
Civil and Environmental Research                                                                                                                                                    www.iiste.org 

ISSN 2224-5790 (Paper) ISSN 2225-0514 (Online) 

Vol.11, No.9, 2019       

 

57 

Optimizing the Sorption of Mn2+ ion from Aqueous Solution onto 

Zinc Chloride Activated Sawdust Using Response Surface 

Methodology (RSM) 
 

Idowu Rudolph Ilaboya1*       Ebierin Akpoebidimiyen Otuaro2 

1.Department of Civil Engineering, Faculty of Engineering, PMB 1154, University of Benin, Benin City, Edo 

State. Nigeria 

2.Department of Civil Engineering, Faculty of Engineering, Delta State University, Abraka 

 

Abstract 

Activated carbon from sawdust was prepared and characterized using Fourier transform infra-red (FTIR) and 

scanning electron microscope (SEM) to determine the presence of functional groups and visualize its 

microstructural arrangement in other to ascertain its potential for the removal of Mn2+ ion from aqueous solution. 

Statistical design of experiment (DOE) using central composite design was then employed to randomized the levels 

of selected input parameters in order to determine their optimum values that will guarantee maximum adsorption. 

To optimize the process, response surface methodology based on numerical optimization was employed. The 

behaviour of the system which was used to evaluate the relationship between the input and the response variables 

was explained using the empirical second-order polynomial equation. To validate the optimization results, selected 

goodness of fit statistics, namely; coefficient of determination, adjusted coefficient of determination and predicted 

coefficient of determination were employed. Results obtained revealed the adequacy of response surface 

methodology in optimizing adsorption systems. Analysis of variance test revealed that the model developed is 

significant at 0.05df with computed p-value < 0.0001. Computed goodness of fit statistics revealed that the 

predicted R2 value of 0.7998 is in reasonable agreement with the adjusted R2 value of 0.9062. In addition, 

numerical optimization results indicate that for 50 mL aqueous solution containing 11.39 mg/L of manganese, 1.0 

g zinc chloride activated sawdust, pH of 5.0 and a contact time of 120 minutes will be required to obtain a sorption 

efficiency of 84.04% with amount removed (qe) of 714mg/g. The outcome of this study justifies the use of sawdust 

as adsorbent for the treatment of water and wastewater containing divalent metal ions.   
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1. Introduction 

Environmental pollution caused by the discharge of untreated effluents containing toxic metals such as lead, 

chromium, and manganese has become an issue of concerned and have developed into a widely studied area 

(Ziemacki et al., 1989).  Unlike organic pollutants, the majority of which are susceptible to biological degradation, 

heavy metals will not degrade into harmless end products, and their presence in streams and lakes leads to 

bioaccumulation in living organism, causing health problems in animals, plants and human beings (Weng et al., 

2007, Demirbas et al., 2004). The assimilation of relatively small amounts of these heavy metals over a long period 

of time in the human body can lead to chronic toxicity coupled with numerous health challenges such as skin 

irritation, lung tumor including severe damage to the nervous systems and circulatory system (DWI, 2014). The 

toxic effects of lead, chromium and manganese ions in human, especially when present above the threshold limit 

in the hydrosphere are well documented (Khurshid & Qureshi, 1984). The presence of these heavy metals in the 

environment is of great concern to scientists and engineers because of their toxic nature (Sekar et al., 2004).  

Numerous conventional processes have been developed over the years to remove these heavy metals from 

water and wastewater they include; solvent extraction, chemical precipitation, ion exchange process, electrolytic 

precipitation, and reverse osmosis (Izinyon et al., 2016). Except for a few studies in the literature of heavy metal 

adsorption, only traditional method of experimentation (varying one variable and fixing the others) have been 

adopted in studying the interacting effect of selected input variables on adsorption process (Jaikumar & 

Ramamurthi, 2009). This method of experimentation usually give rise to large experimental runs and do not allow 

for the establishment of the multiple interacting effect of the selected variables. In addition, determining the 

optimum value of the selected input variables that will guarantee maximum adsorption is almost beyond the scope 

of traditional method of experimentation. This limitation of traditional method of experimentation can be 

eliminated by randomizing all the controlling variables using statistical design of experiment (DOE) which allows 

a large number of factors to be screened simultaneously (Montgomery, 1996). Since adsorption is a complex 

process that is influenced by numerous independent variables, determining the optimal working condition requires 

the use of classical methods of optimization which are useful for developing and analyzing processes in which the 

response of interest is influenced by several independent variables and the main objective is to optimize the 
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response (Kumar et al., 2010, Cerino-Cordova et al., 2011, Ilaboya & Izinyon, 2019). 

In recent years, statistical design of experiment (DOE) and artificial neural network (ANN) has been 

successfully employed to optimize and predict the sorption efficiency of divalent metals on different adsorbents 

such as zeolite, electric arc furnace slag, sunflower powder and Zea Mays. Although, artificial neural network 

(ANN) are one of the many machine learning tools that are capable of performing the task of modelling and 

prediction of experimental data, determining the optimum values of the input variables required to maximize the 

efficiency of metal ion removal has continue to pose a challenge to the use of neural network. Following this, 

response surface methodology (RSM) was employed since they represent a special class of statistical technique 

which are capable of optimizing a system in which the response of interest is influenced by several input variables. 

In this study, statistical design of experiment using central composite design method and response surface 

methodology were used to optimize the sorption of Mn2+ from aqueous solution onto zinc chloride activated 

sawdust with a view to determine the optimum value of selected adsorption variables, namely; initial metal ion 

concentration, adsorbent dose, contact time and pH that will guarantee maximum adsorption. Sawdust was selected 

for this study because it is cheap and readily available. It is easy to prepare, highly effective and also non-toxic 

(Ikenyiri, et al., 2019).   

 

2. Experimental 

2.1 Material collection and preparation 

Locally available sawdust was collected from sawmill located in Egor Local Govt. Area in Edo State of Nigeria 

using a washed, clean dried shovel. 2 kg of the sawdust was placed in a fresh black polythene bag and taken to 

Water Resources and Environmental Engineering Laboratory in the Department of Civil Engineering, University 

of Benin where the experiment was conducted. First, the sawdust was soaked in a plastic bowl containing 5% 

hydrogen peroxide and washed with distilled water to remove any carbonaceous and water-soluble impurities. It 

was dried in hot air oven at 50-70°C for 8 hours, pulverized and screened sieved to obtain geometric sizes of 212 

µm before analysis (Mariadas et al., 2012). Carbonization was done using the method recommended by (Ekpete 

& Horsfall, 2011) with slight modification as follows. 500 g of the pulverized sawdust was placed in a muffle 

furnace which allows limited supply of air at a temperature of 2500C for 60 minutes. The sample was then placed 

in a desiccator to cool before it was activated using the method recommended by (Mansfield, 1996) with slight 

modification as follows:  125 g of the carbonized sawdust was soaked in 250 mL of 5.5M ZnCl2 solution. The 

mixture was thoroughly mixed until it formed a paste. The paste was then transferred to an evaporating dish which 

was placed in an oven and heated at 200oC for thirty minutes. It was then allowed to cool and washed with distilled 

water to remove the residual salt. Thereafter, it was oven dried at 1050C for thirty minutes, grind using mortar and 

pestle and sifted with 106µm Standard Tyler Sieve. The activated sawdust was then characterized before using. 

 

2.2 Equipment used for the experiment 

Major equipment’s used in this study are presented in Table 1. Minor equipment’s include: pH meter, digital 

weighing balance and hand held conductivity meter. Glass wares include: reagent bottles, conical flask, measuring 

cylinder, glass funnels and beakers. 

Table 1: Equipment Details 

S/No Equipment Name Model 

1 Laboratory Oven DHG 9101-2A 

2 Industrial Furnace DHG 9101-5A 

3 Constant Temperature Water Bath DHG 3101-6A 

4 Hot Plate with Magnetic Stirrer HJ-3D 

5 Scanning Electron Microscope (SEM) APEX 3020 PSEM 2 

6 Fourier Transform Infra-red (FTIR) FTIR 2000, Shimadzu Kyoto, Japan 

7 X-Ray Fluorescence (XRF) APEX 3022 

8 Atomic Absorption Spectrophotometer (AAS)  UNICAM SOLAR 969 

 

2.3: Performance of activated sawdust 

2.3.1: Analysis of Microstructures 

Scanning electron microscope (SEM) was employed to study the surface characteristics in order to assess the 

presence of microporous structures on the surface of activated sawdust. Such presentations can provide possible 

explanations on the adsorbent behaviour and its adsorption potentials (Omisanya et al., 2012). 

2.3.2 Functional group analysis 

Fourier Transform Infra-Red (FT-IR) spectra of activated sawdust was obtained by using FTIR spectrophotometer 

(Model: FTIR 2000, Shimadzu Kyoto, Japan). The spectra were employed to determine the presence of functional 

groups that can influence the adsorption capacity of the sawdust. 150 mg potassium bromide (KBr) disks 

containing approximately 2 % sawdust was prepared prior to recording the FTIR spectra in the range of 400-4000 
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cm-1 with a resolution of 4.0 cm-1 (Dawodu et al., 2012). 

 

2.4 Preparation of aqueous solution 

Stock solution of manganese was prepared by dissolving accurate quantity of manganese (II) chloride tetrahydrate 

(MnCl2.4H2O) in one liter of distilled water. All working solutions were made by diluting the stock solution with 

distilled water and the concentration of Mn2+ ion present in solution was determined with the aid of Atomic 

Absorption Spectrophotometer (AAS). A duplicate was analyzed for each sample to track experimental error and 

show capability of reproducing results. The pH of the working solution was adjusted to the desired value for each 

experiment with drop wise addition of 1 M nitric acid (HNO3) or 1 M sodium hydroxide (NaOH). A comprehensive 

list of all the chemicals and reagents with the respective minimum assay is presented in Table 2. 

Table 2: List of chemicals and reagents 

S/No Chemicals/Reagents Type Minimum Assay 

1. Nitric Acid Analytical 96 % 

2. Sodium Hydroxide Analytical 96 % 

3. Manganese (II) chloride tetrahydrate Analytical 96 % 

4. Hydrogen Peroxide Analytical 96 % 

5.  Zinc chloride Analytical 96 % 

 

2.5 Adsorption studies 

250 mL conical flask containing varying dose of adsorbent and 50 mL aqueous solution of the metal was agitated 

at 150 rpm using mantle fitted with magnetic stirrer for maximum contact time of 120 minutes. The pH value of 

aqueous solution was kept at the optimum and separation of adsorbent from aqueous solution was done by filtration 

using 150 mm whatman filter paper. The filtrate was stored in sample cans and placed in refrigerator prior to 

analysis. The residual metal ion concentration was determined using Atomic Absorption Spectrophotometer 

(AAS). Amount of Mn2+ ion removed during the series of batch investigation was determined using the mass 

balance equation presented in (Ilaboya et al., 2013) as follows. 

 eCC
m

v
q  0           (1) 

Where: q, defines the metal uptake (mg/g); C0 and Ce: are the initial and equilibrium metal ion concentrations in 

the aqueous solution [mg/L] respectively; V: is the aqueous sample volume (mL) and m: is the mass of adsorbent 

used (g). The efficiency of metal ion removal (%) was calculated using the mass balance equation of the form 

(Badmus et al., 2007). 

Efficiency (%) = 










100

0

0

C

CC e
        (2) 

Where: C0 and Ce are the metal ion concentrations (mg/L) in aqueous solution before and equilibrium adsorption.  

 

2.6 Design of experiment and process optimization  

For Mn2+ ion adsorption, varied initial metal ion concentration of 4 – 20 mg/L, varied adsorbent dose of 0.2 – 1.0 

g, varied pH of 2 – 10 and varied contact time of 24 – 120 mins for a constant adsorption temperature of 27±20C 

were selected. The range and levels of the selected input variables is presented in Table 3  

Table 3: Range and Levels of independent variables for Mn2+ ion adsorption 

 

Independent 

Variables 

Range and Levels 

-2 -1 0 +1 +2 

Initial metal ion concentration (mg/l) 4 8 12 16 20 

pH 2 4 6 8 10 

Adsorbent dose (g/L) 0.2 0.4 0.6 0.8 1.0 

Contact time (minutes) 24 48 72 96 120 

Using the parameters presented in Table 3, a full factorial central composite design comprising of sixteen 

factorial points, eight axial points and six replicates at the center point resulting in a total of 30 experimental runs 

as shown in Table 4 was employed to optimize the selected variables.  
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Table 4: Central composite design showing coded and real variables with observed and predicted Mn2+ ion 

adsorption 
Experimental 

Runs 

Coded Values of Variables Real Values of Variables  Mn(II) Sorption Efficiency 

(%) 

X1 

(mg/L) 

X2 

(g/L) 

X3 

(pH) 

X4 

(mins) 

X1 

(mg/L) 

X2 (g/L) X3 (pH) X4 

(mins) 

Observed RSM 

Predicted 

1 

2 

3 
4 

5 

6 
7 

8 
9 

10 

11 
12 

13 

14 
15 

16 

17 
18 

19 

20 
21 

22 

23 
24 

25 

26 
27 

28 

29 
30 

0 

0 

0 
0 

0 

0 
0 

0 
0 

0 

0 
0 

-1 

-2 
+2 

+2 

-2 
+2 

+2 

-2 
-2 

+2 

-2 
-2 

-2 

+2 
+2 

+2 

-2 
-2 

0 

0 

0 
0 

0 

0 
-2 

+1 
0 

0 

0 
0 

0 

0 
+2 

+2 

-2 
-2 

-2 

+2 
-2 

+2 

+2 
-2 

+2 

+2 
-2 

-2 

-2 
+2 

0 

0 

0 
0 

0 

0 
0 

0 
+1 

-2 

0 
0 

0 

0 
-2 

-2 

+2 
+2 

-2 

-2 
+2 

+2 

+2 
-2 

-2 

+2 
-2 

+2 

-2 
+2 

0 

0 

0 
0 

0 

0 
0 

0 
0 

0 

+1 
-2 

0 

0 
+2 

-2 

-2 
+2 

-2 

+2 
+2 

-2 

-2 
-2 

-2 

+2 
+2 

-2 

+2 
+2 

 12.00 

 12.00 

 12.00 
 12.00 

 12.00 

 12.00 
 12.00 

 12.00 
 12.00 

 12.00 

 12.00 
 12.00 

 8.000 

 4.000 
 20.00 

 20.00 

 4.000 
 20.00 

 20.00 

 4.000 
 4.000 

 20.00 

 4.000 
 4.000 

 4.000 

 20.00 
 20.00 

 20.00 

 4.000 
 4.000 

 0.600 

 0.600 

 0.600 
 0.600 

 0.600 

 0.600 
 0.200 

 0.800 
 0.600 

 0.600 

 0.600 
 0.600 

 0.600 

 0.600 
 1.000 

 1.000 

 0.200 
 0.200 

 0.200 

 1.000 
 0.200 

 1.000 

 1.000 
 0.200 

 1.000 

 1.000 
 0.200 

 0.200 

 0.200 
 1.000 

 6.000 

 6.000 

 6.000 
 6.000 

 6.000 

 6.000 
 6.000 

 6.000 
 8.000 

 2.000 

 6.000 
 6.000 

 6.000 

 6.000 
 2.000 

 2.000 

 10.00 
 10.00 

 2.000 

 2.000 
 10.00 

 10.00 

 10.00 
 2.000 

 2.000 

 10.00 
 2.000 

 10.00 

 2.000 
 10.00 

 72.000 

 72.000 

 72.000 
 72.000 

 72.000 

 72.000 
 72.000 

 72.000 
 72.000 

 72.000 

 96.000 
 24.000 

 72.000 

 72.000 
 120.00 

 24.000 

 24.000 
 120.00 

 24.000 

 120.00 
 120.00 

 24.000 

 24.000 
 24.000 

 24.000 

 120.00 
 120.00 

 24.000 

 120.00 
 120.00 

   76.5 

 76.4 

 76.4 
 76.5 

 76.3 

 76.4 
 75.8 

 64.3 
 74.3 

 75.3 

 65.2 
 66.7 

 67.1 

 83.7 
 65.4 

 63.2 

 67.5 
 64.5 

 71.2 

 65.4 
 67.3 

 64.8 

 76.8 
 76.1 

 79.8 

 84.5 
 85.4 

 74.3 

 88.7 
 77.8 

76.36 

76.36 

76.36 
76.36 

74.93 

74.93 
74.80 

65.71 
73.41 

76.60 

64.48 
67.83 

63.33 

87.88 
66.58 

65.22 

66.31 
66.98 

73.34 

64.71 
69.95 

63.34 

76.89 
74.41 

81.45 

80.99 
83.88 

74.12 

85.31 
77.58 

The behaviour of the system which was used to evaluate the relationship between the response variable (y) 

and the selected independent variables, namely; initial metal ion concentration (X1), adsorbent dose (X2), pH (X3) 

and contact time (X4) was explained using the empirical second-order polynomial equation of the form 

 

  


  


1

,1 21 1

2

0

q

jii

q

j

jiij

q

i

q

i

iiiii xxxxY           (3)  

Where;  

X1, X2, X3… Xk are the input variables;   

Y is the response variable; 

β0, βi, βii, and βij, (i = 1–k, j = 1–k) are the known parameters; and  

ε is the random error. 

To assess the model significance and justify the suitability of response surface methodology in optimizing 

the adsorption variables, one-way analysis of variance (ANOVA) was employed. To validate the ANOVA result, 

Fisher’s F probability value and the probability function (P < 0.05) were employed. Large value of F corresponding 

to very low value of P (P<<<0.05) indicates the level of significance of the response surface model. To assess the 

reliability of the resulting second order polynomial equation, selected goodness of fit statistics, namely; coefficient 

of determination (R2), adjusted (R-squared) value, predicted (R-squared) value and adequate precision value were 

employed. Adequate precision measures the signal to noise ratio while the reasonable agreement between the 

adjusted R-square and the predicted R-square measures the reliability of the optimal equation. 

 

3. Results and Discussions 

Scanning electron micrograph was taken in order to verify the presence of micropores. Scanning electron 

micrograph of raw and activated sawdust is presented in Figures 1a and 1b.  
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Figure 1a: Scanning electron micrograph of raw sawdust 

 

 
Figure 1b: Scanning electron micrograph of activated sawdust 

Larger number of microporous structures observed with activated sawdust indicate a higher surface area 

hence better adsorption property. This claim is based on the fact that as biosorbent materials present larger numbers 

of microporous structure, they adsorb higher amount of nitrogen, which resulted to higher surface area and higher 

adsorption properties. Insight into the nature of functional groups that make up the surface of adsorbent would 

create a better picture on the adsorption potentials of the material. To identify the functional group’s present on 

the surface of sawdust, Fourier Transform Infrared (FTIR) spectroscopy was used. Figure 2 shows the Fourier 

Transform Infrared (FTIR) spectra of raw sawdust.  
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Figure 2: FTIR spectra of raw sawdust 

To identify the functional group based on the FTIR spectra, absorption assigned bands from the work of 

previous researchers was employed to analyzed the spectrum of raw sawdust and result obtained is presented in 

Table 5 

Table 5: Interpretation of FTIR spectrum of raw sawdust 

S/No Wave Number (cm-1) Bond Source 

1 3434.00 O-H stretching mode of hydroxyl groups N-H stretch 

2 1637.00 N-H bending of amides, C≡ O stretch, carbonyl 

3 1510.42 Quinonic and carboxylate groups, N-H bending, C≡ O stretch 

4 1445.55 CH2 and CH2 bend, pyrones and aromatic group 

5 1376.22 Organic phosphate, (P≡ O stretch) 

6 1110.24 Organic siloxane or silicone, Si-O-C stretch 

7 661.58 Disulphides (C - S stretch) 

Result of Table 5 revealed that O-H stretching of hydroxide group and N-H stretching of amides are 

responsible for Mn2+ ion absorption onto zinc chloride activated sawdust. When the effect of varied adsorbent dose 

was studied at constant initial Mn2+ ion concentration of 20mg/L, optimum pH of 7.0, adsorption contact time of 

120 minutes under a constant stirring speed of 150 rpm, result obtained is presented in Table 6 

Table 6: Effects of adsorbent dose on the sorption of Mn2+ ion onto activated sawdust  

S/No Mass of Adsorbent (g) C0 (mg/L) Ce  

(mg/L) 

C0 - Ce (mg/L) q (mg/g) Efficiency 

(%) 

1 0.2 20 16.55 3.450 172.5 17.25 

2 0.4 20 12.77 7.230 361.5 36.15 

3 0.6 20 9.87 10.13 506.5 50.65 

4 0.8 20 6.45 13.55 677.5 67.75 

5 1.0 20 5.72 14.28 714.0 71.40 

6 1.2 20 3.77 14.28 714.0 71.40 

Results of Table 6 revealed that adsorption efficiency increases with increasing dose of adsorbent reaching a 

maximum efficiency of 71.40 %. Higher dose of adsorbent will increase adsorption efficiency due to more active 

site and functional groups on the adsorbent surface which the metal could interact with. These chemical groups 

are important in the formation of van der Waal bonding since they played a major role in binding metals to 

adsorbents during adsorption process. To optimized the sorption variables and determine the maximum adsorption 

efficiency, response surface methodology using the quadratic polynomial model was employed. To validate the 

suitability of the quadratic model in analyzing the experimental data, the sequential model sum of squares was 

calculated and presented in Table 7 
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Table 7: Sequential model sum of square for sorption efficiency of Mn2+ 

          Response: Mn (II) Sorption  

 *** WARNING:  The Cubic Model is Aliased! ***  

Sequential Model Sum of Squares [Type I] 

Source 

Sum of 

Squares df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

 

 

Mean vs Total 161157.3813 1 161157.3813    

Block vs Mean 21.72016667 1 21.72016667    

Linear vs 

Block 1115.398333 4 278.8495833 14.05904722 < 0.0001 

 

2FI vs Linear 77.31375 6 12.885625 0.58173443 0.7403  

Quadratic vs 

2FI 324.04075 4 81.0101875 15.18961359 < 0.0001 Suggested 

Cubic vs 

Quadratic 38.70666667 8 4.838333333 0.807308323 0.6211 Aliased 

Residual 35.959 6 5.993166667    

Total 162770.52 30 5425.684    

Sequential Model Sum of Squares [Type I]:  Select the highest order polynomial where the additional terms are 

significant and the model is not aliased 

The sequential model sum of square shows the accumulating improvement in the model fit as terms are added. 

Based on the calculated sequential model sum of square, the highest order polynomial where the additional terms 

are significant and the model is not aliased was selected as the best fit. From the results of Table 7, it was observed 

that the cubic polynomial was aliased hence cannot be employed to fit the final model. In addition, the quadratic 

and factorial (2FI) models were suggesed as the best fit thus justifying the use of quadratic polynomial. The model 

statistics computed for the response variable based on the different model sources is presented in Table 8 

Table 8: Model summary statistics for sorption Mn2+ 

 

Source 

 

Std. Dev. 

 

R-Squared 

Adjusted 

R-Squared 

Predicted 

R-Squared 

 

PRESS 

 

Linear 4.45355741 0.7008831 0.65103028 0.55781557 703.700481 

2FI 4.70641652 0.74946476 0.61027851 0.48028554 827.083205 

Quadratic 2.30938561 0.95308232 0.90616464 0.79976054 318.664774 Suggested 

Cubic 2.4480945 0.97740444 0.89455403 0.41499347 930.990209 Aliased 

Model Summary Statistics:  Focus on the model maximizing the "Adjusted R-Squared" and the “Predicted R-

Square 

The summary statistics of model fit shows the standard deviation, coefficient of determination (r2), adjusted 

r-squared, predicted r-squared and the predicted error sum of square (PRESS) statistic for each of the selected 

model. Low standard deviation, R-Squared near 1 and relatively low PRESS are the optimum criteria for selecting 

the best model for final optimization. Based on the results of Table 8, the quadratic polynomial model was 

suggested while the cubic polynomial model was aliased hence. Quadratic polynomial model posseses the highest 

adjusted r-square value of 0.90616464, highest predicted r-square value of 0.7997605 and lowest predicted error 

sum of square value of 318.664774. Analysis of the model standard error was employed to assess the suitability 

of response surface methodology using the quadratic model to maximize the sorption of Mn2+ onto sawdust. The 

computed standard error is presented in Table 9 
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Table 9: Result of computed standard errors 

                                                                                 Power at 5 % alpha level for effect of 

Term StdErr** 

VIF Ri-Squared 0.5 Std. Dev. 1 Std. Dev. 2 Std. Dev. Day 1 0.193649 

A 0.204124 1 0 20.8 % 62.5 % 99.5 % 

B 0.204124 1 0 20.8 % 62.5 % 99.5 % 

C 0.204124 1 0 20.8 % 62.5 % 99.5 % 

D 0.204124 1 0 20.8 % 62.5 % 99.5 % 

AB 0.25 1 0 15.4 % 46.1 % 96.0 % 

AC 0.25 1 0 15.4 % 46.1 % 96.0 % 

AD 0.25 1 0 15.4 % 46.1 % 96.0 % 

BC 0.25 1 0 15.4 % 46.1 % 96.0 % 

BD 0.25 1 0 15.4 % 46.1 % 96.0 % 

CD 0.25 1 0 15.4 % 46.1 % 96.0 % 

A^2 0.190941 1.05 0.04761905 68.3 % 99.8 % 99.9 % 

B^2 0.190941 1.05 0.04761905 68.3 % 99.8 % 99.9 % 

C^2 0.190941 1.05 0.04761905 68.3 % 99.8 % 99.9 % 

D^2 0.190941 1.05 0.04761905 68.3 % 99.8 % 99.9 % 

**Basis Std. Dev. = 1.0      

From the results of Table 9, it was observed that the model possesses a low standard error ranging from 

0.204124 for the individual terms, 0.25 for the combined effects and 0.190941 for the quadratic terms. The 

computed error values were also observed to be less than the model basic standard deviation of 1.0 which suggests 

that response surface methodology was ideal for the optimization process.  Variance inflation factor (VIF) of 

approximately 1.0 as observed in Table 9 was good since ideal VIF is 1.0. VIF's above 10 are cause for alarm, 

indicating coefficients are poorly estimated due to multicollinearity. Ri-squared value was observed to be between 

0.0000 to 0.04761905 which is good. High Ri-squared (above 1.0) means that design terms are correlated with 

each other, possibly leading to poor model. Analysis of variance (ANOVA) was needed to check whether or not 

the model is significant and also to evaluate the significant contributions of each individual variable. Analysis of 

variance result is presented in Table 10 

Table 10: ANOVA table for validating the model significance towards maximizing the sorption of Mn2+ 

ANOVA for Response Surface Quadratic Model 

Analysis of variance table [Partial sum of squares - Type III] 

Source 

Sum of 

Squares df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

  

Block 21.72016667 1 21.72016667   

Model 1516.752833 14 108.3394881 20.31392608 < 0.0001 significant 

A-Initial metal 

ion conc. 86.26041667 1 86.26041667 16.17404474 0.0013  

B-Adsorbent 

dose 6.100416667 1 6.100416667 1.143843444 0.3029 

 

C-pH 5.13375 1 5.13375 0.962591017 0.3432  

D-Contact 

time 1017.90375 1 1017.90375 190.8595093 < 0.0001 

 

AB 18.275625 1 18.275625 3.426725581 0.0854  

AC 20.475625 1 20.475625 3.839231106 0.0703  

AD 1.265625 1 1.265625 0.237307866 0.6337  

BC 28.890625 1 28.890625 5.417064737 0.0355  

BD 4.305625 1 4.305625 0.8073155 0.3841  

CD 4.100625 1 4.100625 0.768877485 0.3954  

A^2 92.92526786 1 92.92526786 17.42372108 0.0009  

B^2 4.457410714 1 4.457410714 0.835775702 0.3761  

C^2 225.238125 1 225.238125 42.23271405 < 0.0001  

D^2 84.30026786 1 84.30026786 15.80651192 0.0014  

Residual 74.66566667 14 5.333261905    

Lack of Fit 40.57066667 10 4.057066667 0.475972039 0.8445 not significant 

Pure Error 34.095 4 8.52375    

Cor Total 1613.138667 29     
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The Model F-value of 20.31 as observed in Table 10 implies the model is significant. There is only a 0.01% 

chance that a "Model F-Value" this large could occur due to noise. Values of "Prob > F" less than 0.0500 indicate 

model terms are significant. In this case A, D, BC, A2, C2, D2 are significant model terms. Values greater than 

0.1000 indicate the model terms are not significant. The "Lack of Fit F-value" of 0.48 implies the lack of fit is not 

significant relative to the pure error.  There is a 84.45% chance that a "Lack of Fit F-value" this large could occur 

due to noise. Non-significant lack of fit is good as it indicate that the model is significant. On the significant 

contribution of the variables towards the sorption of Mn2+ ion, it was observed from the result of Table 10 that; 

initial metal ion concentration and contact time had the lowest calculated p-value of 0.0013 and >0.0001. Based 

on the calculated p-value, contact time was acclaimed the variable with the highest significant contribution 

followed by initial metal ion concentration. The goodness of fit statistics used to validate the adequacy of the 

quadratic model is presented in Table 11. 

Table 11: Goodness of fit statistics used to validate the significance of model 

1. Std. Dev. 2.309386 5. R-Squared 0.953082318 

2. Mean 73.29333 6. Adj. R-Squared 0.906164637 

3. C.V. % 3.150881 7. Pred. R-Squared 0.799760545 

4. PRESS 318.6648 8. Adeq Precision 15.44585338 

It was observed from the result of Table 11 that the "Predicted R-Squared"  value of 0.7998 is in reasonable 

agreement with the "Adj R-Squared" value of 0.9062. Adequate precision measures the signal to noise ratio.  A 

ratio greater than 4 as observed in Table 11 is desirable.  The computaed  ratio of 15.446 shows an adequate signal. 

Diagnostics case statistics which shows the observed values of sorption efficiency against the RSM predicted 

values is presented in Table 12.  

Table 12: Diagnostics case statistics of observed and predicted sorption efficiency 
Diagnostics Case Statistics 

Standard 

Order 

Actual 

Value 

Predicted 

Value Residual Leverage 

Internally 
Studentized 

Residual 

Externally 
Studentized 

Residual 

Influence on 
Fitted Value 

DFFITS 

Cook's 

Distance 

Run 

Order 

1 65.4 65.82667 -0.42667 0.6 0.292120654 0.282356347 -0.345814487 0.008 15 

2 63.2 61.5975 1.6025 0.6 1.097164095 1.105865293 1.354402846 0.112853 16 

3 67.5 66.3475 1.1525 0.6 0.789068093 0.777858791 0.952678565 0.058371 17 

4 64.5 66.39333 -1.89333 0.6 -1.2962854 1.331598275 -1.630868158 0.157533 18 

5 71.2 72.71417 -1.51417 0.6 1.036685991 1.039678085 -1.273340403 0.100755 19 

6 65.4 63.96 1.44 0.6 0.985907206 0.984847663 1.206187125 0.091126 20 

7 67.3 67.86 -0.56 0.6 0.383408358 0.371416647 -0.454890634 0.013781 21 

8 64.8 63.38083 1.419167 0.6 0.971643502 0.969560851 1.187464679 0.088509 22 

9 76.8 78.26417 -1.46417 0.6 1.002453102 1.002642551 -1.227981322 0.094211 23 

10 76.1 75.16 0.94 0.6 0.643578315 0.629550189 0.771038365 0.038831 24 

11 79.8 80.86 -1.06 0.6 0.725737249 -0.71287603 -0.873091262 0.049378 25 

12 83.5 82.03083 1.469167 0.6 1.005876391 1.006332724 1.232500842 0.094855 26 

13 85.4 83.12667 2.273333 0.6 1.556455357 1.649308697 * 2.02 0.227114 27 

14 74.3 75.4975 -1.1975 0.6 0.819877694 0.809732376 -0.991715574 0.063019 28 

15 78.7 80.3475 -1.6475 0.6 1.127973695 1.139977038 -1.396181031 0.11928 29 

16 77.8 76.99333 0.806667 0.6 0.552290611 0.538094698 0.659028722 0.028596 30 

17 79.9 79.385 0.515 0.183333 0.246767726 0.238310171 0.112912203 0.000854 1 

18 78.2 79.385 -1.185 0.183333 0.567805349 0.553561979 -0.262279626 0.004524 2 

19 76.4 79.385 -2.985 0.183333 1.430294488 1.491543194 -0.706698447 0.028703 3 

20 81.7 79.385 2.315 0.183333 1.109256864 1.119221432 0.530291078 0.017264 4 

Diagnostic case statistics actually give insight into the model strength and the adequacy of the optimal second 

order polynomial equation. Lower residual values resulting to higher leverages as observed in Table 12 is an 

indicator of a well fitted model. To asses the accuracy of prediction and established the suitability of response 

surface methodology using the quadratic model, a reliability plot of observed versus predicted sorption efficiency 

was generated and presented in Figure 3 
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Figure 3: Reliability plot of observed versus predicted sorption efficiency 

The high coefficient of determination (r2 = 0.9982) as observed in Figures 3 was used to established the 

suitability of response surface methodology in maximizing the sorption efficiency. To accept any model, its 

satisfactoriness must first be checked by an appropriate statistical analysis output. To diagnose the statistical 

properties of the response surface model, the normal probability plot of residual presented in Figure 4 was 

employed. 

 
Figure 4: Normal probability plot of studentized residuals  

The normal probability plot of residuals which is the number of standard deviations of actual values based on 

the predicted values was employed to ascertain if the residuals (observed – predicted) follows a normal distribution. 

It is the most significant assumption for checking the sufficiency of a statistical model. Results of Figures 4 

revealed that the computed residuals are approximately normally distributed an indication that the model 

developed is satisfactory. To determine the presence of possible outliers, the cook’s distance plot was generated. 

Cook distance is a measure of how much the regression would change if the outlier is omitted from the analysis. 

A point that has a very high distance value relative to the other points may be an outlier and should be investigated. 

The generated cook’s distance plot is presented in Figure 5 
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Figure 5: Generated cook’s distance for the sorption of Mn2+ ion 

The cook’s distance plot has an upper bound of 1.00 and a lower bound of 0.00. The fact that all the 

experimental data are sandwich between the lower and the upper boundary as observed in Figure 5 is an indication 

that the data used for this analysis are devoid of possible outliers. To study the effects of combine input variables 

on the response variable (sorption efficiency), 3D surface plot presented in Figure 6 was employed. 

 
Figure 6: Effect of adsorbent dose and metal ion concentration on sorption of Mn2+ ion 

Figure 6 shows the relationship between the input variables (adsorbent dose and initial metal ion 

concentration) and the response variable (sorption efficiency). It is a 3-dimensional surface plot which was 

employed to give a clearer concept of the response surface. Although not as useful as the contour plot for 

establishing response values and coordinates, this view provided a clearer picture of the interactions between the 

input and the response variable. A closer look at Figure 6 shows the presence of a coloured hole at the middle of 

the upper surface. That was a clue that more points lightly shaded for easier identification fell below the surface. 

From the surface plot of Figure 6, it was observed that the colour of the surface get darker towards initial metal 
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ion concentration and indication that this variable strongly influenced the adsorption Mn2+ ion.  

Finally, numerical optimization was performed to ascertain the desirability of the model and determine the 

optimum dose of adsorbent, contact time, pH and initial metal ion concentration required to maximize the sorption 

of Mn2+ ion onto zinc chloride activated sawdust. The interphase of the optimization model showing the objective 

function is presented in Figure 7 

 
Figure 7: Interphase of numerical optimization for maximizing the sorption of Mn2+ ion 

The optimization objective was to maximize the sorption efficiency. The relative importance was set at the 

optimum value of 5.0 and the lower and upper boundary conditions were set at 0.1 and 1.0 respectively. An upper 

boundary of 1.0 constraints the optimization tool to maximize the response variable. The final solution of 

numerical optimization is presented in Table 13 

Table 13: Optimal solution of numerical optimization  

Solutions 

Number 

Initial 

metal ion 

conc. 

Adsorbent 

dose pH 

Contact 

time 

Sorption 

Efficiency Desirability  

1 11.33 1 5.13 120 84.03945858 0.995085145 Selected 

2 11.44 1 5.1 120 84.03944263 0.995085086  

3 11.39 1 5.15 119.99 84.03915471 0.995084022  

4 11.22 1 5.1 119.96 84.03679818 0.995075317  

5 11.72 1 5.22 120 84.03211161 0.995058003  

6 11.41 1 5 119.92 84.03131388 0.995055056  

7 12.17 1 5.01 120 84.02253069 0.995022599  

8 11.4 1 4.7 119.99 84.012187 0.994984363  

9 10.66 0.98 5.3 120 84.0114497 0.994981637  

10 10.11 1 5.21 120 83.99750092 0.994930053  

11 10.83 0.96 5.11 120 83.99131687 0.994907176  

12 11.23 1 5.29 119.38 83.98750891 0.994893087  

13 11.58 1 4.76 119.17 83.95632931 0.994777656  

14 9.5 1 5.74 120 83.90758717 0.994596964  

15 11.15 1 5.22 118.3 83.90703742 0.994594924  

16 9.7 0.87 5.9 120 83.8676513 0.994448697  

17 10.83 1 5.07 116.64 83.77024173 0.994086215  

Based on the optimization results, the model equation which shows the relationship between the selected 

input variables and the response variable was developed as follows; 
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The optimal values of the input variables as observed in Table 13 are given as follows; 

i. Initial metal ion concentration of 11.33 mg. which indicate 11.33 mg/L of manganese in 50ml aqueous 

solution  

ii. Adsorbent dose of 1.0 g 

iii. pH (5.13) which is assumed to be (5.0) 

iv. Contact time (120 minutes) 

Under this operating condition and using zinc chloride activated sawdust as adsorbent for the treatment of 

aqueous solution containing 11.33 mg/L of Mn2+ ion, 84.04 % removal efficiency was obtained. This solution was 

selected by design expert as the optimal solution with a desirability value of 99.51 %. Finally, based on the optimal 

solution, the contour plot showing the response variable against the optimized value of the input variables is 

presented in Figure 8. The contour plot can be employed to predict the optimum values of the input variables based 

on the flagged response variable. 

 
Figure 8: Predicting sorption of Mn2+ ion using contour plot 

 

4. Conclusion 

The potential of zinc chloride activated sawdust as adsorbent for the removal of manganese from aqueous solution 

has been studied. From the result, it was concluded that sawdust has the potential to remove divalent metals from 

water and wastewater. In addition, the performance of statistical design of experiment and response surface 

methodology in optimizing the sorption of divalent metal ion onto zinc chloride activated sawdust has been 

successfully implemented and will form the bases for future research in related areas. The optimal values of 

selected input variables, namely; adsorbent dose, pH, contact time and initial metal ion concentration that will 

yield a better sorption efficiency and ensure a more effective wastewater treatment has also been calculated withh 

the optimal equation clearly presented. Although, the study is not completely exhaustive of the subject matter, it 

has provided additional information to the existing literatures on modelling and optimization of metal ion 

absorption onto activated solid adsorbents 
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