Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) pLLy
Vol 3, No.1, 2012 ST

Query Optimization to Improve Performance of the Code
Execution
Swati Tawalare S.S Dhande

Dept of CSE, SIPNAs College of Engineering & Teology,Amravati, INDIA
* E-mail of the corresponding authoswatitawalare18@rediffmail.com

Abstract

Object-Oriented Programming (OOP) is one of the tnsogcessful techniques for abstraction. Bundling
together objects into collections of objects, dmhtoperating on these collections, is a fundarheata of
main stream object-oriented programming langua@égect querying is an abstraction of operationsrove
collections, whereas manual implementations aréopeed at low level which forces the developers to
specify how a task must be done. Some object-aiefenguages allow the programmers to express
queries explicitly in the code, which are optimizesing the query optimization techniques from the
database domain. In this regard, we have devel@gpéechnique that performs query optimization at
compile-time to reduce the burden of optimizatidrrun-time to improve the performance of the code
execution.

Keywords- Querying; joins; compiletime; run-time; histograms; query optimization
Introduction

Query processing the sequence of actions that takes as inpuesydarmulated in the user language and
delivers as result the data asked for. Query peitgsnvolves query transformation and query execout
Query transformatiois the mapping of queries and query results badkfamh through the different levels
of the DBMS. Query execution is the actual dateeeal according to some access plan, i.e. a segueh
operations in the physical access language. An itapbtask in query processing is query optimizatio
Usually, user languages are high-level, declaratareguages allowing to state what data should be
retrieved, not how to retrieve them. For each gsery, many different execution plans exist, eaavirig

its own associated costs. The task of query opétitn ideally is to find the best execution plae, the
execution plan that costs the least, accordingioesperformance measure. Usually, one has to ajcspt
feasible execution plans, because the number oamstrally equivalent plans is to large to allow for
enumerative search A query is an expression thatribes information that one wants to search foa in
database.

For example, query optimizers select the mostiefiicaccess plan for a query based on the estincatgd

of competing plans. These costs are in turn bagsedstimates of intermediate result sizes. Sophistit
user interfaces also use estimates of result sigdeedback to users before a query is actuallguted.
Such feedback helps to detect errors in queriesiszonceptions about the database. Query resek siz
usually estimated using a variety of statisticst thee maintained for relations in the database.s&he
statistics merely approximate the distribution efadvalues in attributes of the relations. Consetiye
they represent an inaccurate picture of the actaatents of the database. The resulting size-estima
errors may undermine the validity of the optimigedecisions or render the user interface applisatio
unreliable. Earlier work has shown that errors ireny result size estimates may increase exponintial
with the number of joins. This result, in conjuocti with the increasing complexity of queries,
demonstrates the critical importance of accuratienation .Several techniques have been proposéikin
literature to estimate query result sizes, inclgdiistograms, sampling, and parametric techniqQds.
these, histograms approximate the frequency digidb of an attribute by grouping attribute valuet®

44

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) pLLy
Vol 3, No.1, 2012 ST

“buckets” (subsets) and approximating true attébualues and their frequencies in the data based on
summary statistics maintained in each bucket. Thimmdvantages of histograms over other technigtees
that they incur almost no run-time overhead, theyat require the data to fit a probability distriion or a
polynomial and, for most real-world databases, eéhexist histograms that produce low-error estimates
while occupying reasonably small space Althougholgiems are used in many systems, the histograms
proposed in earlier works are not always effectivegpractical. For exampleguidepth histograms work
well for range queries only when the data distidoubas low skew, whileerial histograms have only been
proven optimal for equality joins and selectionsewta list of all the attribute values in each btidke
maintained. Implementing operations over theseectitins with conventional techniques severely lanks
abstraction. Step-by-step instructions must be igeal as to how to iterate over the collection, ctele
elements, and operate on the elements. Manualkifgimg the implementation of these operations gixe
how they are to be evaluated, rendering it impdsgi accommodate changes in the state of the @mogr
that could make another approach superior. Thisecially problematic when combining two colleatio

of objects together, frequently an expensive opmraObject querying is a way to select an objectet of
objects, from a collection or set of collections.

JQL is an addition to Java that provides the cdipgbor querying collections of objects. These gas can

be applied on objects in collections in the prog@ncan be used for checking expressions on dhirtes

of specific types at run-time. Queries allow themuengine to take up the task of implementatiomilie
by providing abstractions to handle sets of objéutss making the code smaller and permitting thergu
evaluator to choose the optimization approacheamijeally even though the situation changes at ime-t
The Java code and the JQL query will give the saetef results but the JQL code is elegant, beeé
abstracts away the accurate method of finding thehes. Java Query Language (JQL) by generating the
dynamic join ordering strategies. The Java Quenyguage provides straightforward object querying for
Java. JQL designed as an extension to Java, ankknrepted a prototype JQL system, in order to
investigate the performance and usability charaties of object querying. Queries can be evaluatest
one collection of objects, or over many collecticaifowing the inspection of relationships betwebijects

in these collections. The Java Query Language (d@dyides first-class object querying for Java.

For example A difficulty with this decomposition iepresenting students who are also teachers. One
solution is to have separate Student and Teachectsbwhich are related by name.

The following code can then be used to identifglenits who are teachers:
List<Tuple2<Faculty, Student>>

matches = new Array List<..>();

for(Faculty f : all Faculty) { for(Student s : &itudents) {
if(s.name.equals(f.name)) {
matches. add(new Tuple2<Faculty, Student>(f,s));
Y

In database terms, this code is performing a jaintlee name field for the allFaculty and allStudent
collections. The code is cumbersome and can beaReglwith the following object query, which is more
succinct and, potentially, more efficient:

List<Tuple2<Faculty, Student>> matches;
Matches = selectAll (Faculty f=allFaculty, StuderallStudents: f.name.equals (s.name));

This gives exactly the same set of results asdbp tode. The selectAll primitive returns a listtoples
containing all possible instantiations of the domeariables (i.e. those declared before the colamgre
the query expression holds (i.e. that after th@mpl The domain variables determine the set ofabje
which the query ranges over: they can be initidliom a collection (as above); or, left uninited to
range over the entire extent set (i.e. the setflohstantiated objects) of their type. Queries ckgfine as

45

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) pLLy
Vol 3, No.1, 2012 ST

many domain variables as necessary and can makaf tlse usual array of expression constructs faand
Java. One difference from normal Java expressirikat Boolean operators, such as && and ||, do not
imply an order of execution for their operands. sThilows flexibility in the order they are evaludite
potentially leading to greater efficiency. As wal its simplicity, there are other advantages toguthis
query in place of the loop code. The query evaluatn apply well-known optimizations which the
programmer might have missed. By leaving the degisif which optimization to apply until runtime, it
can make a more informed decision based upon dynproperties of the data itself (such as the redati
size of input sets) something that is, at besfjcdif for a programmer to do. A good example, whic
applies in this case, is the so-called hash-joie dea is to avoid enumerating all of all Facultyalk
Students when there are few matches. A hash-magpnistructed from the largest of the two collections
which maps the value being joined upon (in thisscaame) back to its objects. This still requiresfiD(
time in the worst-case, where s = |all Studentd|famn |all Faculty|, but in practice is likely te linear in
the number of matches (contrasting with a nested Which always takes O(sf) time).

Implementation

We have prototyped a system, called the Java Queamguage (JQL), which permits queries over object
extents and collections in Java. The implementatamsists of three main components: a compileteayg
evaluator and a runtime system for tracking alivacbbjects in the program. The latter enablesqnery
evaluator to range over the extent sets of allselgasOur purpose in doing this is twofold: firstly,assess
the performance impact of such a system; secotullyrovide a platform for experimenting with theeéd

of using queries as first-class language constructs

JQL Query Evaluator

The core component of the JQL system is the queajuator. This is responsible for applying whatever
optimizations it can to evaluate queries efficignfThe evaluator is called at runtime with a tree
representation of the query (called the query trék¢ tree itself is either constructed by the Zmpiler
(for static queries) or by the user (for dynamierges).

Evaluation Pipeline.

The JQL evaluator evaluates a query by pushingsutiirough a staged pipeline. Each stage, knoven as
join in the language of databases, correspondsdandition in the query. Only tuples matching ani®i
condition are allowed to pass through to the nElbse tuples which make it through to the end doed

to the result set. Each join accepts two listsupiids, L(eft) and R(ight), and combines them togeth
producing a single list. We enforce the restrictibat, for each intermediate join, either both itspcome
from the previous stage or one comes directly framinput collection and the other comes from the
previous stage. This is known as a linear procgdsee and it simplifies the query evaluator, @ltgh it
can lead to inefficiency in some cases. The wayhith a join combines tuples depends upon its gk
the operation (e.g. ==, < etc) it represents. J@tently supports two join types:

nested-loop join and hash join. A nested-loop jeia two-level nested loop which iterates each of R
and checks for a match. A hash join builds a temwgohnash table which it uses to check for matcibis
provides the best performance, but can be used whbn the join operator is == or equals(). Future
implementations may take advantage of B-Treessdanning sorted ranges of a collection.

JQL Implementation

Our implementation of JQL has two main componeifitse first is a frontend, which compiles JQL
expressions into Java code. The second componém iguery evaluation back-end, which is respoasibl
for evaluating the query and choosing the moshogitievaluation strategy it can.

JQL Compiler

The JQL compiler is relatively straightforward —cibmpiles JQL expressions into equivalent Java ,code
which can then be compiled by a normal Java compilbis Java code binds domain variables to

46

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) pLLy
Vol 3, No.1, 2012 ST

collections, and builds a tree representation efdhery expression, which the evaluator uses dimman
The compiler ‘inlines’ queries which only use ormarthin variable; they are compiled into normal Iqgops
but with hooks to allow for query caching. Inlingderies cannot have their stages dynamically odjere
but dynamic ordering is of almost no importanceit@le-variable queries (whilst different orderingay
‘short-circuit’ evaluation for individual objects are quickly, the gain is minute compared to the
performance gain of inlining the query). Using tlvempiler also allows for checking of the
well-formedness of the query — for example, thatrguexpressions only use domain variables that are
declared for that query.

Query Evaluator

The core of query evaluation is carried out throtlgh query’s ‘Query Pipeline. A query pipeline dsts

of a series of stages, each corresponding to ap#re query expression. Each stage can takereaitiesor
two input sets of tuples, and for all stages exteptvery first, one of these input sets is thelteset of the
previous stage in the pipeline. This structurenisvin, in the database community, as a ‘left-bramgtiiee’,
and we impose it to simplify the problem of orderistages. In each stage, if there is more tharnrgng
set, the input tuples are combined (we describgdihetechniques used for this combination shoythnd
the stage’s expression is evaluated using the salnethe combined tuple in the place of their
corresponding domain variables. If the expressieauates to true, the combined tuple is added ¢o th
stage’s result set. The set of tuples which pasditial stage are returned to the program as thatseof
the query

Literature Review & Related Work

The Program Query Language (PQL) (S. Chiba 1998)ssnilar system which allows the programmer to
express queries capturing erroneous behavior beepriogram trace . A key difference from other eyt

is that static analysis was used in an effort tonsm some queries without needing to run the progrss a
fallback, queries which could not be resolved stdlly are compiled into the program’s byte code and
checked at runtimgC. Hobatr & B. A. Malloy 2001)Hobatr and Malloy gent a query-based debugger
for C++ that uses the Open++ Meta-Object Protocal #ne Object Constraint Language(OCL) (lhab F.
llyas et al. 2003) This system consists of a frodtir compiling OCL queries to C++, and a backérat
uses Open C++ to generate the instrumentation wedessary for evaluating the queries.JQL is thentec
development of Microsoft’s Language Integrated Qu@riNQ) project LINQ aims to add first class
querying support to .NET languages (in particulaudl Basic .NET and C#)

(Y.E. loannidis,R. Ng, K. Shim & T.K. Selis 1992JNQ operates by translating queries into additional
methods on collections of objects, which then genfdiltering and mapping on the collection. LINQ's
scope is wider than JQL's, providing integratedrging for object collections, XML structures and ISQ
databases. It is unclear at present what optinoizatLINQ provides for object querying, or if it pides
incrementalized caching Finally, there are a nundfekPls available for Java which provide access t
SQL databases. These are quite different from pipeoach we have presented in this work, as theyaio
support querying over collections and/or objectertd. Furthermore, they do not perform any query
optimizations, instead relying on the database leackto do this.(Darren Willis & David J. Pearcamas
Noble 2008),0ur main contribution is the design anglementation of JQL, a prototype object querying
system that allows developers to easily write dbjeeries in a Java-like language. This prototyperides
automatic optimization of operations that join rpl# collections together.

Analysis of Problem

In our research, we prefer static query optimizatad compile-time over dynamic query optimization
because it reduces the query run-time. In this atethey are using selectivity estimate based orpbamn
some number of tuples, but that does not lead ficiezit ordering of joins and predicates in a query
Therefore, we propose using the estimates of $atées of joins and the predicates from histograims
provide us an efficient ordering of joins and poediés in a query. Once we collect this informatisa,can
form the query plan by having the order of joingl gmedicates in a query. After we get the query @ia

47

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) pLLy
Vol 3, No.1, 2012 ST

compile-time, we execute that plan at run-timeeduce the execution time. Experimental resultscatei
that our approach reduces run-time execution lhas the existing JQL code’s run-time due to our
approach of optimizing the query and handling dedates using histograms.

Given a query Q,

we use the histogram H to get the estimate of éhextvity of the query predicates and the sel@@tw of
the joins

We have the join order and predicate order in ayquwéich will be used to construct a query plan.

A.The first execution of Query Q uses the hisaogi1 to estimate the selectivity. Then the resiult
the query is computed. But for the subsequent exetaf the same query Q after a time T, the same
histogram H can be left invalid. This situationsag because there is a possibility that the unidgrijata
has been updated between the first and the seseodteons of the same query.

B. Firstly, we check if the query is present in thg then the time period difference between coutbes
executions of the same query Q from the query $ogamputed and if that value is greater than a pre
specified time interval then we directly recomputled histogram because we have assumed the data may
be modified within a pre specified time interval.

C. we first compute the error through error estamfatnction and then based on the error estimate we
decide whether to recomputed the histogram or Hahe query is not present in the log, then weaee

the query based upon the initial histogram thaticed the overhead cost of incremental maintenahce o
histogram the experimental results of how our apgnovarious types of queries the comparison of
run-times of our approach and the JQL approachafiothe four benchmark queries. The difference in
run-times has occurred because in our approachawe estimated selectivities using histograms heset
histograms are incrementally maintained at comgitee which provide the optimal join order strategy
most of the times faster than the exhaustive joiteostrategy used by JQL. we can see that asutimber

of increase in a query, JQL's approach becomes rexpensive and our approach performs much better
than the exhaustive join ordering strategy of JQL.

Proposed Work

We can form the query plan by having the ordemaig and predicates in a query. After we get thergju
plan at compile time, we execute that plan at mnetto reduce the execution time. Experimental ltesu
indicate that our approach reduces run-time execuéss than the existing JQL code’s run-time dueur
approach of optimizing the query and handling dgtdates using histograms. We intend to have theyque
plans generated at compile time Query plans atemksy step ordered procedure describing the drder
which the query predicates need to be executeds, diuun- time, the time required for plan conginn

is omitted. So we need to have the code workingtatic mode, i.e., without knowing the inputs at
compile-time, we need to be able to derive somerimétion about inputs like sizes of relations by
estimating them to generate the query plan. Givéoiraquery ,its selectivity needs to be estimated
design plans. A histogram is one of the basidityutools. It is used to graphically summarize and
display the distribution and variation of a procdasa set. A frequency distribution shows how oftech
different value in a set of data occurs. The mairppse of a histogram is to clarify the presentatibdata.
You can present the same information in a tableidver, the graphic presentation format usually rmake
easier to see relationships. It is a useful tool Heeaking out process data into regions or bins fo
determining frequencies of certain events or categmf data. The approach followed for maintenance
nearly all commercial systems is to recomputedbistms periodically (e.g., every night), regardigsthe
number of updates performed on the database. Phioach has two disadvantages. First, any significa
updates to the data since the last recomputatiald gesult in poor estimations by the optimizerc&@s,
because the histograms are recomputed from scbgtcliscarding the old histograms, the recomputation
phase for the entire database can be computatjorealy intensive and may have to be performed when

48

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) pLLy
Vol 3, No.1, 2012 ST

system is lightly loaded
4.1. The Split & Merge Algorithm

The split and merge algorithm helps reduce the @bbtilding and maintaining histograms for largéles.
The algorithm is as follows: When a bucket coursctees the threshold, T, we split the bucket into tw
halves instead of recomputing the entire histogfieam the data. To maintain the number of buckgjs (
which is fixed, we merge two adjacent buckets whosa count is least and does not exceed threshold

if such a pair of buckets can be found. Only wheneage is not possible, we recomputed the histogram
from data.The operation of merging two adjacent buckets nyeirelolves adding the counts of the two
buckets and disposing of the boundary between tAHensplit a bucket, an approximate median value in
the bucket is selected to serve as the bucket loyrzetween the two new buckets using the backing
sample. As new tuples are added, we incrementdbets of appropriate buckets. When a count exceeds
the threshold T, the entire histogram is recompuatedising split merge, we split and merge the btk
The algorithm for splitting the buckets starts witbrating through a list of buckets, and splittitige
buckets which exceed the threshold and finallyrrehg the new set of buckets.After splitting is dpwe

try to merge any two buckets that add up to thstlealue and whose count is less than a certa@stiotd.
Then we merge those two buckets. If we fail to famy pair of buckets to merge then we recomputed th
histogram from data. Finally, we return the sebuékets at the end of the algorithm. Thus, the lpratof
incrementally maintaining the histograms has besolved. Having estimated the selectivity of a jail
predicates, we get the join and the predicate orgett compile-time

4.2 Incremental Maintenance of Histograms

we propose arnncremental technique, which maintains approximate histogranithinv specified errors
bounds at all times with high probability and neaecesses the underlying relations for this purpbkere
are two components to our incremental approachméintaining a backing sample, and (ii) a framework
for maintaining an approximate histogram that penfo a few program instructions in response to each
update to the database, and detects when the tastdg in need of an adjustment of one or mord<of i
bucket boundaries. Such adjustments make use dfatleng sample. There is a fundamental distinction
between the backing sample and the histogram p@tg the histogram is accessed more frequerdly th
the sample and uses less memory, and hence iteaioted in main memory while the sample is likely
stored on disk. Adacking sampleis a uniform random sample of the tuples in a i@tathat is kept up to-
date in the presence of updates to the relationekoh tuple, the sample contains the unique roan
one or more attribute values. We argue that maimgi a backing sample is useful for histogram
computation, selectivity estimation, etc. In maangling-based estimation techniques, whenever plsam
of size _ is needed, either the entire relaticstenned to extract the sample, or several randsknbdtbcks
are read. In the latter case, the tuples in aldisgk may be highly correlated, and hence to obgairuly
random sample, _ disk blocks must be read. In astjta backing sample can be stored in conseatigke
blocks, and can therefore be scanned by readingeségl disk blocks. Moreover, for each tuple ie th
sample, only the unigue row id and the attributefsinterest are retained. Thus the entire samalebe
stored in only a small number of disk blocks, feem faster retrieval. Finally, an indexing struetdior the
sample can be created, maintained and storedntlex ienables quick access to sample values within a
desired range.

4.3 Estimating Selectivity Using Histogram

The selectivity of a predicate in a query is a sieei aspect for a query plan generation. The andeof
predicates can considerably affect the time ne¢d@uocess a join query. To have the query pladyrea
compile-time, we need to have the selectivitiealbthe query predicates. To calculate these Jeites,

we use histograms. The histograms are built udiegnumber of times an object is called. For this, w
partition the domain of the predicate into intesvahlled windows. With the help of past querieg th
selectivity of a predicate is derived with respectts window. That is, if a table T has 100,00&vscand a
query contains a selection predicate of the formllGaand a histogram shows that the selectivity.afT0

49

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) pLLy
Vol 3, No.1, 2012 ST

is 10% then the cardinality estimate for the frawctof rows of T that must be considered by the gisged 0%
x 100,000= 10,000. This histogram approach would be in Estimating the selectivity of a join anehlae
decide on the order in which the joins have to xeceted. So, we get the join ordering and the petdi
ordering in the query expression at compile-tinselft Thus, from this available information, we can
construct a query plan.

4.4 Building the Histogram

From the data distribution, we build the histogrémat contains the frequency of values assigned to
different buckets. If the data is numerical, we @asily assign some ranges and assign the values to
buckets accordingly. If the data is categoricahtive have to partition the data into ranges witpeet to

the letter they start with and assign the apprépnalues to buckets. Next, we perform some sanuobey
executions.

4.5 Method Outlinefor Error Estimation

For each attribute in the database table, we cogripeterror estimate by using standard deviatidvwéden
updated data values and old data values in thednain buckets. Then, for every table, we have error
estimates for all the attributes. Then, we takeeggiated average of all the attributes error esémalhe
underlying data could be mutable. For such mutebta, we need a technique by which we can resteictu
the histograms accordingly. Thus, in between migitquery executions if the database is updated, \We
compute the estimation error of the histogram bggithe equations (1).

Conclusion

In this paper we have presented the query optimizatrategies from database domain can be used in
improving the run time executions in programmingngiaage .We proposed a technique for query
optimization at compile-time by reducing the burdainoptimization at run-time. We proposed using
histograms to get the estimates of selectivityanig and predicates in a query and then based ase th
estimates, to order query joins and predicategjimegly. From the join and predicate order, we habtained

the query plan at compile-time and then we exectlitedjuery plan at run-time from this we can imgréve
performance of the code execution.

References

C. Hobatr and B. A. Malloy(2001), “Using OCL-quesifor debugging C++" ,IfProceedings of the IEEE
International Conference on Software Engineering (ICSE), pages 839-840.IEEE Computer Society Press,
2001.

Darren Willis ,David J. Pearce & James Noble(2008xching and Incrementalisation in the Java Query
Language”, Proceedings of the 2008 ACM SIGPLAN eoafice on Object-oriented programming systems
languages and applications, pp. 1-18, 2008.

Ihab F. llyas et al. (2003), “Estimating Compilati®ime of a Query Optimizer”, Proceedings of th®20
ACM SIGMOD international conference on Managemdrdaia, pp. 373 —384, 2003.

S. Chiba(1995), “A meta object protocol for C++",IRroceedings of the ACM conference on
Object-Oriente Programming, Systems, Languages and Applications (OOPSLA), pages 285-299. ACM
Press, 1995.

Y.E. loannidis,R. Ng, K. Shim & T.K. Selis(1992)P&arametric Query Optimization”, In Proceedings of
the Eighteenth International Conference on Verygkddatabases (VLDB), pp. 103-114, 1992.

50

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) Ly
Vol 3, No.1, 2012 (B3

Venkata Krishna et al.(2010), “Exploring Query Q@mitiation in Programming Codes by Reducing
Run-Time Execution” ,Department of Computer Sciemdissouri University of Science and Technology,
Rolla, MO 07303157/10©2010IEEEDOI10.1109/COMPSAQ@@8, NY, USA, 2006), ACM Press, pp.
706-706.

Query ‘
Rewrite
Query graph ‘
Ordering operations
Generation Asgsessment of
of the nlans the nlans
Execution plan ‘
Execution

Result *

Fig. 1.Optimization process

INSERT THRESHOLD

Bucksty

- 25 /

\

et A= b

ATTRINUTE VALLES NEDWN

Fig 2. split and merge algorithm

51

Computer Engineering and Intelligent Systems
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)
Vol 3, No.1, 2012

Jﬁz"’ (#-B)’

cl

Wil +Wzplz+ -+ WnHn

T =

wit+wz+-4+WwWpy

where compute the estimation error of the histogby using the equations..

pa is the estimation error for every attribute

B is the number of buckets ,

N is the number of tuplesinR

S isthe number of selected tuples

Fi is the frequency of bucket i as in the histogram
gf= SI/Nis the query frequency

Bi is the observed frequency

Ti is the error estimate for each individual table

Wi are the weights with respect to every attritdeeending on the rate of change

52

www.iiste.org
pLLy

(13

This academic article was published by The International Institute for Science,
Technology and Education (IISTE). The IISTE is a pioneer in the Open Access
Publishing service based in the U.S. and Europe. The aim of the institute is
Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:
http://www.iiste.org

The 1ISTE is currently hosting more than 30 peer-reviewed academic journals and
collaborating with academic institutions around the world. Prospective authors of
IISTE journals can find the submission instruction on the following page:
http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified
submissions in a fast manner. All the journals articles are available online to the
readers all over the world without financial, legal, or technical barriers other than
those inseparable from gaining access to the internet itself. Printed version of the
journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalITOCS, PKP Open
Archives Harvester, Bielefeld Academic Search Engine, Elektronische
Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial
Library , NewJour, Google Scholar

m EB O INDEX (\@‘ COPERNICUS
I N T E RN A TTITIT ON AL

INFORMATION SERVICES
ULRICHSWES, JournalTOCs @

N A ;
. E'z B Elektronische
lBAS(E T— Q0@ Zeitschriftenbibliothek O

open
>)
OCLC v)

The world’s libraries. — U cDigitalLibrary —
Connected. WorldCat e

Ny

'- ¥
GEORGETOWN UNIVERSITY
LIBRARY

http://www.iiste.org/
http://www.iiste.org/Journals/

