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Abstract 

In this study an adaptive neuro-fuzzy inference system was used for rainfall-runoff modelling for the 

Nagwan watershed in the Hazaribagh District of Jharkhand, India. Different combinations of rainfall and 

runoff were considered as the inputs to the model, and runoff of the current day was considered as the 

output. Input space partitioning for model structure identification was done by grid partitioning. A hybrid 

learning algorithm consisting of back-propagation and least-squares estimation was used to train the model 

for runoff estimation. The optimal learning parameters were determined by trial and error using gaussian 

membership functions. Root mean square error and correlation coefficient were used for selecting the best 

performing model. Model with one input and 91 gauss membership function outperformed and used for 

runoff prediction. 
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Introduction 

The hydrologic behavior of rainfall-runoff process is very complicated phenomenon which is 

controlled by large number of climatic and physiographic factors that vary with both the time and space. 

The relationship between rainfall and resulting runoff is quite complex and is influenced by factors relating 

the topography and climate.  

In recent years, artificial neural network (ANN), fuzzy logic, genetic algorithm and chaos theory have been 

widely applied in the sphere of hydrology and water resource. ANN have been recently accepted as an 

efficient alternative tool for modeling of complex hydrologic systems and widely used for prediction. Some 

specific applications of ANN to hydrology include modeling rainfall-runoff process (Sajikumar et. al., 

1999). Fuzzy logic method was first developed to explain the human thinking and decision system by 

Zadeh (1965). Several studies have been carried out using fuzzy logic in hydrology and water resources 

planning (Mahabir et al. 2003; Chang et al., 2002). 

 Adaptive neuro-fuzzy inference system (ANFIS) which is integration of neural networks and fuzzy 

logic has the potential to capture the benefits of both these fields in a single framework. ANFIS utilizes 

linguistic information from the fuzzy logic as well learning capability of an ANN. Adaptive neuro fuzzy 

inference system (ANFIS) is a fuzzy mapping algorithm that is based on Tagaki-Sugeno-Kang (TSK) fuzzy 

inference system (Jang et al., 1997; Loukas, 2001). ANFIS used for many application such as, database 

management, system design and planning/forecasting of the water resources (Nayak et. al., 2004; Firat et. 

al., 2009 and Wang et. al 2009). 
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Study area 

 The Nagwan watershed is located at Upper Siwane river of Damodar-Barakar basin in the Hazaribagh 

District of Jharkhand, India, and lies between 85.250 to 85.430 E longitudes and 23.990 to 24.120 N latitude. 

The location and topographic map of Nagwan watershed is shown in Figure 3.1. The catchment is 

rectangular in shape with an area of 92.46 sq km and length-width (L/W) ratio as 2.7. The maximum and 

minimum elevation in the catchment is 640 m and 550 m respectively above mean sea level. The catchment 

has very undulating and irregular slope varying from 1 to 25%. The climate of watershed is sub-tropical 

with three distinct seasons viz. winter (October to February), summer (March to May) and monsoon (June 

to September). The average annual  

 

 

 

 

 

 

 

 

 

 

 

 

                        Fig 1. Location and topographic map of Nagwan watershed 

rainfall in the watershed is about 1137 mm. About 90% of the rainfall occurs due to southeast monsoon 

during the period of 1st June to 30th   September. The daily mean temperature of the watershed ranges from 

30C to 400C. The mean monthly relative humidity varies from a minimum of 40% in the month of April to a 

maximum of 85% in the month of July. 

 

Materials and methods 

 

Adaptive neuro-fuzzy inference systems (ANFIS) 
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Adaptive Neuro Fuzzy Inference System (ANFIS) is a fuzzy mapping algorithm that is based on 

Tagaki-Sugeno-Kang (TSK) fuzzy inference system (Jang et al., 1997 and Loukas, 2001).ANFIS is 

integration of neural networks and fuzzy logic and have the potential to capture the benefits of both these 

fields in a single framework. ANFIS utilizes linguistic information from the fuzzy logic as well learning 

capability of an ANN for automatic fuzzy if-then rule generation and parameter optimization. 

  A conceptual ANFIS consists of five components: inputs and output database, a Fuzzy system 

generator, a Fuzzy Inference System (FIS), and an Adaptive Neural Network. The Sugeno- type Fuzzy 

Inference System, (Takagi and Sugeno, 1985) which is the combination of a FIS and an Adaptive Neural 

Network, was used in this study for rainfall-runoff modeling. The optimization method used is   hybrid 

learning algorithms. 

For a first-order Sugeno model, a common rule set with two fuzzy if-then rules is as follows:  
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where, x1 and x2 are the crisp inputs to the node  and A1, B1
, A

2
, B

2 
are fuzzy sets, a

i
, b

i 
and c

i 
(i = 1, 2) are 

the coefficients of the first-order polynomial linear functions. Structure of a two-input first-order Sugeno 

fuzzy model with two rules is shown in Figure 1 It is possible to assign a different weight to each rule based 

on the structure of the system, where, weights w
1 
and w

2 
are assigned to rules 1 and 2 respectively.  

and  f = weighted average                                                                                      

The ANFIS consists of five layers (Jang, 1993), shown in Figure 3.  

The five layers of model are as follows:  

       Layer1: Each node output in this layer is fuzzified by membership grade of a 

fuzzy set corresponding to each input.  

O
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Where, x
1 

and x
2 

are the inputs to node i (i = 1, 2 for x
1 

and i = 3, 4 for x
2
) and 

x1 (or x2) is the input to the i th node and Ai (or Bi-2) is a fuzzy label. 
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Fig 2. ANFIS architecture 

 

Layer 2: Each node output in this layer represents the firing strength of a rule, which performs fuzzy, AND 

operation. Each node in this layer, labeled Π, is a stable node which multiplies incoming signals and sends 

the product out.  
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Layer 3: Each node output in this layer is the normalized value of layer 2, i.e., the normalized firing 
strengths.  
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Layer 4: Each node output in this layer is the normalized value of each fuzzy rule. The nodes in this layer 

are adaptive .Here iW  is the output of layer 3, and {ai,bi,ci}  are  the parameter set. Parameters of this 

layer are referred to as consequence or output parameters. 

i = 1, 2                                       

 …(1.4)                                                                                          

Layer 5: The node output in this layer is the overall output of the system, which is the summation of all 

coming signals.  
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  … (1.5)                                                                                                                           

 

            

 

In this way the input vector was fed through the network layer by layer. The two major phases for 

implementing the ANFIS for applications are the structure identification phase and the parameter 

identification phase. The structure identification phase involves finding a suitable number of fuzzy rules 

and fuzzy sets and a proper partition feature space. The parameter identification phase involves the 

adjustment of the premise and consequence parameters of the system.  

Optimizing the values of the adaptive parameters is of vital importance for the performance of 

the adaptive system. Jang et al. (1997) developed a hybrid learning algorithm for ANFIS to approximate 

the precise value of the model parameters. The hybrid algorithm, which is a combination of gradient 

descent and the least-squares method, consists of two alternating phases: (1) in the backward pass, the error 

signals recursively propagated backwards and the premise parameters are updated by gradient descent 

, and (2) least squares method finds a proper set of consequent parameters (Jang et al., 1997). In premise 

parameters set for a given fixed values, the overall output can be expressed as a linear combination of the 

consequent parameters. 

                           AX = B                      … (1.6) 

Where, X is an unknown vector whose elements are the consequent parameters. A least squares estimator of X, 

namely X* , is chosen to minimize the squared error . Sequential formulas are employed to 

compute the least squares estimator of X. For given fixed values of premise parameters, the estimated 

consequent parameters are known to be globally optimal. 

 

Material and methods 

The daily rainfall and runoff data of monsoon period (June to September) for the period 1993-1999 were 

used to describe daily time series and development of models. Daily rainfall and runoff data for the year of 

1993 to 1999 were used for the training (calibration) of the developed model whereas daily data for the year 

of 2000 to 2002 were used for verification (testing) of the models. 

Different combinations of rainfall and runoff were considered as the inputs to the model, and 

runoff of the current day was considered as the output. Input space partitioning for model structure 

identification was done by grid partition. Hybrid learning algorithm was used to train the models for runoff 

prediction. The optimal learning parameters were determined by trial and error (Kim et al., 2002) for 

gaussian membership function. In order to choose better model among developed models root mean square 

error and correlation coefficient was computed (Nayak et al., 2005). Different combinations of the runoff 

and rainfall were used to construct the appropriate input structure in the runoff forecasting model. 

 

Result and Discussions 
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The study revealed that the highest value of correlation coefficient and least value of root mean square error 

were obtained for model with one input as current day rainfall and output as current day runoff. There were 

vague results for increasing number of inputs (Previous day’s rainfall as well as previous day’s runoff). It 

implies that runoff mainly depends upon rainfall of current day. It is due to small area of watershed and 

varying slope condition.  Among triangular, bell shaped, trapezoidal and gaussian membership function, 

the gaussian membership function was found most suitable for this study. By increasing membership 

function number, best fit model was found for 91 gauss membership functions. Input space partitioning for 

model structure identification was done by grid partition because of only one input. Quantitative 

performance indices such as root mean square error and correlation coefficient for model are 0.964 and 

1.087. In case of testing period root mean square error and correlation coefficient are 0.867 and 1.390 

respectively. 

 

 
 

                       Fig 3. Observed and estimated runoff during training period 
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                        Fig 4. Observed and estimated runoff during testing period 

 

Conclusions 

The present study discusses the application and usefulness of adaptive neuro fuzzy inference system based 

modelling approach for estimation of runoff. The visual observation based on the graphical comparison 

between observed and predicted values and the qualitative performance assessment of the model indicates 

that ANFIS can be used effectively for hydrological rainfall runoff modelling. The ANFIS model is flexible 

and has options of incorporating the fuzzy nature of the real-world system. 
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