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Abstract 

Currently the impact of climate change affects many water resources projects that result in pattern change of annual 

runoff, reservoirs pool level change, increasing of irrigation demand due to increasing temperature and evaporation 

and etc., and thus it is important to assess its impact on streamflow. This study mainly forecast streamflow of 

Dabus river Sub Basin. The future climate variables which were downscaled by Climate Limited area Model (CLM) 

at the basin level for A1B emission scenario was used for future flow simulation. For streamflow generation HEC-

HMS model was used by using the bias corrected precipitation and Evapotranspiration which was estimated by 

FAO Penman-Monteith. After the flow was forecasted, the performance of the model was assessed via calibration 

at Dabus near Asosa, Sechi near Mendi and Aleltu at Nedjo using Relative Volume Error (D), coefficient of 

determination (R2) and Nash-Sutcliffe Efficiency (NSE) performance coefficients. Then the model was validated 

using the parameters optimized during model calibration. The trend of Dabus streamflow forecasted at its outlet 

to main basin river (Abbay River) was assessed. The projected mean annual maximum temperature increases from 

the baseline period by 0.430C, 1.30C and 2.50C for short-term, midterm and long-term respectively whereas 

minimum temperature increases by 0.470C, 1.530C and 2.830C. Generally the projected future maximum and 

minimum temperature shows an increasing trend whereas precipitation shows variation (does not reveal clearly 

increasing or decreasing) for earlier century and decreasing trend in mid and late century. The evapotranspiration 

shows an increasing trend. The HEC-HMS model shows a good performance at Dabus near Asosa which resulted 

D=0.0066, R2=0.90 and NSE=0.89 during calibration and D=4.9285, R2=0.84 and NSE=0.82 during validation. 

The streamflow of Dabus River Basin shows an average annual increase of 2.83% for short-term forecast (2011-

2040) and decrease of 2.83% and 4.56% for mid-term forecast (2041-2070) and long-term forecast (2071-2100) 

respectively.  
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Introduction 

Forecasting  streamflow response to potential impacts under future scenarios of climate change and variability is 

the first step to developing long-term water resource management plans. An understanding of the hydrological 

response of a river basin under changed climatic conditions would help to resolve potential water resources 

problems associated with floods, droughts and availability of water for irrigation, industry, hydropower, domestic 

and industrial use, and to develop the adaptation and preparedness strategies to meet these challenges (Singh, 

2011). As a result this study is required for Dabu sub-basin. 

Eventhough Streamflow forecasting is very important for flood mitigation and water resources management 

and planning such studies were not yet done in Dabus sub-basin, therefore this research focus on streamflow 

forecast and assessment climate change impact in this sub basin under A1B emission scenarios. 

As a significance, Water resources planning and management efficacy is subject to capturing inherent 

uncertainties stemming from climatic and hydrological inputs and models. Streamflow forecasts, critical in 

reservoir operation and water allocation decision making, fundamentally contain uncertainties arising from 

assumed initial conditions, model structure, and modeled processes. Accounting for these propagating 

uncertainties remains a formidable challenge. Recent enhancements in climate forecasting skill and hydrological 

modeling serve as an impetus for further pursuing models and model combinations capable of delivering improved 

streamflow forecasts.  

Therefore streamflow forecast will play great role to estimate inflow to the reservoir to handle problems of 

water allocation (reservoir operation) in the basin. Finally the intension of the study are forecast streamflow under 

climate change impact, to assess future climate change pattern and to generate streamflow time series for Dabus 

River under the impact of climate change. 

 

Description of the study area 

The Blue Nile Basin (Abbay basin) is generally divided into 15 Sub-basins according to their configuration in 
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topology, of which Dabus Sub-basin is one of the sub-basins which contribute high percent of water to the Abbay 

basin next to Dedesa sub basin. Table 1 shows List of main tributaries of Blue Nile (Abbay) basin, emerging from 

Ethiopia, whereas Figure 1 shows the shape of Abbay sub-basin particularly Dabus sub basin. 

Table-1: List of main tributaries of Blue Nile (Abbay), emerging from Ethiopia (Wondye, 2009). 

S.No Sub-basin 

Catchment area 

(km2) 

Mean annual rainfall 

(mm) 

Mean annual 

flow(Mm3) 

1 Lake tana 15054 1313 3809 

2 Beshilo 13242 982 3920 

3 Weleka 6415 1072 2072 

4 Jemma 15782 1105 4798 

5 Muger 8188 1347 2440 

6 Guder 7011 910 2187 

7 Fincha 4089 1766 1719 

8 Dedessa 27531 1308 8028 

9 Dabus 21030 2276 6246 

10 Beles 14200 1655 4345 

11 South Gojam 16762 1633 5012 

12 North Gojam 14389 1336 4389 

13 wonbera 12957 1160 3874 

14 Dinder 14891 n/a 2797 

15 Rahad 8269 n/a 1102 

16 Anger                                      7901  1425 1980 

The Dabus River drains an area of approximately 21030square kilometers. It originates in the high volcanic 

mountains to the south and flows generally northwards into a large and flat basin known as the Dabus swamp then 

continuous northward to the Blue Nile River. The River course has a drop of 616 and 638m at upper and lower 

Dabus dam sites at elevations of 1384 and 1362 m.a.s.l. respectively. The river further drops into an extremely 

deep narrow canyon prior to leaving the area. The Dabus River has an average annual flow of about 6246Mm3 

even though not yet exploited for hydropower. 

 

Location and climate 

The Dabus River is one of the major tributaries of the Abbay River, which flows for most of its length northwards. 

The river is known for its sustained flow even during the dry season, which is attributed to the presence of a swamp. 

The size of the swamp has been reported to be in the range of 600 to 900 km2 (MoWR, 2002). Generally the 

location of Dabus sub-basin shown in figure 1. 

The basin falls within the climatic classification of Tropical Climate II according to the modified copen 

system. The climate is characterized by a mean annual rainfall between 680 to 1200 mm. The rainfall distribution 

in the Dabus basin is monomodal, with the length of the wet season decreasing in the northern and north-western 

parts of the sub-basin. The   average daily maximum and minimum temperature is 27.47 OC and 14.43 OC 

respectively. The average daily evapotranspiration of the basin is 4.32mm. 

  
Figure 1: Location of study area (Dabus sub basin) 
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Methodology of the study 

The methodology used in this study includes the following steps (1) Data collection; (2) extraction of climate data 

series from the climate change scenarios; (3) watershed-based hydrological modeling; Flow simulation 

 
 

Climate Change Modeling 

In the study the dynamically downscaled local climate scenarios are used which are simulated by Climate Limited 

area model (CLM) using   the CECHAM5 for a period of 120 years (1981 to 2100) on daily basis. This locally 

downscaled climate data was from boundary conditions for A1B emission scenario. The downscaled future climate 

parameters (i.e., precipitation, maximum and minimum temperature, wind speed, and net solar radiation) were 

corrected by using linear and power transformation bias correction method. The bias corrected data was used for 

future streamflow estimation.  

Geospatial Hydrologic Modeling Extension (HEC-GeoHMS):- HEC-GeoHMS was used to visualize spatial 

information, document watershed characteristics, perform spatial analysis, delineate sub-basins and streams, and 

construct inputs to hydrologic models. 

Hydrological Modeling:-Hydrologic Engineering Center’s Hydrologic Modeling System (HEC 

HMS) was selected for streamflow simulation. 

Analytical Components of HEC-HMS:-HEC-HMS consists of separate models of the major hydrological 

processes and transports. It consists of runoff volume models, models of direct runoff (overland flow and interflow), 

base flow models, channel flow models. In the model the deficit and constant-rate loss model, Clark UH transform 

model, constant, monthly varying base flow method and Muskingum Routing Model were selected for model 

Calibration and Validation as well for future flow simulation. 

A total of 14 years historical data from 1988 to 2001 was used for calibration, 4years was used for validation 

(2002-2005).The model performance in simulating observed discharge was evaluated during calibration and 
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validation by observing simulated and observed hydrograph visually and by calculating Nash and Sutcliffe 

efficiency criteria (NSE), coefficient of determination (R2), and Percent difference/Relative Volume Error (D) 

were used. 

 

Hydro-Meteorological Data Analysis 

Since engineering studies of water resources development and management depend heavily on hydrological data, 

the meteorological data tested for stationary, consistent and homogeneous when they are used for frequency 

analyses or to simulate a hydrological system.  Missing data were filled by using regression equation from the 

station with full data record. 

Table 2: Summary of Hydrological data filling and extension. 

Station Name From Station Regression Equation R2 Remark 

DabusNr. Asosa Haffa Qd=87.451*Qha+8.235 0.86 Extended 

SechiNr.mendi Haffa         Qs=3.646*Qha+0.734 0.95 Filled 

Aleltu@ Nedjo Haffa          Qa=1.551*Qha+2.886 0.74 Filled 

HohaNr. Asoss    Used for Filling  

HujurNr. Nedjo    Used for Filling 

HaffaNr. Asosa    Used for Filling 

For areal data thiessen polygon method was used due to the large differences in the catches at therain gages 

and non-uniformly distribution of the rain gages throughout the study areas. 

 
Figure 3: Thiessen polygon of Selected Meteorological stations. 

Figure 0: Thiessen polygon of Selected GCM Grid point 

Penman-Monteith method is adopted to calculate the daily potential evaporation to use during HEC-HMS 

model calibration and validation.  Power Transformation method of bias correction is applied for precipitation and 

linear transformation method is used to correct temperature. In each case of bias correction it was intended to 

match the most important statistics (coefficient of variation and mean) on a scale of 30 days. 

P
∗

� aP
� ------------------------------------------------------------------------------Power Transformation method 

T�	

 � aT���	

 
 b  ----------------------------------------------------------------linear transformation method 

Table 3:  Values of correction constants a & b used for bias correction of RCM data. 

Block/ 

Months 

CLM data and their Correction constants a and b 

Precipitation Max. Temperature Min. Temperature ETo 

a b a b a b a b 

1 66.575461 3.8E-09 1.00381 -1.6434 0.826309 0.946757 7.61E-06 6.196132 

2 6.0636945 0.090955 0.807329 5.126061 0.448998 6.920406 4.56E-07 7.241886 

3 3.1102193 0.57435 0.722348 7.817436 0.583678 3.373884 0.072015 1.972107 

4 3.0872957 0.617526 0.681677 8.722961 0.624095 2.141734 0.559702 1.126428 

5 1.8086977 0.729226 0.718825 7.303044 0.807191 -1.50456 1.427762 0.661953 

6 3.2839756 0.609403 0.611604 10.21765 0.529337 3.923512 1.93265 0.4448 

7 3.9855117 0.532526 0.439287 14.3815 0.598113 2.801073 1.398969 0.651025 

8 3.3187728 0.645155 0.32334 16.90846 0.604125 2.405754 1.954919 0.387098 

9 2.6448544 0.689344 0.322971 17.41565 0.993186 -4.66651 1.952399 0.422641 

10 2.7971952 0.70891 0.365757 16.68522 0.889529 -1.93666 2.213072 0.308136 

11 2.6332175 0.720931 0.475219 13.94719 0.683673 2.448604 1.748946 0.433098 

12 7.6568377 1.41E-09 1.037278 -2.50133 0.809114 0.579832 0.491927 1.055559 
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5. Results and Discussion 

Climate change scenarios 

In the study, the climate change scenarios were generated using dynamically downscaled regional climate data for 

A1B emission scenario. These data were downscaled for the period of 120 years using a Climate Limited area 

Model (CLM models) which was categorized as: base period (1981-2010), short-term forecast (2011-2040) and 

mid-term forecasts (2041-2070) and long-term forecasts (2071-2100) in order to forecast streamflow using these 

scenarios. The period from 1981-2010 was taken as a base period with which the comparison was made. Future 

scenarios have been assessed for the short-term forecast period (2010-2040) and Mid-term forecast (2041-2070) 

and Long-term forecast (2071-2100) for three climatic variables temperature, precipitation, and evapotranspiration. 

 

Maximum Temperature 

The dynamically downscaled monthly average maximum temperature reveals good quality relations with the 

observed temperature for the baseline period after the bias correction has been made comparing with observed 

data for A1B emission scenarios. As illustrated in Figure 5   the monthly mean maximum of maximum temperature 

was seen in the month of May whereas monthly mean Minimum of maximum temperature was seen in the month 

November which later shifted to August month after bias correction has been made. 

 
Figure 5: Downscaled, Bias Corrected and Observed mean monthly maximum temperature (1991-2010) 

The projected maximum temperatures have generally shows an increase trend for A1B emission scenario in 

all future time of (2011-2040), (2041-2070), (2071-2100). (Figure 6) 

Future projection of maximum temperatures has shown large temperature changes in the month of May for 

all time horizon of (2011-2040), (2041-2070) and (2071-2100) forecasts that has resulted in a temperature rise of 

0.43OC, 1.33OC and 2.48OC respectively as compared to the base period and shows the decreasing only in feature 

Scenarios of 2011-2040 in the months of August, September and October. 

 

Figure 6: Trend of Annual Maximum Temperature (1991-2100). 
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Figure 7: Percentage change of Monthly Maximum Temperature at different Future Scenarios while compared 

with baseline period. 

 

Minimum Temperature 

Like Maximum temperature, the dynamically downscaled monthly average minimum temperature reveals good 

quality relations with the observed temperature for the baseline period after the bias correction has been made 

comparing with observed data for A1B emission scenarios. The monthly mean maximum of minimum temperature 

was seen in the month of July whereas monthly mean Minimum of minimum temperature was seen in the month 

February which later shifted to January month after bias correction has been made. The projected minimum 

temperatures have generally shown an increase trend for A1B emission scenario in all future time horizon of (2011-

2040), (2041-2070) and (2071-2100). 

Future projection of minimum temperatures as maximum temperatures has shown large temperature changes 

in the month of May for all time horizon of (2011-2040), (2041-2070) and (2071-2100) forecasts that has resulted 

in a temperature rise of 0.47OC, 1.53OC and 2.83OC respectively as compared to the base period and does not 

shows the decreasing throughout the future time horizons. 

 

Precipitation 

Unlike the maximum and minimum temperature the projected precipitation does not show an increase trend but it 

shows month to month variation in (1981-2040) and decreasing trend in (2041-2070) and (2071-2100)  in addition 

to monthly variation. The monthly fluxes shows that mean monthly variation of precipitation in the time horizon 

of (2011-2040), (2041-2070) and (2071-2100) in which maximum decrease of monthly precipitation was recorded 

in the month of February (-208.93%), May (-55.84%) and May (-148.21%) respectively whereas maximum 

increase was recorded in the month of December 28.57%, 54.55% and 70.15% in all future time scenarios 

respectively under A1B emission scenarios.  

Generally the mean monthly projected precipitation does not show an increasing or decreasing trend like 

maximum and minimum Temperature but it manifests great variation of rainfall for all future times horizon 

considered in this study under A1B global emission scenarios. The annual mean precipitation of the Dabus sub 

basin experiences a decrease of 0.74%, 13.44% and 33.78% for the time horizon of (2011-2040), (2041-2070) and 

(2071-2100) respectively under the A1B emission scenarios. 

 
Figure 8: Projected Annual precipitation trend for A1B scenarios (1981-2100). 
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Evapotranspiration 

The average annual evapotranspiration shows increases in amount by 2.41%, 7.73% and 15.67% in (2011-2040), 

(2041-2070) and (2071-2100) respectively under the A1B emission scenarios. Figure 9 shows an increasing trend 

of Evapotranspiration under the A1B emission scenarios for Dabus Sub basin. The rate of monthly 

evapotranspiration is found to increase comparatively at higher rate during the months of February and May in 

(2011-2040) and (2041-2070) and the month of February in (2071-2099) whereas slight decreasing rate in the 

months of August to December in (2011-2040), in the months of October to December in (2041-2070) and in the 

months of November and December in (2071-2099) under A1Bemission scenarios. 

 
Figure 9: Projected Annual Evapotranspiration trend for A1B scenarios (1981-2100). 

 

Hydrologic Model (HEC-HMS) Results 

In this study HEC-HMS Hydrologic Model was used for Dabus sub basin Streamflow simulation. The basin model 

created by HEC-GeoHMS was imported to HEC-HMS and the parameter estimated in HEC-GeoHMS such as 

Clark time of Concentration, Clark storage coefficient, initial Deficit, Maximum deficit, Constant Rate and etc. 

was used as initial parameters for model simulation which later optimized based the acceptable value of NSE and 

R2. 

 

HEC-HMS Model Calibration and Validation Results 

In this particular study among the existing methods in the model, the Univariate-Gradient Algorithm and the sum 

of squared residuals measure for goodness of fit have been applied for calibrating the model. As parameter 

estimation using optimization does not produce perfect results without the aid of manual calibration, it is aided by 

manual calibration. Figure 10 shows Hydrograph of Model Calibration at Dabus Gauge near Asosa. The 14- years 

of observed flow time-series data (1988 - 2001) of Dabus Gauge near Asosa, Sechi Gauge near Mendi and Aleltu 

Gauge at Nedjo have been used for model calibration whereas 4- years of observed flow time-series data (2002 - 

2005) of the same stations was used Model validation. During both calibration and validation the peak flow was 

not captured in all gauging stations, as a result of this precipitation loss become unrealistically large. Figure 11 

shows Hydrograph of Model Validation at Dabus Gauge near Asosa. 

 
Figure 10: Daily Simulated flow Hydrograph calibrated and Observed flow at Dabus Gauge Nr Asosa Station 

Comparison (1988-2001). 
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Figure 11: Daily Simulated flow Hydrograph Validated and Observed flow at Dabus Gauge near Asosa Station 

Comparison (2002-2005). 

The Simulated Streamflow Hydrographs in both Calibration and validation have shown a very good 

counterpart with the corresponding observed hydrographs of equivalent time of consideration in volume but little 

bit it shows less performance in peak flow. 

In this particular study, the model performance in simulating observed discharge has been evaluated using 

Nash and Sutcliffe efficiency criteria (NSE), coefficient of determination (R2), Percent difference /Relative 

Volume Error (D) in both calibration and Validation. The results of the performance evaluation criteria of the 

HEC-HMS model are summarized in tabular form as shown in Table 4. 

Table 4: Performance indices of model during Calibration and Validation. 

Indices Gauging Stations 

DabusGauge Nr Asosa SechiGauge Nr Mendi AleltuGauge@Nedjo  

Calibration Validation Calibration Validation Calibration Validation 

NSE 0.89 0.82 0.52 0.59 0.32 0.44 

R2 0.91 0.84 0.52 0.59 0.34 0.44 

D 0.0066 4.9285 -0.1047 -2.0995 -0.0096 -1.5131 

The result of Calibration and Validation has revealed a very good simulation performance, satisfactory 

performance and less performance for the Dabus gauge, Sechi gauge and Aleltu gauge respectively in NSE and 

R2performance indices according to the criteria point out by different researcher under section 4.1.4. Even though 

all stations shows a very good performance indices in Percent difference /Relative Volume Error (D) due to the 

great difference in other two performance indices only parameters optimized from Dabus Gauging station were 

used for future streamflow generation and future inflow to the reservoirs generation. 

 

Generated Streamflow of Dabus River 

Like areal precipitation of the sub basin, The Dabus streamflow of Dabus basin or merging to the main Abbay 

river Experiences flow variation for the time horizon of (1981-2040) and decreasing trend for the time horizon of 

(2041-2070) and (2071-2100). These shows that, the streamflow of the sub basin has strong relation with the 

precipitation of the basin that shown disordered variation as a result of global warming under A1B emission 

scenarios.  

The rate of mean monthly streamflow of the Dabus sub basin at its outflow manifests high rate of decreasing 

in the month of May and June for the time horizon of  (2011-2040) and May, June and July for the time horizon 

of (2041-2070), (2071-2100). In the other months it does not show such highly decreasing trend but it shows less 

significance of increasing trend on the basis of mean monthly flow. Generally the streamflow forecasted using 

HEC-HMS under the impact of climate change (A1B emission scenarios) in this study shows the variation of flow 

month to month for different year of study with insignificant decreasing or increasing of annual flow for 

consecutive years. 
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Figure 12: Percentage change of mean monthly Streamflow generated under A1B emission scenarios 

 

1.1.1. Conclusions 

Nature and especially climate is not easy to be exactly forecasted even with the advanced technologies of the 

21stcentury. Human beings, at a larger scale, are still in the hands of climatic influences, where extreme events of 

floods and droughts keep on claiming many lives all over the world and brought unlimited effects on Water 

Resources Developments Like irrigation efficiencies and Hydropower production due to decreasing and disordered 

rainfall pattern all over the world. As a result of these, the study of climate change impact assessment of Dabus 

sub basin streamflow is highly essential. In this study the streamflow and inflow to reservoirs were forecasted by 

HEC-HMS model.  Based on this particular study the following are concluded: 

1. The result of climate projection reveals that the CLM model has very good ability to replicate the historical 

maximum and minimum temperature for the observed period; but due to its conditional nature and high 

variability in space it reveals that less ability to replicate for the observed precipitation with the simulated 

precipitation. 

2. Generally both dynamically projected maximum and minimum temperature shows an increasing trend for the 

next century, but the precipitation doesn’t show significant difference for future scenarios where it shows 

variation in short-term forecast (2011-2040) and less decreasing trend in mid-term forecast (2041-2070) and 

long-term forecast (2071-2100) for A1B emission scenario. 

3. The evaporation from the Dabus sub basin (open water) generally shows an increasing trend which will be 

increased highly from decade to decade i.e. 2% in earlier century (2011-2040), 6.62% in mid-century (2041-

2070) and 50% in late century (2071-2100). Generally 19.5% of monthly average increase of 

evapotranspiration will be expected at the end of the next century in Dabus sub basin under A1B emission 

scenario. The increasing of the Evapotranspiration causes its own impact on the reservoir water balance by 

decreasing the reservoir volume which later expose the reservoirs to supply deficit i.e. reduce volumetric 

reliability. 

4. The HEC-HMS model calibrated and validated in daily time step at three gauging stations: Dabus near Asosa, 

Sechi near Mendi and Alelt at nedjo were manifest less performance at Sechi near Mendi and Aleltu at Nedjo 

and very good performance at Dabus near Asosa. Having the optimized parameters at Dabus near Asosa the 

model has simulated the observed discharge in reasonably good manner particularly in simulating runoff 

volume on the daily basis. Generally the model has revealed a good performance at Dabus near Asosa with 

performance indices of Nash and Sutcliffe Efficiency value = 0.90, Coefficient of Determination R2 value = 

0.89, and relative Volume, Error, D = 0.0066 on the Daily basis. Hence, HEC-HMS model shows well 

performance in simulating observed flow, as a result of this it was used for future flow simulation based on 

CLM predicted precipitation and estimated evapotranspiration under A1B emission scenarios. 

 

Recommendations 

From the result of this particular study the following main recommendations are highly recommended. 

1. In this study the effect of climate change was assessed using the climate variables downscaled dynamically 

under A1B emission scenarios but using this single emission scenarios may not fully replicate the effect of 
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climate on water resource projects therefore  it is better if another emissions scenarios and downscaling 

methods of finer resolution are adopted and the differences should be assessed. 
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