theory) to obtain the elastic properties which define each 

mode of vibration (mode shapes, frequencies, masses) 

[6]. 

The importance of investigating the moving loads on 

the bridge deck was first depicted in the 19th century as a 

reaction to the collapses of some railway bridges in Great 

Britain and further research on new techniques for the 

bridge design had been carried out (Cantieni 1983, 1992; 

Chan 1988, 1990). In order to evaluate the influence of a 

passing vehicle on a bridge deck, the dynamic problem is 

converted into a pseudo-static one with a dynamic 

amplification factor (DAF) in the design codes. However, 

the DAF may not always reveal the true dynamic 

behavior of the bridge. Lee and Park [7] analyzed the 

characteristics of the error in the force determination in 

structural dynamic systems, and they proposed a 

regularization procedure to reduce the force 

determination error. Tikhonov’s regularization method 

has been used by Busby and Trujillo [8] in a modal based 

load identification problem. In a more recent work, 

Busby and Trujillo [9] used a first-order regularization, 

where the penalty is in terms of the derivative of the force 

rather than the force itself, and the regularization 

parameter is determined by the L-curved method [10] and 
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the generalized cross-validation method [11]. Also a time 

domain method is presented [12] for estimating the 

discrete input forces acting on a structure based on 

system Markov parameters. 

Research work presented in this article aims to 

perform a theoretical study of the traffic load effect on a 

bridge with uncertainties, to develop new methods on 

dynamic analysis of bridge-vehicle system and to fill the 

gap of lacking the moving force identification technique. 

In this paper, the simple moving mass problem is 

represented with a simple supported beam over which the 

vehicle load is moving which was described as a 

combination of whole basis functions. The dynamic 

analysis of the vibrating beam is done by neglecting the 

disconnection of the moving mass from the beam during 

the motion and result is given by considering the mass 

moving at constant speed and in one direction. It is 

solved analytically by two different methods: the Method 

of Moments and the Time Domain Method where the 

results are compared and then experimentally analyzed, 

some conclusions finally made. 

2 Formulation of the problem using a 
simply supported beam 

The most fundamental problem that should be considered 

in the study of vehicle-induced vibrations on bridges is 

the dynamic response of a simply-supported beam 

subjected to a single moving load Fryba [13], the vehicle 

can be modeled as two-axle vehicle model, moving 

masses or moving forces [14]. Two effects are associated 

with the motion of a vehicle over a bridge, i.e., the 

gravitational effect and the inertial effect, both related to 

the mass of the vehicle. For the cases where the mass of 

the vehicle is small compared with that of the bridge, the 

vehicle can be represented as a concentrated load, with 

the inertial effect neglected. This is the so-called moving 

load model, the simplest case that can be conceived of a 

moving vehicle [15], in our work the vehicle is modeled 

as moving forces f(t). The bridge model is shown in 

figure 1 and the equation of motion is as follows: 
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A method based on force identification provides an 

effective way to solve the above problem. The main idea 

of this method is using the measured bridge responses to 

identify the parameters of a bridge-vehicle system, and 

subsequently to identify the contact forces f(t). 

 

Fig. 1. Moving Load on an Euler‘s Beam 

3 Moving force identification 

Various methods were applied on different bridge-vehicle 

systems were developed to identify the interaction force 

between bridge and vehicle based on vibration theory and 

system identification technique and they can mainly be 

divided into two categories: 

-  Methods based on finite element method (FEM). 

-  Methods based on modal superposition technique with 

a continuous bridge model. 

In the last kind, the modal superposition technique is 

firstly employed to decouple the equation of motion of 

the bridge and force model to a set of ordinary 

differential equations. Then the relationship between the 

moving forces and bridge responses in each mode can be 

formulated. Finally, the inverse problem can be solved by 

least-squares estimation with regularization or other 

optimization methods among which we use in this work 

are the Method of Moments and the Time Domain 

Method for a comparative study. 

3.1 Method of Moments based algorithm (MOM) 

This method was proposed by Yu et al. (2008a, 2008b) in 

which the moving vehicle loads were described as a 

combination of whole basis functions, such as the 

orthogonal Legendre or Fourier series, and the force 

identification can be transformed into a parameter 

identification problem. 

The dynamic vehicle load f(t) can be expressed as 

follows in terms of a series of basis function ψ0(t), ψ1(t), 

ψ2(t), …, ψn(t) (Harrington , 1968). 
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Or in matrix form: 

)4(.)( tf  

Where ψk(t)=Pk(t) or ψk(t)=sin(kπct/L) (Jorgensen, 

2004). 

The bending moment of a beam is expressed after the use 

of a test function ωj as: 
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Equations (5) and (6) can be rewritten in discrete terms 

and rearranged into a set of equations 
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Where: 

Ψ: the matrix of basic functions 

M: the time-series vector of the measured bending 

moment responses 

α: the coefficient vector 

-   If N-1=m+1, the coefficient α can be obtained directly 

by solving Equation (7).  

-  If N-1>m+1 or N-1<m+1, the least-squares method can 

be used to find the coefficient α. 

Substituting α into Equation (4), the time history of the 

moving loads can be obtained finally. 

3.1 Time Domain Method (TDM) 

This method was firstly proposed by Law et al. (1997) in 

which the relationship of moving axle force and modal 

response is formulated by convolution integral. The 

discrete form of equation of motion of the system for 

each vibration mode can be obtained by assuming the 

time series of moving forces to be step functions in small 

time intervals. The time varying forces on a simply 

supported beam can be identified by solving the resulting 

discrete equations. The application of this method on 

identifying the moving forces on a multi-span continuous 

bridge was investigated by Zhu and Law (2000, 2001a, 

2002b). The research was also extended to study the 

possibility of identifying axle loads when applied to real 

bridge-vehicle system with road surface roughness and 

incomplete vehicle speed. Experimental tests showed that 

the method can identify individual axle loads travelling at 

non-uniform speed with small error (Zhu and Law 

2003c). The effect of bearing stiffness on the bridge 

support was also included in this MFI procedure by Zhu 

and Law (2006). 

Solving the equation of motion of the bridge Eq. (1) and 

the dynamic deflection of the beam at point and time Eq. 

(6) in time domain can be obtained by deriving the same 

procedure of the MOM using a system of equation, and 

then be solved by many regularization methods as the 

least-squares method in time domain and Tikhonov 

regularization. 

 

4 Numerical simulations  

In order to confirm the accuracy of the developed 

numerical model, a simply supported beam at two 

opposite edges and subjected to two moving vehicle loads 

is simulated and illustrated. 

4.1 Bridge and moving force model  

The information below gives details of the material 

properties and the moving force:  

Time-varying loads: 

f1(t) = 58 800×[1+0.1 sin(10πt)+0.05 sin (40πt)] N 

f2(t) = 137 200×[1−0.1 sin(10πt)+0.05 sin (50πt)] N 

ls = 8 m 

EI =1.27914×1011N⋅m2 

ρ =12 000 kg/m 

L=40m 

f1 =3.2 Hz, f2 =12.8 Hz, f3 =28.8 Hz 

c=40m/s 

Only the three first modes of the beam are included in the 

calculation because the analysis frequency is in the range 

0 to 40 Hz 

Random noise is added to the calculated responses to 

simulate the polluted measurements as one in Ref (Yu 

2002). The Fourier basis functions are only adopted for 

the MOMA in the following simulation. The MOMA is 

used to identify both the two axle constant and time-

varying loads from bending moment and/or acceleration 

responses at 1/4, 1/2, and 3/4 spans in twelve 

combination cases.  

4.2 Simulation results  

Table 1 shows the comparison on the RQPE values of 

two axle constant loads identified by both the TDM and 

MOMA under the 5% noise level as well as including the 

effect of two different solutions, i.e. the SVD and 

regularization solutions. Selecting four out of twelve 

combination cases, Table 2 gives the comparison on the 

RQPE values of two axle time-varying loads identified by 

TDM and MOMA when the SVD solution is adopted 

only. In addition, the effect of different noise levels on 

the RQPE values is also considered. 
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Table 1. Comparison of RQPE of two axle constant loads 

under 5% Noise using the regularization and the SVD solutions 

for different sensor locations. 

TDM MOM 

Axle 1 Axle 2 Axle 1 Axle 2 

SVD Reg SVD Reg SVD Reg SVD Reg 

* 36,5 * 28,5 1,06 0,76 0,25 0,05 

* 34,4 * 27,6 0,79 0,39 0,37 0,04 

55,8 14,1 25,8 10,9 0,18 0,18 0,24 0,24 

2,58 2,58 1,40 1,40 0,10 0,10 0,21 0,21 

* 35,0 * 24,6 0,26 0,26 0,15 0,15 

* 25,2 * 23,2 0,13 0,13 0,11 0,11 

55,0 16,6 25,9 10,8 0,04 0,04 0,18 0,18 

* 28,2 * 23,5 0,17 0,17 0,20 0,20 

62,8 14,6 28,2 11,9 0,25 0,25 0,20 0,20 

* 38,9 * 25,5 0,41 0,41 0,18 0,18 

* 29,8 * 22,2 0,23 0,23 0,13 0,13 

53,2 16,6 24,9 10,2 0,14 0,14 0,22 0,22 

* refers to the errors exceeding 100% 

Table 2. Comparison of RQPE of two axle time varying 

loads identified via SVD for different sensor locations. 

Noise 

 1% 5% 10% 

Axle

1 

Axle

2 

Axle

1 

Axle

2 

Axle

1 

Axle

2 

TDM 97,8 55,4 * * * * 

MOM 7,35 1,81 36,7 9,03 73,5 18,1 

TDM * 29,6 * * * * 

MOM 4,45 1,50 22,3 7,50 44,5 15,0 

TDM 31,5 22,1 * * * * 

MOM 1,31 0,76 6,54 3,81 13,1 7,62 

TDM 0,93 0,63 4,66 3,13 9,30 6,25 

MOM 0,86 0,31 4,29 1,56 8,58 3,11 

* refers to the errors exceeding 100% 

4.3 Results discussion 

We can observe from the obtained results of both tables 

that the MOMA results are obviously better than the 

TDM ones whether for two constant loads or for two 

time-varying loads. 

For the cases of two axle constant load identification, 

the RQPE values by the MOMA are very low and less 

than 1.06% for all twelve cases in Table 1. They are 

dramatically lower than the RQPE values by the TDM. It 

shows that the MOMA is a very good identification 

method, which is especially suitable for two axle constant 

load identification. 

Compared the SVD results with the regularization 

results, it can be found from Table1 that the RQPE values 

for all cases, except for the case of 1/4a&1/2a&3/4a, are 

significantly reduced if the regularization solution are 

adopted instead of the SVD solution for the TDM. For 

the MOMA, the RQPE values are also significantly 

improved when the bending moment responses are only 

used to identify the two moving loads. However, when 

only the acceleration responses, or the combination of 

acceleration and bending moment responses are used to 

identify the two moving loads, the RQPE values are close 

to each other whether the SVD or the regularization 

solution is adopted.  

For case comparison, Table 1 also shows that, the 

more the measurement station is, or the more the number 

of measured acceleration involved is, the better the 

identified results are. It shows that adopting more 

responses for two moving load identification is beneficial 

to both the TDM and the MOMA. From Table 2, it can be 

seen that the more the number of bending moment 

responses replaced with acceleration responses is, the 

better both the TDM and the MOMA results are. The best 

sensor arrangement is when all three sensors are 

accelerometers, i.e. 1/4a&1/2a&3/4a, for both the two 

methods. 

It can also be found from Table 2 that the RQPE 

values are almost proportional to the noise levels. 

Obviously, the MOMA identification accuracy is higher 

than the TDM accuracy for each case. It shows that the 

MOMA immunity to the noise is higher than the TDM 

immunity when 1%, 5% and 10% noise were added into 

the responses. In other words, the proposed MOMA 

method is more suitable for identification of moving 

loads from the measured response signals contaminated 

by measurement noise. 

5 Effects of Different Solutions on MOM  

Figure 2 illustrates a comparison on the identified moving 

forces due to the two solutions for MOMA. Basically, the 

regularization results are in agreement with the SVD 

results except for the moment at the beginning and the 

end of time histories of moving forces as well as the 

moment at the accessing and exiting of vehicle. It shows 

that the fluctuation of identified moving forces can be 

effectively bounded at the moment mentioned above if 

the Regularization solution is adopted to solve the system 

equation for MOMA. The identified results by the 

Regularization solution are obviously improved. They are 

clearly better than the results by the SVD solution and 

more reasonable in practice. 

Fig. 2. Effect of two solutions on moving forces for MOMA 
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6 Experimental analysis of the vehicle 
load effect on bridge structure  

The objective of this test is to show experimentally the 

effects of moving force on the modal parameters of the 

bridge. The dynamic response characteristic of a simple 

beam bridge that is likely to be of most concern is that in 

bending.  

As is usual, acceleration responses were employed 

because of the simplicity of instrumentation. A 

referencing and digital oscilloscope technique was 

adopted in the present experiments for a simply supported 

beam shown in figure 3. 

Fig. 3. Experimental setup showing different equipment’s. 

Figure 4 shows the beam model which is of 1m length 

5cm breadth, 0.5cm width, E=200GPa and the mass per 

unit length is 3kg/m is divided into 20 stations and a 

vibration pickup is attached at mid-span. The moving 

mass is 0.9kg and 1.8kg, the velocity of mass is 1, 2.5, 5, 

and 7 m/s. The vibration pickup is connected to the 

digital oscilloscope which shows the wave pattern 

generated on the screen. Amplitude of vibration or 

deflection at mid span of the beam can be recorded from 

the oscilloscope.  

Fig. 4. Simple supported beam model. 

Figures 5 and 6 show the beam deflection at mid span 

for moving mass traversing through different stations, 

results are arranged in graphs for different mass and 

speed values. 

The results show that the maximum deflection of 

beam increase with the velocity and mass increasing, we 

can observe also that the position of maximum deflection 

deviates from mid-span of the beam.  

Practical bridge design codes usually provide load 

models which will provide ‘nominal’ load effects which 

have some pre-determined probability of exceedence. If 

the load model has been derived separately for static and 

dynamic effects, there remains the problem of combining 

the two analysis results into a single design model, which 

is related in some pre-determined manner to the 

statistically determined extreme of the joint effects of 

static and dynamic loading. It does appear that, for most 

practical structures, dynamic magnification or reduction 

of static load effects is caused mainly by the effects of 

uneven road profile. To a first approximation, therefore, 

the DAF is a unique (although uncertain) property of 

each bridge (or, at least, of the transit of each individual 

type of vehicle). Thus, the extreme static load effect will 

be a function of the lifetime exposure of the bridge to 

traffic, but the extreme dynamic load effect will be a 

property of the bridge. When the Highways Agency’s 

(1997) assessment rules were developed, it had to be 

assumed that there were generally no site specific strain 

records, and the uncertainty in DAF was treated as a 

structural property. After much consideration, the rules 

were finally based on reviewing variations in static load 

effects derived from a large number of continuous wheel 

load measurements from a set of vehicles which was 

broadly representative of the types of vehicle in common 

use in the UK. 

 

Fig. 5. Mid-span deflection of a simple supported beam 

traversed by a moving mass (0.9kg) at different values of α. 

 

Fig. 6. Mid-span deflection of a simple supported beam 

traversed by a moving mass (1.8kg) at different values of α. 

6 Conclusions  

A comparative study was presented in this work between 

two numerical methods: the Method of Moments and the 

Time Domain Method in order to solve the dynamic 

equation of a simple supported beam to identify moving 
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loads on a bridge deck based on the measured responses. 

The bridge deck is modeled as a homogeneous beam and 

the loads are modeled as moving forces. Simulations and 

experimental studies give the following conclusions: 

- The factors that need to be considered in analyzing 

the response of the VBI systems include the dynamic 

properties and driving frequencies of the moving 

vehicles, and the dynamic properties and surface 

roughness of the bridge 

- Even though vehicle models of higher complexities, 

e.g., those consisting of dozens of DOFs, can be 

employed in studying the VBI problems nowadays, 

the use of simplified vehicle and bridge models is 

helpful, since it allows us to identify the key 

parameters dominating the dynamics of the VBI 

systems. 

- The proposed MOMA is a successful method for the 

identification of moving loads from the responses 

induced by the moving vehicles on bridges. 

- The MOMA is obviously better than the existed TDM 

from all the aspects, especially for the constant load 

identification cases. 

- The MOMA can give satisfactory results with higher 

accuracy and computation efficiency when whether 

the SVD or regularization method is used.  

- The basis function terms play an important role in the 

MOMA. The different patterns and the number of 

basis function can lead to different computation 

efficiency, therefore, they should be properly selected 

and appropriately determined in order to keep the 

MOMA more effective.  

- The MOMA has higher computation efficiency and 

better flexibility than the TDM. When the Fourier 

series are adopted as the basis function of the 

MOMA. 

- As a feasible and reasonable identification method, 

the MOMA should be firstly recommended as a 

practical method of moving force identification in 

situ. 

- The experimental study shows that the position of 

maximum deflection of beam occurs far from mid 

span.  

- The dynamic response of beam is more influenced by 

the mass speed changing. 

- Identification using bending moment will give better 

result as compared with that using displacement in 

design codes. 
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