Comparative Analysis of Data Mining Tools and Classification Techniques using WEKA in Medical Bioinformatics

Satish Kumar David^{1*}, Amr T.M. Saeb², Khalid Al Rubeaan³

¹Department of Information Technology, Diabetes Strategic Research Center, King Saud University, P.O Box 245, Riyadh 11411, Saudi Arabia.

²Department of Biotechnology, Diabetes Strategic Research Center, King Saud University, P.O Box 245, Riyadh 11411, Saudi Arabia.

³Director, University Diabetes Center, King Saud University, P.O Box 245, Riyadh 11411,Saudi Arabia. * E-mail of the corresponding author: <u>satishkdavid@gmail.com</u>

Abstract

The availability of huge amounts of data resulted in great need of data mining technique in order to generate useful knowledge. In the present study we provide detailed information about data mining techniques with more focus on classification techniques as one important supervised learning technique. We also discuss WEKA software as a tool of choice to perform classification analysis for different kinds of available data. A detailed methodology is provided to facilitate utilizing the software by a wide range of users. The main features of WEKA are 49 data preprocessing tools, 76 classification/regression algorithms, 8 clustering algorithms, 3 algorithms for finding association rules, 15 attribute/subset evaluators plus 10 search algorithms for feature selection. WEKA extracts useful information from data and enables a suitable algorithm for generating an accurate predictive model from it to be identified. Moreover, medical bioinformatics analyses have been performed to illustrate the usage of WEKA in the diagnosis of Leukemia.

Keywords: Data mining, WEKA, Bioinformatics, Knowledge discovery, Gene Expression.

1. INTRODUCTION

Computers have brought about significant improvements to technology that lead to the creation of huge volumes of data. Moreover, the advancement of the healthcare database management systems creates a huge number of medical databases. Creating knowledge and management of large amounts of heterogeneous data has become a major field of research, namely data mining. Data mining, "a major way of creating knowledge", is a useful way of studying medicine, genetics, bioinformatics, education [1].

Data Mining is a process of identifying novel, potentially useful, valid and ultimately understandable patterns in data [1]. Data mining techniques can be classified into both unsupervised and supervised learning technique. *Unsupervised learning technique* is not guided by variable and does not create a hypothesis before analysis. Based on the results, a model will be built. A common unsupervised technique is clustering [2]. *Supervised learning technique* requires the building of a model that is used in prior performing analysis. Supervised learning techniques that are used in both medical and clinical research are Classification, Statistical regression and Association rules [3].

In the present study, we will focus on the usage of classification techniques in the field of medical bioinformatics. Classification is the most commonly applied data mining technique, and employs a set of pre-classified examples to develop a model that can classify the population of records at large. The major goal of the classification technique is to predict the target class accurately for each case in the data. There are several classification mechanisms that are used in analyzing medical data. These include Decision trees, K-Nearest Neighbor (KNN), Bayesian network, Neural networks, Fuzzy logic and Support vector machines.

2. COMPARISONS OF CLASSIFICATION TECHNIQUES

Table 1 summarizes the theoretical comparison among different classification techniques [4][5][35].

	Fundamentals	Work of classifier	Phase of work	Pros	Cons	Applications
Decision Tree	 Decision trees are powerful, straight forward and easy classification algorithms. Decision tree algorithms represented by rule if-then- else conditions to classify the data items. 	 It recursively partitions a data set of records using depth-first approach, until all the data items belong to a particular class are identified. It is a structure made of root, internal and leaf nodes. 	1. Tree building 2. Tree Pruning	 Construction does not require any domain knowledge. It Can handle high dimensional data. Implement in parallel or serial fashion. 	Output attribute must be categorical Limited to one output attribute	In Decision making systems, teaching, research area etc.
Bayesian Network	 Bayesian networks are a powerful probabilistic representation. It is graphical model. It is also called belief networks. 	 This classifier learns from training data the conditional probability of each attribute A₁ given the class label C. Classification is then done by applying Bayes rule to compute the probability of C given the particular instances of A₁A_n and then predicting the class with highest posterior probability 	Directed Acyclic Graph (DAG) Conditional Probabilities parameteres	 Naïve Bayesian classifier simplifies the computations. Exhibit high accuracy and speed when applied to large databases. 	The assumptions made in class conditional independence. Lack of available probability data.	In computational biology and bioinformatics medicine, document classification, information retrieval, semantic search, image processing, data fusion, etc.
K-Nearest Neighbor	 K-Nearest Neighbor is one of the best known distance based algorithms. It is considered as statistical learning algorithms. It is lazy learning Algorithm. 	 When given an unknown sample, a k-nearest neighbor classifier searches the pattern space for the k training samples that are closest to the unknown sample. 	No Phases	 Analytically tractable. Uses local information, which can yield highly adaptive behavior. Implement in parallel and simple. 	 Large storage requirements. Highly susceptible to the curse of dimensionality. Slow in classifying test tuples. 	In pattern recognition, Image databases, Internet marketing, Cluster analysis etc.

Table 1. Theoretical comparison on classification techniques

3. COMPARISONS OF DATA MINING TOOLS

There are several available types of software that employ classification techniques such as Rapid Miner[6][7], KNIME [6][7], Tanagra [6][7], Orange [6][7] and WEKA [6][7]. Pharmine Company experts in data mining have summarized a report on the comparison of data mining tools [6][7]. Table 2 depicts the Data Mining Tool Comparison.

Softwares	Purpose	Features	Users	Descriptor Selection	Model validation	Operating System Support	Data Source Characteristics
RapidMiner	Powerki, very flexible too for ETL and data analysis. More than 1500 operations covering broad speechrum of afferent tasks, flexible data import from CSV, XAU Evel, Acoses, Drade, M 500, Lingnes, etc. Deployable and dependable soutions and applications, Usable as stand-atone, server, Java Ibrary.	Most comprehensive data mining soution for all deps of the data mining posses from data landing and transmittation to decountive and predictive modelling, model evaluation, depoyment, and evaluation as well as reporting key features of Regulationer are its encomous feebility and functional treads, which supports all kinds of data mining, lear mining, audo mining, audo mange and repeating and predictive analytics tasks. This floatality and rapid deployment in projects eaal to really fast project implementations.	Large number of users market research, marketing, sales, CRM, Manufacturing, Telecommunication companies, financial services, pharma industries.	Have	Ful fadities	Unux,Mac, Windows	MySQL, Access, ODBC, JDBC, ARFF, CSV
KNIME	Konstarz Information Miner has been developed using rigorous software engineering practices, user fittendy, comprehensive open-source data integration, processing, analysis, exploration platform.	modular data exploration plantform	Industry and Academia professional.	No	only limited error measurement methods	Linux, Mac, Windows	MySQL, Access, ODBC, JDBC, ARFF, CSV
Tanagra 📕	It is the successor of SIPINA which implements various supervised learning algorithms, especially interactive and visual construction of decision these. Developed by Ricco Rakotomalak. Data mining methods such as Exportatory data anaysis, statistical learning and machine learning.	Pedagogical tool for learning programming techniques.	Students and Researchers.	Have but valid only for logistic regression	No capability of validating Independent validation set	Windows	ARFF, Excel
Orange	Open source data visualization and analysis for notice and experts. Data mining through visual programming or Python scripting. Components for machine learning. Add one for builtformatics and lear mining. Packed with features for data analysiss. Orange as a library of C++ components and command ine utilities. Orange values analysis a C++ library of machine learning algorithms and related procedures, such as preprocessing. sampling	Orange is packed with different visualizations, from scatterpicts, bar charts, trees, networks and heatmaps. The power of Orange is not as much in ts machine isaming aporthims, but rather in his way in which they are packed and exposed to Python societing in a singler form. Beyond that, an even stronger feature of Orange is its graphical accent infratace and even stronger environment. We are inferency working on a new version of Orange in which we will replace the entite C++ occ ewill nutlife in NumPy, SkiPy, soliti-learn.	Orange has been used in science, industry, and leaching. Solventrically, it used as a testing pattern for new machine examing algorithms, as well as for implementing new computational approaches in molecular biology and bioinformatics.	No	Not capable of saving the model so have to rebuild model for every future data set	Linux,Mac, Windows	MySQL
WEKA	Developed at University of Walkato in New Zealand. Writien in Java. Contains large collection of state-of- the-art machine learning and data mining algorithms.	Contains tools for negression, classification, clustering, association rules, visualization and data pre-processing.	Popular with Academic and Industrial researchers, widely used for teaching purposes.	Have but not part of knowledge flow.	Not capable of saving the model so have to rebuild model for every future data set.	Linux,Mac, Windows	ARFF, CSV, Excel

 Table 2. Data mining tools Comparative Analysis

Among these, the WEKA tool has achieved the highest performance improvements in accuracy [6][7]. Importantly, WEKA can handle the problem of the multiclass data set, which is not the case in other data mining tools. Moreover, Applicability (Run specific algorithm on a selected tool) is highest in WEKA. Furthermore, WEKA is able to run 6 selected classifiers using all data sets.

4. WEKA DATA MINING SOFTWARE

In this manuscript we present WEKA software as useful tool in data mining techniques. Weka includes several machine learning algorithms for data mining tasks. The algorithms can either be called from the users own Java code or be applied directly to the ready dataset. Weka contains general purpose environment tools for data preprocessing, regression, classification, association rules, clustering, feature selection and visualization.

Moreover, Weka software is suitable for several bioinformatics analyses. It has been used to probe selection of gene expression arrays [8], automated protein data annotation [9][10], automatic cancer diagnosis [13], plant genotype discrimination [14], classifying gene expression profiles [11] and computational model for frame-shifting sites [15] and extracting rules from them [13].

WEKA includes algorithms for learning different types of model, feature selection schemes and pre-processing methods. Weka facilitates the comparison of different solution strategies based on the same evaluation method and identifying the best strategy for solving the problem at hand. The following is a detailed description for WEKA software.

4.1 INTERFACES TO WEKA

There are four interfaces to WEKA which can be started from the main GUI Chooser window, as shown in Figure 1.

Fig 1 WEKA GUI chooser

All the learning techniques in Weka can be accessed from the simple command line (CLI), as part of shell scripts, or from within other Java programs using the Weka API. WEKA commands directly execute using CLI.

Weka also contains an alternative graphical user interface, called "Knowledge Flow," that can be used instead of the Explorer. Knowledge Flow is a drag-and-drop interface, and supports incremental learning. It caters for a more process oriented view of data mining. Individual learning components (represented by Java beans) can be connected graphically to create a "flow" of information.

Finally, there is a third graphical user interface—the "Experimenter"—which is designed for experiments that compare the performance of (multiple) learning schemes on (multiple) datasets. Experiments can be distributed across multiple computers running remote experiment servers and conducting statistical tests between learning schemes.

4.2 THE WEKA EXPLORER

Explorer is the main interface in Weka, as shown in figure 2. New users can use it in running simulations, data visualization and preprocessing. Through the explorer users can load data in various formats ARFF, CSV, C4.5, and Library.

000			Weka Kr	nowledge Expl	orer			
	Preprocess	Classify	Cluster	Associate	Select attributes	Visualize		
Open file		en URL		Open DB	Undo		Save	
Filter								
Choose None							Apply	
Current relation				Selected	I attribute			
Relation: iris Instances: 150	A	ttributes: 5		Nan Missir	ne: sepallength ng: 0 (0%) Distin	nct: 35	Type: Numeric Unique: 9 (6%)	
Attributes					Statistic		Value	
1 sepallength 2 sepalwidth 3 petallength 4 petalwidth 5 class			Maximu Mean StdDev	Maximum 7.9 Mean 5.843 StdDev 0.828				
				Colour	r: class (Nom)	10 16 15	Visualize All	
Status				43		6.1	7,	
OK						C	Log x	

Fig 2 Weka Knowledge Explorer

WEKA Explorer has six (6) tabs, which can be used to perform tasks such as preprocess, classify, associate etc. as shown in figure 3.

Fig 3 Tabs in WEKA Explorer

4.2.1 Preprocess: Preprocessing tools in WEKA are called "Filters". The Preprocess retrieves data from a file, SQL database or URL (For very large datasets sub sampling may be required since all the data were stored in main memory). Data can be preprocessed using one of Weka's preprocessing tools. The Preprocess tab shows a histogram with statistics for the currently selected attribute. Histograms for all attributes can be viewed

simultaneously in a separate window. Some of the filters behave differently, depending on whether a class attribute has been set or not. A filter box is used for setting up the required filter. WEKA contains filters for Discretization, normalization, resampling, attribute selection, attribute combination [16].

4.2.2 Classify: Classify tools can be used to perform further analysis on preprocessed data. If the data demands a classification or regression problem, it can be processed using Classify tab. A classification model produced on the full trained data. WEKA consists of all major learning techniques for classification and regression: Bayesian classifiers, decision trees, rule sets, support vector machines, logistic and multi-layer perceptrons, linear regression, and nearest-neighbor methods. It also contains "meta-learners" like bagging, stacking, boosting, and schemes that perform automatic parameter tuning using cross-validation, cost-sensitive classification, etc. Learning algorithms can be evaluated using cross-validation or a hold-out set, and Weka provides standard numeric performance measures (e.g. accuracy, root mean squared error), as well as graphical means for visualizing classifier performance (e.g. ROC curves and precision-recall curves). It is possible to visualize the predictions of a classification or regression model, enabling the identification of outliers, and to load and save models that have been generated [16].

4.2.3 Cluster: WEKA contains "clusters" for finding groups of instances in datasets. Cluster tools give access to Weka's clustering algorithms, such as *k*-means, a heuristic incremental hierarchical clustering scheme. Cluster assignments can be visualized and compared to actual clusters, defined by one of the attributes in the data [16].

4.2.4 Associate: Associate tools have generating association rules algorithms. It can be used to identify relationships between groups of attributes in the data [16].

4.2.5 Select attributes: More interesting in the context of bioinformatics is the fifth tab, which offers methods for identifying subsets of attributes that are predictive of target attribute in the data. Weka contains several methods for searching through the space of attribute subsets, evaluation measures for attributes and attribute subsets. Search methods such as a best-first search, genetic algorithms, forward selection, and attributes ranking. Different search methods and evaluation methods both may be combined, making the system very flexible [16].

4.2.6 Visualize: Visualization tools show a matrix of scatter plots. Practically visualization is very much useful which helps to determine learning problem difficulties. WEKA visualizes single dimension (1D) for single attributes and double dimension (2D) for pairs of attributes. It is to visualize the current relation in 2D plots. Any matrix element can be selected and enlarged in a separate window, where one can zoom in on subsets of the data and retrieve information about individual data points. A "Jitter" option to deal with nominal attributes for exposing obscured data points is also provided [16].

5. WEKA FOR MEDICAL BIOINFORMATICS

Bioinformatics is a field of research that focuses on a large scale understanding and organization of the information associated with biological molecules [17]. Generally, Bioinformatics research involves problems that can be manifested as machine learning tasks. These include classification or regression, clustering and feature selection [18].

The Weka data mining suite offers algorithms for these types of biological problems. The Weka data mining suite has been long used in many bioinformatics applications such as protein data annotation in the SWISS-PROT database, with satisfactory results in term of coverage and confidence [10][9]). Moreover, naïve Bayes and artificial neural networks, two learning algorithms, have been used in probe selection for gene-expression arrays [8]. In addition, Weka data mining was also used in the discovery of significant rules for classifying cancer diagnosis data [13]. Furthermore, Weka data mining has been employed in modeling frameshift mutation sites in eukaryotes [15], use of metabolomics in plant genotype discrimination [14] and classifying gene groups according to their expression profiles [11].

Furthermore, the available Weka framework offers a broad variety of useful tools for machine learning purposes. For instance, the BioWeka project extends the Weka framework with additional bioinformatics functionalities, including new input bioinformatics formats and alignments that facilitate its usage in combination with other bioinformatics tools. These include, MAGE-ML [19] and CSV compatible formats for gene expression data, FASTA [20], EMBL [21], Swiss-Prot [22], GenBank [23] for the storage of biological sequences in ASCII files, InterProScan [24] for the annotation of sequence patterns.

In fact, with rapid progress in the fields of genomics, proteomics, Metabolomics, metabolite profiling, gene expression, microbiomics and many others, the need for data analysis and mining techniques will increase. Since data mining techniques provide the tools required to gain a better understanding and deeper insight that allows biological problems to be solved [25][26][27].

DNA microarray technology and next-generation sequencing (NGS) technology are two different platforms for gene expression measurement [28]. The Weka machine learning environment, two classical decision treebuilding techniques (J48 and SimpleCART) along with an advanced alternating decision tree (ADTree), were used to build decision tree models to study the gene-ranking stability estimation of overlapping genes or classic gene set enrichment analysis. This method revealed very accurate descriptive models that capture the coenrichment of gene sets, which are differently enriched in the compared data sets [29]. In addition, the random forest method in the WEKA platform use used in study short read data from small RNA-seq experiments, another NGS technology. This provided a wide range of analysis features, including quality control, read normalization, small non-coding RNAs (ncRNA) quantification and the prediction of putative ncRNA candidates [30]. Moreover, decision trees were generated using the j48 implementation of the C4.5 decision tree algorithm from the Weka machine learning workbench was used to analyze deep sequencing data (NSG) in order study bacterial communities constitute bacterial vaginosis (BV) or the normal vaginal microbiota among this population, and how the microbiota associated with BV responds to antibiotic treatment [31].

Molecular phylogeny is a fundamental approach to study species evolution and gene function. Many phylogenetic analysis programs are available, but each program often requires a particular type of input sequence format. A variety of sequence formats are available for phylogenetic analysis, such as FASTA and Phylip. The data mining tool WEKA is used in converting format through Relational File Format (ARFF), a native format of WEKA [32]. Moreover, the WEKA platform has also been used in inferring phylogenetic relationships among biological species [33].

6. EXPERIMENTAL WORKS AND RESULT

An experimental comparison of classification techniques is carried out in WEKA. Here, we have used a "leukemia_all_72x7129" database for all the three techniques, and it is easy to differentiate their parameters on a single instance. This "leukemia_all_72x7129" database has 7130 attributes and 72 instances.

Fig 4 WEKA 3.6.9 - Explorer window

Figure 4 shows the explorer window in the WEKA tool with the "**leukemia_all_72x7129**" dataset loaded; we can also analyze the data in the form of a graph, as shown above in the visualization section with blue and red code. In WEKA, all data is considered as instances attributes in the data. For easier analysis and evaluation, simulation results are partitioned into several sub items. In the first part, correctly and incorrectly classified instances will be partitioned in numeric and percentage value, and subsequently, Kappa statistics mean absolute error and root mean squared error will be at a numeric value only.

This dataset is measured and analyzed with 10 folds cross validation under a specified classifier, as shown in figure 5. Here, it computes all required parameters on given instances with the classifiers' respective accuracy and prediction rate. Based on Table 3 we can clearly see that the highest accuracy is 98.6111% for Bayesian and the lowest is 81.9444% for Decision tree. The time taken to build a model for Bayesian is 0.17 seconds and for Decision tree.J48 is 0.62 seconds. In fact, in this experimental comparison, we can say that Bayesian is the best of the three, as it is more accurate and less time consuming.

Weka Explorer		international Association
Preprocess Classify Cluster Associate	e Select attributes Vaustre	
Classfier		
Choose ZeroR		
Test options	Classifier autput	
C Use traning set	Vage-Increase-third-year	
- Constant fast ant	cost-of-living-adjustment	
Company and an and an	MOrking-nours	
Cross-validation Folds 10	standov-pav	
C Percentage split % 56	shift-differential	
Hare options	education-allowance	
Construction of the second sec	statutory-holidays	
(Hom) class	• Vacation	1700
and the second sec	abugter-dissolity-sexistance contribution-to-destai-nlan	
Start Stop	hereavement-assistance	
Result lat (right-clck for optione)	contribution-to-health-plan	
12(21)41 - man, Zweak	class	
	Test mode:10-fold cross-validation	
	men Classifiar model (Ful) training gat men	
	Construct about Your partition action	
	Zerok predicts class value: good	
	Time taken to build model: 0 seconds	
	and Provide and an and Marian and	
	and Semary on an	
	Correctly Classified Instances 37 64.9123 b	
	Incorrectly Classified Instances 20 35,0877 %	
	Kappa statistic 0	er.5
	Mean absolute error 0.4574	
	Most mean aquared actor 0.47/3	
	Root relative squared error 100	
	Total Humber of Instances 57	
	Provide a second s	
	Detailed Accuracy By Class	
	TO Date PD Date Description Date: 11 F.Manuter DY Inc. Class	
	0 0 0 0 0 0 0 0.027 bet	
	1 1 0.649 1 0.787 0.472 good	
	Heighted Avg. 0.649 0.649 0.421 0.649 0.511 0.472	
	Confusion Metrix	
	a h constantified an	
	0 0 1 a bad	
	0 37 i b = good	
		-
Satu		
OK		Log x0
1 C 1 C		EN
		4/1//2013

Fig 5 Classifier Result

Table 3. Simulation Result of each Algorithm

Classifier (Total Instances, 57)	Algorithm Implemented	Correctly Classified Instances % (value)	Incorrectly Classified Instances % (value)	Time Taken (Seconds)	Kappa Statistic	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error (%)	Root Relative Squared Error (%)
Decision Tree	trees.Random Forest	83.3333 (60)	16.6667 (12)	0.11	0.5858	0.2944	0.3432	64.6402	71.9437
Decision Tree	trees.J48	81.9444 (59)	18.0556 (13)	0.62	0.6195	0.1743	0.3989	38.266	83.6213
Bayeslan Network	bayes.Nalve Bayes	98.6111 (71)	1.3889 (1)	0.17	0.9691	0.0139	0.1179	3.0491	24.7056
K-Nearest Neighbor	lazy.IBK	86.1111 (62)	13.8889 (10)	0	0.6754	0.1497	0.3674	32.864	77.0096

7. GENE EXPRESSION DATA ANALYSIS

ATTRIBUTE: CLASS

The **leukemia_all** database represents Affymetrix generated gene expression data for a diseased tissue sample belonging to a Leukemia patient. The question that needed to be answered is whether the patient should be diagnosed with acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) by using its gene expression data. This database contained 72 instances and 7130 attributes. The database was analyzed using a WEKA software utilizing Decision tree J4.8 classification algorithm and Bayesian Network, and a Naïve Bayes algorithm. The classifiers were directly applied without any feature (gene) selection.

The number of top ranked genes selected using feature selection techniques and then applied classifiers technique on the data. The ReliefFAtributeEval is used in WEKA Explorer with a default parameter setting, as shown in Figure 6.

🔮 Weka Explorer		states and includes a balance of the local states of the local sta	
Preprocess Classify Cluster Associate Sele	ect attributes Visualize		
Attribute Evaluator			
Choose ReliefFAttributeEval -M -1 -D	1 -K 10		
Fourth Mothed			
Change Dankon T 1 707602124962218	E7E200 N 1		N
Choose Ranker -1 -1.797693134662313	5/E306-N-1		
Attribute Selection Mode A	Attribute selection output		
💮 Use full training set	=== Run information ===		*
Cross-validation Folds 10			
Seed 1	Evaluator: weka.attributeSelection.Re	liefFAttributeEval -M -1 -D 1 -K 10	
	Search:weka.attributeSelection.Ranker -T	-1.7976931348623157E308 -N -1	
(Nom) (LASS	Relation: dataset		
	Instances: 72		
Start Stop	Attributes: /130		
Regult let (right click for options)	[11st of attributes omitted]		
11:30:08 - Parker + PelefEAttributeEval	Evaluation mode. 10-1010 closs-validation		
	=== Attribute selection 10 fold cross-va	lidation (stratified), seed: 1 ===	
a	average merit average rank attribu	te	
	0.27 +- 0.016 1.2 +- 0.4	3252 U46499_at	
	0.257 +- 0.025 2.1 +- 0.54	4196 X17042_at	
	0.215 +- 0.016 3.8 +- 0.75	1//9 M1950/_at	
	0.204 +- 0.014 4.5 +- 1.02	1834 M23107 at	
	0.19 +- 0.018 7 +- 3.03	2402 M96326 rpa1 at	
	0.188 +- 0.016 7.5 +- 3.75	4951 Y07604 at	
	0.177 +- 0.012 9.5 +- 3.35	1829 M22960_at	
	0.172 +- 0.01 11.1 +- 2.77	6041 L09209_s_at	
	0.183 +- 0.053 11.4 +- 4.13	2288 M84526_at	
	0.17 +- 0.014 11.4 +- 3.93	6201 Y00787_s_at	
	0.168 +- 0.017 12.3 +- 5.69	1882 M27891_at	
	0.167 +- 0.016 13 +- 4.07	1745 M16038_at	
	0.155 +- 0.012 16.2 +- 3.92	3320 U50136_rna1_at	
	0.153 +- 0.015 16.9 +- 5.39	2111 M62/62_at	
	0.152 +- 0.017 17.4 +- 5.59	0313 A10340_dL	
	0 144 +- 0 021 20 9 +- 9 71	1674 M11147 at	
	0.14 +- 0.008 22.3 +- 4.27	2121 M63138 at	
	0.144 +- 0.024 22.3 +-10.11	4052 X04085 rnal at	
	0.137 +- 0.008 23.5 +- 3.98	2642 U05259 rna1 at	
	0.136 +- 0.014 25.8 +- 7.52	461 D49950_at	
	0.133 +- 0.011 25.9 +- 6.85	4366 X61587_at	
	0.132 +- 0.015 26.4 +- 8.22	1249 L08246_at	
	0.13 +- 0.011 27.2 +- 6.32	2020 M55150_at	
	U.129 +- 0.009 28.3 +- 6.4	1291 L11009_AC	
	0.122 +- 0.013 29.1 +- 6.7	5225 M543/1_INAL_5_8T	
	0.125 += 0.009 31.3 += 4.73	6539 X85116 mai s at	
	0 126 += 0 01 31 7 +=10 34	2546 \$82470 at	*
Status			
OK		(Log 💉 x0

Fig 6 Attribute Evaluator

Table 4 and 5 shows the average Merit, Average Rank values and Genbank ID of genes associated with AML and ALL diseases, respectively. Data analysis results using both J4.8 classification Naïve Bayes algorithms was identical. The average Merit of the genes associated with AML showed the highest values, indicating that the patient should be diagnosed as an acute myeloid leukemia patient [34]. This result showed that WEKA software can be used in disease diagnosis by linking it to different disease information databases.

Table 4. The average Merit, Average Rank and Genbank ID of genes associated with acute myeloid leukemia (AML)

Average Merit	Average Rank	Attributes (Genbank ID)	Gene ID
0.257±0.025	2.1±0.54	x17042	proteoglycan (SRGN)
0.204 ± 0.014	4.5 ± 1.02	x95735	Zymm
0.19 ± 0.018	7 ±3.03	M96326	amrocidin (AZOI)
0.186±0.01	7 <u>+</u> 1.26	M23197	CD33
0.183 ± 0.053	11.4 <u>+</u> 4.13	M84526	Adiptin (CFD)
0.17 <u>+</u> 0.014	11.4 <u>+</u> 3.93	Y00787	IL-8 procursor
0.168±0.017	123±5.69	M27891	CST3 cystatin C
0.167 ±0.016	13 ±4.07	M16038	LYN (tyrouine kinase)
0.155 <u>+</u> 0.012	16.2 ± 3.92	U50136	letikotriane C4 synthese (LTC4)
0.153 ±0.015	16.9 <u>+</u> 5.39	M62762	ATPase (ATP6V0C)
0.14 ±0.008	22.3 ± 4.27	M63138	cathepsin D (catD)
0.144 ± 0.024	22.3 ±10.11	X04085	catalase
0.132 ± 0.015	26.4 <u>+</u> 8.22	L08246	MCL1
0.13 ± 0.011	27.2 ± 6.32	M55150	FAH
0.125±0.009	31.3±4.73	X\$5116	Ebp72
0.116 ± 0.016	44.9 <u>+</u> 23.53	U82759	HOXA9
0.111±0.01	47.5 <u>+</u> 13.14	M28130	IL-8
0.105±0.007	52 ±9.34	X14008	Lysozyme
0.099 ± 0.006	64.2 <u>±</u> 12.05	M19045	102.52
0.096±0.007	73.6±16.6	303801	
0.099 ± 0.011	70.1 ± 23.29	MB0254	CYP3
0.096 ± 0.006	74.1 ± 19.05	M\$1695	ITGAX (CD11C)
0.094±0.007	78.3±19.92	U46751	p62
0.063 ± 0.011	245.4 ±110.29	M57710	Lectin (LGALS3)
0.049 + 0.01	441.2 +150.72	Y12670	Leptin receptor

Table 5 The average Merit, Average Rank and Genbank ID of genes associated with acute lymphoblastic leukemia (ALL).

Average Merit	Average Rank	Attributes	Gene ID
		(Genbank ID)	
0.215±0.016	3.8 ± 0.75	M19507	myeloperoxidase
0.137 ± 0.008	23.5 ± 3.98	U05259	MB-1
0.123 <u>+</u> 0.012	33 <u>+</u> 7.42	M92287	Cyclin D3
0.114 ± 0.013	43.4 ± 14.77	X59417	PROS27
0.104 ± 0.008	55.4 <u>+</u> 13.07	MB1523	E2A
0.105 ± 0.025	61.7 <u>+</u> 22.21	MB1211	MYL6B
0.099 + 0.013	68.8 <u>+</u> 21.93	Y08612	NUPSS
0.093 ± 0.006	80 ±17.02	X63469	GTF2E2
0.092 ± 0.01	83.9 ± 28.2	\$50223	ZNF22 (HKR-T1)
0.089 ± 0.009	93 <u>+</u> 29.73	022376	MYB
0.083 ± 0.006	111.5 <u>+</u> 19.63	MB1303	STMNI
0.076±0.008	141.8 <u>+</u> 35.06	Z15115	TOP2B
0.073 ± 0.008	149.2 + 28.59	L47738	Inducible protein
0.071 <u>+</u> 0.013	186.5 <u>+</u> 88.42	029175	SMARCA4
0.065 ± 0.005	205.4 <u>+</u> 36.97	M13792	adenosine deaminase
0.063 ± 0.017	257.3 ± 131.02	D26156	SMARCA4
0.063 ± 0.011	230.3 + 81.88	U26266	DHPS
0.059 ± 0.005	259.7 <u>+</u> 41.83	X74262	RBBP4
0.055±0.009	337.5 <u>+</u> 164.05	M29696	IL7R
0.054 + 0.006	334.3 + 92.17	D38073	MCMB
0.05 <u>+</u> 0.01	406.5 + 120.29	M91432	ACADM
0.048 ± 0.011	461.6 <u>+</u> 142.13	U20998	SRP9
0.045 ± 0.008	537.2 <u>+</u> 184.49	Z69881	ATP2A3
0.04 <u>+</u> 0.009	682.9 <u>+</u> 239.67	032944	Dynein light chain
0.039 ± 0.007	744.8 <u>+</u> 347.03	U35451	p25
0.03 ±0.006	1235.5 ± 427.05	X15949	IRF2

8. CONCLUSIONS

WEKA is a full data mining suite which includes various preprocessing modules and data mining techniques. Classification is one of the most popular techniques in data mining. In this paper, we compared algorithms based on their accuracy, learning time and error rate. We observed that there is a direct relationship between execution time in building the tree model and the volume of data records, while there is also an indirect relationship between execution time in building the model and the attribute size of the data sets. Through experiment, we conclude that Bayesian algorithms have better classification accuracy over and above compared algorithms.

Moreover, WEKA has proven to be a very useful tool for bioinformatics analysis, in this case in the diagnosis of leukemia using a gene expression profile.

REFERENCES

[1] Fayyad, U., & Stolorz, P. (1997). Data mining and KDD: promise and challenges. *Future generation computer systems*, 13(2), 99-115.

[2] Guerra L, McGarry M, Robles V, Bielza C, Larrañaga P, Yuste R. (2011). Comparison between supervised and unsupervised classifications of neuronal cell types: A case study. *Developmental neurobiology*, 71(1): 71-82.
[3] Yoo I, Alafaireet P, Marinov M, Pena-Hernandez K, Gopidi R, Chang JF, Hua L. (2012). Data mining in

healthcare and biomedicine: a survey of the literature. *Journal of medical systems*, *36*(4): 2431-2448.

[4] Kaushik H. Raviya, Biren Gajjar (2013) Performance Evaluation of different data mining classification algorithm using WEKA, Vol. 2, January 2013.

[5] Ozekes, A., & Camurcu, Y. (2002). Classification and Prediction In A Data Mining Application. *Journal of Marmara for pure and applied sciences*, *18*, 159-174.

[6] Pharmine data mining "Data Mining Tool Comparison-Summary" http://voyagememoirs.com/pharmine/2008/05/18/summary.

[7] Zupan, B., & Demsar, J. (2008). Open-source tools for data mining. *Clinics in laboratory medicine*, 28(1), 37-54.

[8] Tobler JB, Molla MN, Nuwaysir EF, Green RD, Shavlik JW. (2002). Evaluating machine learning approaches for aiding probe selection for gene-expression arrays. *Bioinformatics*, *18*(suppl 1),:S164-S171.

[9] Bazzan AL, Engel PM, Schroeder LF, da Silva SC.. (2002) Automated annotation of keywords for proteins related to mycoplasmataceae using machine learning techniques. Bioinformatics, 18(2)35S-43S.

[10] Kretschmann E, Fleischmann W, and Apweiler R (2001). Automatic rule generation for protein annotation with the C4. 5 data mining algorithm applied on SWISS-PROT. *Bioinformatics*, *17*(10): 920-926.

[11] Li J, & Wong L. (2002). Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. *Bioinformatics*, *18*(5): 725-734.

[12] Li J, Liu H, Downing JR, Yeoh A.J, Wong L. (2003a). Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients. *Bioinformatics*, *19*(1): 71-78.

[13] Li J, Liu H, Ng SK., & Wong L. (2003b). Discovery of significant rules for classifying cancer diagnosis data. *Bioinformatics*, *19*(suppl 2): ii93-ii102.

[14] Taylor J, King RD, Altmann T, Fiehn O. (2002). Application of metabolomics to plant genotype discrimination using statistics and machine learning. *Bioinformatics*, *18*(2):S241-S248.

[15] Bekaert M, Bidou L, Denise A, Duchateau-Nguyen G, et al. (2003) Towards a computational model for -1 eukaryotic frame shifting sites. Bioinformatics 19(3):327-35.

[16] Bouckaert RR, Frank E, Hall M, Kirkby R, Reutemann P, Seewald A, Scuse D. (2013). WEKA Manual for Version 3-7-8.

[17] Luscombe NM, Greenbaum D, Gerstein M. (2001). What is bioinformatics? An introduction and overview. *Yearbook of Medical Informatics*, 1: 83-99.

[18] Frank E, Hall M, Trigg L, Holmes G, Witten IH. (2004). Data mining in bioinformatics using Weka. *Bioinformatics*, 20(15): 2479-2481.

[19] Spellman PT, Miller M, Stewart J, Troup C, Sarkans U, Chervitz S, et al. A. (2002). Design and implementation of microarray gene expression markup language (MAGE-ML). *Genome biology*, *3*(9): research0046.

[20] Pearson WR, & Lipman DJ. (1988). Improved tools for biological sequence comparison. *Proceedings of the National Academy of Sciences*, 85(8): 2444-2448.

[21] Kanz C, Aldebert P, Althorpe N, Baker W, Baldwin A, Bates, K, et al. (2005). The EMBL nucleotide sequence database. *Nucleic Acids Research*, *33*(1):D29-D33.

[22] Bairoch A, Boeckmann B. (1991). The SWISS-PROT protein sequence data bank. *Nucleic Acids Research* 19:2247.

[23] Benson D, Lipman DJ, & Ostell J. (1993). GenBank. Nucleic Acids Research, 21(13), 2963-2965.

[24] Zdobnov EM, Apweiler R. (2001). InterProScan–an integration platform for the signature-recognition methods in InterPro. *Bioinformatics*, *17*(9): 847-848.

[25] Bensmail H, & Haoudi A. (2005). Data mining in genomics and proteomics. *Journal of Biomedicine and Biotechnology*, 2005(2), 63.

[26] Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. (2010). The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. *Database: the journal of biological databases and curation*.

[27] Theodoridis G, Gika HG, & Wilson ID. (2008). LC-MS-based methodology for global metabolite profiling

in metabonomics/metabolomics. TrAC Trends in Analytical Chemistry 27(3): 251-260.

[28] Willenbrock H, Salomon J, Søkilde R, Barken KB., Hansen TN, Nielsen FC, et al.. (2009). Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing. *Rna*, *15*(11): 2028-2034.

[29] Stiglic G, Bajgot M, Kokol P. (2010). Gene set enrichment meta-learning analysis: next-generation sequencing versus microarrays. *BMC bioinformatics*, 11(1): 176.

[30] Fasold M, Langenberger D, Binder H, Stadler PF, Hoffmann S. (2011). DARIO: a ncRNA detection and analysis tool for next-generation sequencing experiments. *Nucleic acids research* 39(suppl 2): W112-W117.

[31] Hummelen R, Fernandes AD, Macklaim JM, Dickson RJ, Changalucha J, et al. (2010). Deep sequencing of the vaginal microbiota of women with HIV. *PLoS One* 5(8): e12078.

[32] Attaluri PK, Christman MC, Chen Z, Lu G. (2011). SeqMaT: A sequence manipulation tool for phylogenetic analysis. *Bioinformation*, *5*(9), 400.

[33] Nascimento DG, Rates B, Santos DM, Verano-Braga T, Barbosa-Silva A, Dutra AA, & Pimenta A. (2006). Moving pieces in a taxonomic puzzle: venom 2D-LC/MS and data clustering analyses to infer phylogenetic relationships in some scorpions from the Buthidae family (Scorpiones). *Toxicon*, 47(6): 628-639.

[34] Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Lander ES. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. *science* 286(5439): 531-537.

[35] Ismail, S. A., Matin, A. F. A., & Mantoro, T. (2012). A Comparison Study of Classifier Algorithms for Mobile-phone's Accelerometer Based Activity Recognition. *Procedia Engineering*, *41*, 224-229.

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE's homepage: <u>http://www.iiste.org</u>

CALL FOR JOURNAL PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There's no deadline for submission. **Prospective authors of IISTE journals can find the submission instruction on the following page:** <u>http://www.iiste.org/journals/</u> The IISTE editorial team promises to the review and publish all the qualified submissions in a **fast** manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: <u>http://www.iiste.org/book/</u>

Recent conferences: <u>http://www.iiste.org/conference/</u>

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

