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Abstract 

This paper focuses on an experimental investigation and statistical analysis of elevated temperature flexural strengths of 

lightweight foamed concrete (LFC) strengthened with polypropylene fiber (PF) and fly ash (FA) up to 600°C. Five mixes of 

LFC with 600, 800, 1000, 1200 and 1400 kg/m³ densities were made and tested in current exploration. Two mixes were 

casted by substituting 15% and 30% of cement content with FA and in other two series; PF was added to LFC mix, 

correspondingly by 0.2% and 0.4% of binder volume, one controlled mixture without additives was also fabricated. From 

the experimental results, it can be concluded that the lessening of LFC flexural strength exposed to elevated temperature 

may be mainly due to the formation of micro cracks at temperature exceeding 93°C since the flexural strength is 

unfavourably influenced by formation of cracks so that a rigorous strength loss was experiential at 600°C and the flexural 

strength was only about 40% of its original value. In order to predict the flexural strength of LFC at high temperatures, 

some existing models applied for normal strength concrete have been considered. The most consistent model for predicting 

flexural strength of LFC strengthened with PF and FA and also LFC made by ordinary Portland Cement CEM1 at elevated 

temperature is Li and Guo prediction model. 
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1. Introduction 

Lightweight foamed concrete (LFC) is an immense preponderance of concrete containing no large aggregates, only fine 

sand and with exceptionally light weight materials containing cement, water and foam. LFC is categorized as lightweight 

concrete that been formed by cement paste in which air-voids are entrapped in the mortar by a suitable foaming agent. To 

date, LFC has been utilized predominantly as a filler material in construction and civil engineering works. However, its 

good thermal and acoustic performance designates its strong prospective as a material in building construction. The 

development of hydrolyzed protein based foaming agents and specialized foam generating equipment has improved the 

stability of the foam, making it possible to manufacture LFC for structural applications. 

The degradation mechanisms of LFC at elevated temperatures comprise chemical degradation and mechanical worsening. 

The dehydration process in the cement is considerable at temperatures above 110°C. At higher temperature about 300°C the 

internal water pressure increases the internal tensile stresses and causes expansion of the cracks (Li et al., 2004). Existence 

of cracks caused by high temperature leads to reduction of LFC strength. However, the cracking degree influences more 

importantly the flexural strength than the compressive strength since the flexural strength is more sensitive to cracks caused 

by high temperatures to concrete. Othuman Mydin and Wang (2012) conducted a research on mechanical properties of LFC 

subjected to elevated temperatures. And they found that the flexural strength of LFC decreased primarily past 90°C. It was 

concluded that micro cracking is the main mechanism causes degradation, which occurs as the free water and chemically 

bound water evaporates from the porous body.  

Song et al (2005) concluded that crack control played a vital role in performance life of concrete structure. Concerning the 

crack control, the incorporation of discrete fibers into vulnerable concrete was useful and effective. For decades, fibers have 

been extensively used to improve ductility of concrete. According to Sing et al. (2004) fibers were increasingly used for 

reinforcement of cementitious matrix to improve the toughness and energy-absorption capacity and to reduce the cracking 

sensitivity of the matrix. At present, it is distinguished that there are a few types of fiber which can also improve the residual 

characteristic of concrete exposed to elevated temperatures. Several studies have shown that the thermal stability of concrete 

is improved by incorporating polypropylene fibers (PF) into the mix (Kalifa et al., 2001). PFs have been used to 

considerably reduce the amount of spalling effect and cracking whilst enhance the residual strength. The micro PFs decrease 

the shrinkage micro cracks before heating and reduce the spalling at the high temperature. However, minimal or detrimental 
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effects of the PFs on the residual behavior of the heated concrete were also observed.  

LFC has also a potential for large scale utilization of wastes like fly ash (FA). The advantageous contribution of FA on high 

temperature resistance of concrete was proved by several researches. At elevated temperature, the compressive and splitting 

tensile strength loss in concrete contains FA is less than that of concrete made by ordinary Portland Cement CEM1. It shows 

that FA contributes to the interfacial properties mainly by the pozzolanic effect. The increase in strength can be caused by 

the high strength ceramic bonds that created due to thermo-chemical reactions at elevated temperatures. In addition, FA 

reduces the surface cracking of concrete both at elevated temperatures and after post-cooling in air or water. There is a lack 

of information on thermal properties of LFC contain additives at elevated temperature since the most of researches were 

carried out on LFC properties at ambient temperature.  

Hence, the main purpose of this research is to examine the effect of high temperature on the flexural strength of LFC 

strengthened with PF and FA. Five different mixes will be made for each density; plain LFC is made as a controller, two 

mixes will be made by replacing 15% and 30% of cement mass with FA and in other two series, PF will be added to LFC 

mix, respectively by 0.2% and 0.4% of binder volume. In mix design a constant water-cement ratio of 0.5 and cement-sand 

ratio of 2:1 will be considered for all series. Afterwards, test results will be compared with proposed models for normal 

concrete and the prediction equation, which is in the best agreement with test results will be suggested. 

 

2. Material and Mix Proportion 

LFC were made of cement, water, filler and a liquid chemical diluted with water and aerated to form the LFC samples for 

this research were made of cement, water, filler and a liquid chemical diluted with water and aerated to form the foaming 

agent. The foaming agent was diluted with water with a ratio of 1:33 by volume. A constant cement-sand ratio of 1:1.5 and 

water-cement ratio of 0.45 for all mixes were excogitated. All the applied materials in the experiment were Malaysian local 

productions. The type of the applied cement in all admixtures was Type I ordinary Portland Cement CEM1 (Blue Lion 

trademark), which is available in bulk form 50kg packs and complied with MS522 and BSEN 196.  

Two types of furnaces were utilized in sequence to heat the samples including low temperature electric furnace and high 

temperature electric furnace with a maximum operating temperature of 450 and 1000°C respectively. Then, bending 

resistance test was carried out at predetermined temperatures of 20, 100, 200, 300, 400, 500, and 600°C. Flexural strength 

test of LFC specimens at 20°C were conducted at room temperature. The temperatures of 100 to 400 degrees were applied 

at specimens in low temperature furnace and other specimens were heated up to 600°C degrees in high temperature electric 

furnace. Figure 1 show an electric furnace used to heat LFC samples. 

 

 

Figure 1. Electric furnace. 
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For flexural strength test, rectangular parallelepipeds of height (h) 25 mm, width (w) 125 mm and length L (l) 350 mm 

dimensions sample were placed on two supports with 200mm length between them and a load at the midpoint of the 

samples was initiated in the way that is presented in Figure 2. The maximum stress and strain were calculated on the 

incremental load applied for the evaluation of bending strength. 

 

 

Figure 2. Simply supported specimen subjected to a concentrated load at the mid span. 

 

3. Experimental Results and Discussion 

 

3.1 Flexural Strength-Temperature Relationship 

Figure 3 demonstrates the flexural strength of control LFC at different temperatures. It can be clearly seen from Figure 3 

that the LFC flexural strength decreased with temperature for all densities considered for this study. Physical and chemical 

changes and slight volume changes take place between 93 and 200 °C when evaporation of the free moisture. Thus at 200 

°C flexural strength reduced to 85% of its original value for all series. At a temperature of 200 to 300 °C, dehydration 

caused decomposition of the C-S-H and sulfoaluminate phases and surface hairline cracks begin to form. Therefore, all 

series lost about 25% of their original flexural strength value at this stage since existence of these cracks reduced the 

effective cross-sectional area, and the tensile stress caused expansion of the cracks and cracking. At 400°C flexural strength 

was about 65% of the initial value for all densities. At 600°C flexural strength was only about 40% of the original value for 

all densities 



Civil and Environmental Research                                                                            www.iiste.org 
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol 2, No.7, 2012 

 

 

4 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

20 100 200 300 400 500 600

Exposed Temperature (°C)

F
le
x
u
ra
l 
S
tr
e
n
g
th
 (
N
/m
m

2
)

600 kg/m3

800 kg/m3

1000 kg/m3

1200 kg/m3

1400 kg/m3

 

Figure 3. Flexural strength of control LFC exposed to different temperatures. 

 

3.2 Flexural Strength-Density Relationship 

Flexural strength of control LFC with different densities at each applied temperature ranging from 20 to 600°C is presented 

in Figure 4. It can be seen that flexural strength of LFC with higher density achieved a higher value at each predetermined 

temperature. As far as LFC is concern, its density is controlled by the air during the foaming process. Occupying space 

between the cement particles create more porous cement, increase the air void values and eventually lead to reduction of 

hardened concrete density. Lower density LFC display more open microstructure in comparison with higher density mixes 

of the same mix constituents and they enclose greater volume of air bubbles. According to the fact that the strength of 

concrete is adversely influenced by the existence of voids in the concrete it is concluded that, for a given cement 

combination and content, at equal water to binder ratio, the lower density LFC with greater air contents will have a lower 

flexural strength. 
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Figure 4. Flexural tensile strength of control LFC with different densities 
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3.3 Flexural Strength-Additive Relationship 

It can be seen from Figure 5 that flexural strength of LFC increased about 4-22% and 7-30% by adding 0.2% and 0.4% PF 

correspondingly compared to that of control LFC. Enhancement in flexural strength depends on numerous factors such as 

the fiber content, LFC density and the temperature level. By adding PF to LFC with higher density was more effective e.g. 

0.4% PF increased the flexural strength of 600 kg/m
3
 density by about 10% at 600°C while the improvement value for 1400 

kg/m
3
 density was 30% higher than its original value at the same temperature. Commonly, at each temperature exposure, 

flexural strength of higher density LFC was increased significantly by adding PF compared to LFC with lower density. In 

addition, improvement level at different temperature was different; for all densities adding PF was most efficient at 600°C 

and the least value of improvement can be seen at the ambient temperature. PF melt at nearly 160-170°C and produce 

expansion channels. The optimum level of adding PF to LFC was 0.4% which significantly improved the flexural strength 

of composite and reduced spalling effect at the elevated temperature by decreasing the shrinkage cracks. 

On the other hand, the flexural strength of the LFC contain 15% and 30% FA are higher than that of controlled concrete 

(refer Figure 5). From figure 5, by replacing 15% of cement content by FA improved flexural strength of all series about 

3-18%. For each density, the percentage of improvement was permanently the same in all temperature degrees except for 

LFC with 600 kg/m
3
 density that improvement was more significant at higher temperature. 

For LFC with 800 kg/m
3
 density, 15% replacement of cement with FA, increased the flexural strength values by about 6% at 

each applied temperatures followed by 9%, 13% and 18% improvement of the flexural strength of LFC with 1000, 1200 and 

1400 kg/m3 densities respectively. Generally, for both percentages, replacement of cement with FA was more effective for 

LFC with higher density. At each examined temperature, 30% cement replacement with FA increased the flexural strength 

of LFC with 800, 1000, 1200 and 1400 kg/m3 densities by about 10%, 15%, 27% and 40% respectively. 

FA increases the resistance of concrete against high temperature due to the formation of tobermorite that is a product of lime 

and FA at high pressure and temperature which is about two to three times stronger than the CSH gel (Nasser and Marzouk, 

1979). Optimum level of FA was 30% which improved the flexural strength of LFC by 4-40% since the higher FA contents 

led to more uniformly distributed cracks.  
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Figure 5. Flexural strength of LFC made by different compositions at different temperatures 

 

4. Models for Predicting Flexural Strength of Concrete at Elevated Temperature 

Successful prediction of LFC properties results in a great time and cost savings to the concrete industry. However, despite 

increasingly interest in using LFC, there are very few available models for predicting properties of high temperature 

exposed LFC. Some models are suggested to predict the tensile strength of normal concrete at elevated temperature. 

Othuman Mydin and Wang (2012) examined following models (Eq. (1,2,3)) on LFC at different temperatures and concluded 

that the model proposed by Li and Gao (1993) were a near perfect match with test results since the model of Anderberg and 

Thelandersson (1976) provided the upper bound for fct and the values achieved by Eurocode 2 (2004) model did not fit well 

with experimental results. The aim of this section is to examine the applicability of these models to flexural strength of LFC 

incorporating different percentages of FA and PF at elevated temperature. 

 

The Anderberg and Thelandersson (1976) model include three equations for concrete exposed to temperature in a range of 

20-1000 degrees: 

fcrT = fcr (-000526T + 1.01052)  20°C<T<400°C    (1a) 

fcrT = fcr (-0025T + 1.8)    400°C < T < 600°C     (1b) 

fcrT = fcr (-00005T + 0.6)  600 °C < T < 1000 °C    (1c) 

where fcrT and fcr are the tensile strength of concrete at elevated temperature and ambient temperature correspondingly and 

T is temperature in °C.   

Two followings equations are prediction models suggested by Eurocode 2 (2004):  

fcrT = fcr           20°C < T < 100°C           (2a) 

fcrT = fcr (-0.002T + 1.2  100°C<T<600°C         (2b) 

Li and Guo (1993) also recommended an equation for prediction of tensile strength of a high temperature exposed concrete: 

fcrT = fcr (1-001 .T + 0.6)  20°C<T<1000°C        (3) 
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(e) 1400 kg/m3 

Figure 6. Predicted flexural strength using different models and the average test results for control LFC 
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                   (c) 1000 kg/m
3             

                     (d) 1200 kg/m
3
 

 

(e) 1400 kg/m
3
 

Figure 7. Predicted flexural strength using different models and the average test results for LFC incorporate 0.2% PF 

Figure 6 presents a comparison between the predicted flexural strength using mentioned three models and the average test 

results for LFC with and without additives. From comparison following data are obtained. The predicted flexural tensile 

strength values by Li and Guo model are 2-4% lower of the experimental results at the ambient temperature. At 100, 200, 

300 and 400 °C predicted values are 5-10% lower of the actual values and at 500 and 600°C the predicted values are 0-7% 

lower of the experimental results.  

Using Anderberg and Thelandersson (1979) prediction model, the predicted flexural tensile strength values are equal to 

experimental results up to 100 °C. At 200, 300, 400 and 500°C the predicted values are 2-7, 9-14, 18-21 and 0-7% higher 

than experimental results respectively. However, at 600 °C, the predicted values are 20-30% lower than the experimental 

results.  

Predicted values by Eurocode 2 (2004) are equal to the experimental results at ambient temperature. At 200, 300, 400 and 

500 °C, the predicted values are 5-10, 20, 36-40 and 60-63% lower than the experimental results respectively. Predicted 

value at 600 °C is equal to zero.  

   

                     (a) 600 kg/m
3  
                           (b) 800 kg/m

3
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                   (c) 1000 kg/m3                                  (d) 1200 kg/m3 

 

(e) 1400 kg/m
3
 

Figure 8. Predicted flexural strength using different models and the average test results for LFC incorporate 30% FA 

Figure 7 shows the comparison between the predicted flexural strength using different models and the average test results 

for LFC incorporate 0.2% PF. Whereas Figure 8 illustrates the comparison between the predicted flexural strength using 

different models and the average test results for LFC incorporate 30% FA. It can be clearly seen from these figures that the 

most reliable model for predicting flexural strength of LFC incorporating FA and PF and also LFC made by ordinary 

Portland Cement CEM1 at elevated temperature is Li and Guo prediction model. 

 

5. Conclusion 

There are quite a few conclusions can be drawn from this study. LFC flexural strength decreases with temperature for all 

densities considered. At each predetermined temperature, flexural strength of LFC with higher density achieves a higher 

value since lower density LFC cement is more porous and contains more air void which eventually leads to reduction of 

hardened concrete density and strength. Flexural strength of the LFC contain 15% and 30% FA are higher than controlled 

concrete. Optimum value of cement replacement with FA is 30% of cement mass which improves the flexural strength of 

LFC by 4-40%. On the other hand, flexural strength of LFC increases about 7-30% and 4-22% by adding 0.4% and 0.2% PF 

correspondingly. Usually, at each applied temperatures, flexural strength of higher density LFC is more enhanced by adding 

PF compared to LFC with lower density. On top, enhancement percentage at different temperature is different; for all 

densities, adding PF is most effective at 600° C and the least value of improvement can be seen at the ambient temperature. 

From the results, the optimum level of adding PF to LFC is 0.4% which considerably improved the flexural strength of 

composite. Last but not least, the most reliable model for predicting flexural strength of LFC incorporating FA and PF and 

also LFC made by ordinary Portland Cement CEM1 at elevated temperature is Li and Guo prediction model.  

 

Acknowledgements 

The authors would like to thank Universiti Sains Malaysia and Ministry of Higher Education Malaysia for their financial 

supports under Fundamental Research Grant Scheme (FRGS). No. 203/PPBGN/6711256.  



Civil and Environmental Research                                                                            www.iiste.org 
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol 2, No.7, 2012 

 

 

10 

 

 

References 

Li, M., Qian, C. & Sun, W. (2004), “Mechanical properties of high-strength concrete after fire”, Journal of Cement and 

Concrete Research”, 34(6), Elsevier, 1001-1005. 

Othuman Mydin M.A. & Wang, Y.C. (2012), “Mechanical properties of foamed concrete exposed to high temperatures”, 

Journal of Construction and Building Materials, 26(1), Elsevier, 638-654. 

Song, P.S., Wu, J.C., Hwang, S. & Sheu, B.C. (2005), “Statistical analysis of impact strength and strength reliability of 

steel-polypropylene hybrid fiber reinforced concrete”, Journal of Construction and Building Materials, 19(1), Elsevier, 1-9. 

Sing, S., Shukla, A. & Brown, R. (2004), “Pullout behavior of polypropylene fibers from cementitious matrix. 

Kalifa, P., Chene, G. & Galle, C. (2001), “High-temperature behavior of HPC with polypropylene fibers from spalling to 

microstructure, Journal of Cement and Concrete Composite, 31(10), Elsevier, 1487-1499. 

Nasser, K.W. & Marzouk, H.M. (1979), “Properties of mass concrete containing fly ash at high temperatures”, Journal of 

American Concrete Institute, 76(4), ACI, 537-550. 

Li, W. & Guo, ZhH. (1993), “Experimental investigation on strength and deformation of concrete under high temperature”, 

Journal of Building Structures (China), 14(1), 8-16. 

Anderberg, Y. & Thelandersson S. (1976), “Stress and de-formation characteristics of concrete at high tem-peratures: 

experimental investigation and material behavior model”, Bulletin 54. Lund, Sweden: Lund Institute of Technology. 

CEN 1992-1-2 (2004), “Eurocode 2, Design of concrete structures, Part 1.2: general rules – structural fire design”, 

European Committee for Standardisation Document: Brussels. 

 



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.   Prospective authors of 

IISTE journals can find the submission instruction on the following page: 

http://www.iiste.org/Journals/ 

The IISTE editorial team promises to the review and publish all the qualified 

submissions in a fast manner. All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than 

those inseparable from gaining access to the internet itself. Printed version of the 

journals is also available upon request of readers and authors.  

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/Journals/

