

PERFORMANCE STUDY OF FLEXIBLE PAVEMENTS ON NON EXPANSIVE SOILS

C S Bhagavan Raju^{1*} Dr.M Anjan Kumar² Dr. G V R Prsasada Raju³

1. Gammon Infrastructure Projects Limited, Rajahmundry- 533104, India

2. Dr. M Anjan Kumar, Principal, BVC college of Engineering, Rajahmundry - 533104, India

3. Dr. G V R Prasada Raju, Director, Academic Audit, JNTUK, Kakinada - 533 003, India

* E-mail of the corresponding author: bhagavan.raju@gammoninfra.com

Abstract

As part of infrastructure development huge investment is being made on expansion of National highways and important roads across the country. For improvement of Highways two types of Pavements are commonly used in India viz., Flexible Pavements (Bituminous) and rigid pavements (Concrete). Flexible pavements are widely used in this country from the considerations of economy The performance of Flexible pavements depends largely on properties of original ground on which the pavement rests, the quality of materials used in the construction of various layers of pavement and quality assurance as per relevant specifications. In general any road after construction is basically evaluated by the performance in terms of unevenness index and structural stability over a period of time. The evaluation of these two important parameters will facilitate the clear understanding of performance of various materials used in the construction and to undertake suitable rehabilitation measures if necessary.

Keywords: Expansive Soil, Flexible Pavement.

1. Introduction

Pavement evaluations are conducted to determine functional and structural conditions of a highway section either for purposes of routine monitoring or planned corrective action. Functional condition is primarily concerned with the ride quality or surface texture of a highway section. Structural condition is concerned with the structural capacity of the pavement as measured by deflection, layer thickness, and material properties. At the network level, routine evaluations can be used to develop performance models and prioritize maintenance or rehabilitation efforts and funding. At the project level, evaluations are more focused on establishing the root causes of existing distress in order to determine the best rehabilitation strategies.

Pavements respond to the various site characteristics like soil characteristics, heterogeneous traffic, climate, environmental conditions etc. in complex ways. Therefore, a pavement design should be done very carefully and in a scientific manner so that, the pavement serves its purpose with least maintenance during the expected design life. The pavement is subjected to many adverse environmental and traffic conditions. Therefore it is necessary that the road way is provided wi'

\th a suitably designed and constructed pavement structure

Two most important parameters that govern the pavement design are soil sub-grade and traffic loading. The Indian guidelines for the design of flexible pavements use soil sub-grade strength in terms of California Bearing Ratio (CBR) and traffic loading in terms of million standard axles (msa). The structural capacity of flexible pavements is attained by combined action of the different layers of the pavement. The load is directly applied on the wearing course and it gets dispersed with depth in the base, sub-base and sub-grade layers and then ultimately to the ground. Since the stress induced by traffic load is highest at the top, the quality of top and upper layer materials is better. The sub-grade layer is responsible for transferring the load from above layers to the ground. Flexible pavements are designed in such a way that the load transmitted to the sub-grade does not exceed its bearing capacity. Consequently, the thickness of layers would vary with CBR of soil and it would affect the cost of the pavement.

Standard procedures recommended in the respective I.S.Codes of practice (I.S.2720 (Part-V)-1985; I.S.2720 (Part-VI)-1972) are followed while finding the Index properties viz; Liquid Limit, Plastic Limit and Shrinkage Limit of the samples tried in this investigation.

As part of study, performance of flexible pavement on a live stretch of NH 16(Old NH5) from KM 799.999 to 901.753 (101.754 KM) is undertaken which was constructed by Gammon on BOT (annuity basis)

To analyze the performance of flexible pavement six locations are selected where in the road is laid on the non-expansive

soils but also the material used in the sub grade with varying degree of CBR values ranging from 10-14% The details of the locations are given below

Stretch 1: (S1)Km. 851.250 to Km. 852.250Stretch 2: (S2)Km. 862.750 to Km. 863.750Stretch 3: (S3)Km. 872.250 to Km. 873.250Stretch 4: (S4)Km. 881.750 to Km. 882.750Stretch 5: (S5)Km. 887.750 to Km. 888.750

Stretch 6: (S6) Km. 895.500 to Km. 896.500

2. LABORATORY EXPERIMENTATION

Laboratory experimentation is carried out on all original ground and borrow earth samples as per Indian Standard methods (IS: 2720-Part -1 to 28).

2.1 Properties of Original Ground Soil sample

Soil samples are collected from the original ground by digging trial pits at approximately 250 m intervals from each stretch and conducted the laboratory tests. The average test results for each stretch are shown in table: 1

SI.	Property	S1	S2	S3	S4	S5	S6
No							
1	Grain Size Distribution						
	Gravel (%)	1	1	3	2	2	1
	Sand (%)	53	48	37	54	57	66
	Silt and Clay (%)	46	51	60	44	41	33
2	Compaction Properties						
	Maximum Dry Density (g/cc)		1.77	1.86	1.85	1.85	1.925
	O.M.C (%)		7.37	8.68	9.78	7.95	8.25
3	3 Atterberg Limits						
	Liquid Limit (%)	33	33	32	32	32	30
	Plastic Limit (%)	19	21	17	17	17	13
	Plasticity Index (%)	14	12	15	15	15	17
4	Free swell Index (%)	17	20	18	22	17	20
	IS Classification	CL	CL	CL	CL	CL	CL
5	Soaked CBR (Compacted to MDD at OMC) (%)	8.22	7.82	7.86	6.81	8.40	7.67

Table: 1 Properties of Original Ground Soil sample

2.2 **Properties of borrow earth samples used for subgrade**

The borrow earth on which the road is formed at six stretches as explained above are tested in the laboratory to determine Grain size Analysis, Compaction properties, Atterberg Limits, Free Swell Index and CBR as per the relevant IS methods. The values of the same are shown in Table:2

	_						
SI. No	Property	S1	S2	S 3	S4	S 5	S6
1	Grain Size Distribution						
	Gravel (%)	1	3	1	1	4	5
	Sand (%)	75	76	60	59	77	76
	Silt and Clay (%)	24	21	39	40	19	19
2	Compaction Properties						
	Maximum Dry Density (g/cc)	1.9	2.0	1.9	1.9	2.0	1.9

Table :2 Properties of borrow earth used in the Stretch-1 to Stretch-6

Civil and Environmental Research ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) Vol 2, No.8, 2012

	O.M.C (%)	7.8	7.7	7.8	8.1	7.3	7.1
3	Atterberg Limits						
	Liquid Limit (%)	33	29	35	35	28	26
	Plastic Limit (%)	16	15	17	18	14	14
	Plasticity Index (%)	17	14	18	17	14	12
4	Free swell Index (%)	10	10	10	10	10	10
	IS Classification	CL	CL	CL	CL	CL	CL
5	Soaked CBR (Compacted to MDD at OMC) (%)	11.1	12.1	10.8	10.6	12.9	13.7

3. FIELD STUDIES

The stretches were observed for 5 years by conducting two types of field tests viz., Benkle Man Beam Deflection (BBD) test to determine the characteristic deflection and Fifth wheel Bump Integrator test to determine the roughness index to assess the performance of the pavement during the period

3.1 Fifth wheel Bump Integrator Test

The Surface Unevenness of the road was determined by using the parameter Road Roughness Index. The surface unevenness affect the Vehicle speed, Comfort, Vehicle operating cost and hence it gives an indication to the road users as well as developer the likely impact on cost on surface evenness. Road Roughness Index is measured using 5th wheel Bump Integrator as shown in Fig:1, which falls in the category of roughness instrument called Response –type, Road Roughness Measuring system (RTRRM)

Fig :1 5th Wheel Bump Integrator

Fig:2 Bump Integrator test in field

The above machine basically relies on capturing the dynamic response of a mechanical system (e.g a vehicle) moving along a wheel path to the road profile at a uniform speed of 32 Kmph besides maintaining the standard pneumatic tyre wheel inflated to the pressure of 5.6 Kg/ sqcm. The cumulative response (typically the sum of upward and downward movements of the axle with the chassis) is then related to the roughness characterizing that profile. Fig:2 shows the fifth wheel bump integrator connected to the vehicle just before test drive.

The road roughness (unevenness Index) value was calculated for the test run as shown below:

UI : (10*B*R)/ W mm/Km

Where

UI: Unevenness Index, mm/km

B: Calibrated Bump Integrator readings from field, mm/km

R: No of revolutions of test wheel, rev

W: No of wheel revolutions from field, rev

The following table:3 gives the guidelines of acceptable criteria of road roughness value (Table - 3 of IRC: SP-16: 2004):

CL N.	Toma of Samfara	Condition of the Road						
51.140	Type of Surface	Good	Average	Poor				
1	Surface dressing	< 3500	3500 - 4500	>4500				
2	Open Graded pre mix carpet	< 3000	3000 - 4000	>4000				
3	Mix seal surface	< 3000	3000 - 4000	>4000				
4	Semi dense bituminous macadam	< 2500	2500 - 3500	>3500				
5	Bituminous concrete	<2000	2000 - 3000	>3000				
6	Cement Concrete	<2200	2200 - 3000	>3000				

Table: 4 The Results obtained after normalizing at these selected stretches are shown in the table below

Period S1 S2 S3 S4 S5 S6	
--------------------------	--

Civil and Environmental Research ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) Vol 2, No.8, 2012

	Befo re Mon soon	After Mons oon	Befo re Mon soon	After Monsoo n								
2005		1525		1653		1662		1708		1468		1712
2006	1852	2099	1852	1995	1775	2041	1802	1972	1876	1984	1793	2145
2007	2225	2122	2237	2087	2078	2262	2109	2118	1754	1938	2134	2018
2008	2087	2110	2145	2145	2097	2161	2041	2141	1995	2168	2087	2248
2009	1673	1772	2437	2469	2234	2298	2099	2158	2110	2192	2133	2210
2010	1598		1561		1468		1340		1401		1549	

3.2 Benkelman Beam Deflection Test

The other key determining factor for the evaluation of the pavement is the structural deflection using the Benkelman Beam Deflection Method in accordance with IRC: 81This method involves the determination of the rebound deflection under static load of the rear axle to a standard Truck as the performance of the flexible pavement is closely related to the elastic deflection of pavement under the wheel loads. The deflection measurement is to be taken based on the **static** load deflection test procedure – CGRA Method (Annexure – 1 of IRC: 81-1997)

Fig: 3 shows the setup of BBD test. The values determined are shown in table:5.

Fig: 3 Benkelman Beam Deflection Test.

The characteristic deflection based on the above readings is shown below. Characteristic Deflection (Dc) = $x^- + 2\sigma$ mm

Dc = Characteristic Deflection, mm

x ⁻	=	Mean De	Mean Deflection, mm						
σ	=	Standard	tandard Deviation, mm						
The perr	The permissible criteria for the characteristics deflection for this project are given below:								
Desirabl	e conditi	on	:	up to 0.50mm					
Accepta	ble condi	tion	:	up to 0.80mm					

Table ^{.5}	The Results	obtained after	carrying ou	t the Benkelman	beam deflection tests
1 4010.5	The Results	obtained arter	carrying ou	the Delikelinan	beam demeetion tests.

	S1		S2		S3		S4		S5		S6	
Peri od	Befor e Mons oon	After Mons oon	Befor e Mons oon	After Mons oon	Befor e Mons oon	After Monso on	Befor e Mons oon	After Mons oon	Befor e Mons oon	After Monso on	Befo re Mon soon	After Mon soon
2005		0.479		0.331		0.320		0.268		0.265		0.224
2006	0.482	0.509	0.412	0.446	0.382	0.425	0.341	0.412	0.336	0.395	0.302	0.389
2007	0.552	0.577	0.484	0.508	0.464	0.501	0.484	0.536	0.452	0.522	0.452	0.511
2008	0.591	0.621	0.552	0.608	0.552	0.606	0.568	0.607	0.568	0.611	0.554	0.602
2009	0.600	0.532	0.510	0.463	0.520	0.460	0.535	0.471	0.551	0.493	0.532	0.475

4. Discussion of test results

The results obtained from the lab and field is summarized in respect of stretch, year and parameter which are shown and discussed in the subsequent sections.

4.1 Laboratory Results

4.1.1 Original Ground Samples:

The summarized lab test results on Original Ground and Subgrade material on the stretches chosen for non-expansive soils are hereby shown in table:6 and the curves of the same are plotted as shown in Fig:4

Fig:4 CBR,FSI & PI plots for different stretches.

4.1.2 Borrow Earth Samples

The summarized lab test results on borrow earth material on the stretches chosen for non-expansive soils are hereby shown in table:7 and the curves of the same are plotted as shown in Fig:5

Table: 7 Borrow earth for Subgrade average values of CBR, FSI and PI for Stretch-1 to Stretch-6

Stretch	CBR	FSI	PI
S1	11.1	10.0	17.0
S2	12.1	10.0	14.0
S3	10.8	10.0	18.0
S4	10.6	10.0	17.0
S5	12.9	10.0	14.0
S6	13.7	10.0	12.0

Fig:5 CBR, FSI and PI plots for different stretches for borrow earth.

4.2 Field Test Results

4.2.1 Roughness Index

The field test result in respect of Roughness Index are summarized and shown in table:8&9 and plots are shown in Fig:6&7

Table: 8 Aver	age values of	Roughness I	Index during	g the 5 year	rs period for	Stretch-1	to Stretch-6
14010.011.01	age failed of	1000001	marent and in the	5			to bueten o

Stratah	Roughness Index (mm/km)					
Stretch	Before Monsoon	After Monsoon				
S1	1649	1750				
S2	1688	1769				
S3	1706	1797				
S4	1726	1822				
S5	1754	1893				
S6	1851	1955				

www.iiste.org

IISTE

Fig.6 Trend of Roughness performance for Stretch-1 to Stretch-6

Table: 9	Year	wise	Roug	hness	Index	up	to :	5 years	period	1

Year	Before Monsoon	After Monsoon
2006	1570	1677
2007	1713	1815
2008	1843	1933
2009	1968	2062
2010	2133	2283

Fig: 7 Trend of Roughness Index over period of 5 years.

From the above tables and plots, it can be seen that Roughness index of the pavement increases with time and also Rough ness index is more after monsoon season when compared with the before monsoon season due to volumetric changes in Subgrade soil

Table:10 Variation of Roughness Index in 2006 & 2010(before and after Monsoon) for Stretch-1 to Stretch-6

	Roughness Index (mm/km)					
Stretch	2006 (Before Monsoon)	2006 (After Monsoon)	2010 (Before Monsoon)	2010 (After Monsoon)		
S1	1450	1525	1820	1990		
S2	1510	1575	1860	1970		
S3	1500	1612	1880	2000		
S4	1490	1650	1910	2010		
S5	1460	1600	2020	2190		
S6	1650	1710	2085	2210		

Fig: 8 Trend of Roughness index at the beginning and at the end before monsoon and after monsoon.

The trend line shows the increase of Roughness index with age and also increase of roughness index after Monsoon

4.2.2 Benkelman Beam deflection Test

The values obtained from the field at various locations are summarized and shown in table:11&12 and the plots are shown in Fig:9&10

Table:11 Average values of Deflection during the 5 years period for Stretch-1 to Stretch-6

Stretch	Deflection (mm)				
Streten	Before Monsoon	After Monsoon			
S1	0.471	0.507			
S2	0.532	0.578			
S3	0.53	0.587			
S4	0.525	0.583			
S5	0.521	0.568			
S6	0.511	0.551			

www.iiste.org

Fig.9 shows the trend of Deflection performance for Stretch-1 to Stretch-6

Table: 12	2 Average values	of Deflection	during the 5	years period	(before Me	onsoon &After	Monsoon)

Year	Before Monsoon	After Monsoon	
2006	0.366	0.389	
2007	0.414	0.458	
2008	0.488	0.544	
2009	0.594	0.659	
2010	0.713	0.762	

The above plots shows the increase of Deflection with age and also increase in Monsoon season

www.iiste.org

Table 13 Variation of Roughness Index in 2006&2010 for Stretch-1 to Stretch-6

	Deflection (mm)					
Stretch	2006 (Before Monsoon)	2006 (After Monsoon)	2010 (Before Monsoon)	2010 (After Monsoon)		
S1	0.352	0.385	0.650	0.675		
S2	0.375	0.415	0.720	0.758		
S3	0.354	0.375	0.740	0.788		
S4	0.365	0.375	0.725	0.815		
S5	0.375	0.385	0.725	0.788		
S6	0.375	0.398	0.715	0.745		

Fig: 11Trend of deflections before monsoon and after monsoon at the beginning and at the end of the period.

The above plot reflects the increase in deflection of pavement with age and also increase of deflection after Monsoon season

5. Conclusions

The following conclusions can be drawn based on the laboratory and field results made in this investigation

- 1. The nature of existing ground and the Quality of materials used in the Subgrade plays a very important role in the riding quality and structural stability of the pavements
- 2. The CBR value of ground and Borrow earth used for subgrade is the key factor which will influence the roughness index and deflection of pavements. More the CBR valve less the above and vice versa.
- 3. The Roughness index and deflection of pavement increases due to aging of pavement
- 4. The values of Roughness index and Deflection generally higher after monsoon season due to volumetric changes in the soil
- 5. The increase in Roughness index after monsoon is observed from 6 to 7% and the increase in Deflection is observed from 8to 9%
- 6. The rate of increase of Roughness index is observed from 9-10% with age and rate of increase of Deflection is observed from 14-20%

References:

- 1. Indian standard methods IS2720 part 1to 16 : standard methods for testing of soils.
- 2. IRC SP:16 -2004 Procedure and acceptance criteria for Roughness Index.
- 3. IRC:81- 1997: Overlay design for flexible pavements.
- 4. MORT&H: Standard Specification for Highways.
- 5. IS: 2720 (1985) (Reaffirmed 1995) Indian Standard Methods of Test for Soils, Part 5, Determination of liquid and plastic limit ,Bureau of Indian Standards, New Delhi.
- 6. I.S: 2720-Part VI, 1972, Determination of Shrinkage factors

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE's homepage: <u>http://www.iiste.org</u>

CALL FOR PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There's no deadline for submission. **Prospective authors of IISTE journals can find the submission instruction on the following page:** <u>http://www.iiste.org/Journals/</u>

The IISTE editorial team promises to the review and publish all the qualified submissions in a **fast** manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

