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Abstract:

A spatial database is a database that is optintzetbre and query data that represents objecisedein a
geometric space. A spatial preference query raijscts based on the qualities of features in thpatial
neighborhood. For example, using a real estatecyggatabase of flats for lease, a customer may teardnk
the flats with respect to the appropriateness eir tlocation, defined after aggregating the quaditof other
features (e.g., restaurants, cafes, hospital, maeke) within their spatial neighborhood. Sucheighborhood
concept can be specified by the user via diffefenttions. It can be an explicit circular regionthin a given
distance from the flat. Another intuitive definitids to assign higher weights to the features basedheir
proximity to the flat. In this paper, we formallyefihe spatial preference queries and propose apptep
indexing techniques and search algorithms for thEriensive evaluation of our methods on both rea a
synthetic data reveals that an optimized branchbamuhd solution is efficient and robust with respex
different parameters.

Index Terms. Query processing, spatial databases.
1. INTRODUCTION

Spatial database systems manage large collectfogsographic entities, which apart from spatiatibtttes
contain non-spatial information (e.g., name, sigpe, price, etc.). In this paper, we study anrgggng type of
preference queries, which select the best spat@altibn with respect to the quality of facilities its spatial
neighborhood.

Given a set D of interesting objects (e.g., cartdidi@cations), a top-k spatial preference quemeeds the k
objects in D with the highest scores. The scoraobbject is defined by the quality of featureg (dacilities or
services) in its spatial neighborhood. As a moingaexample, consider a real estate agency offiae lolds a
database with available flats for lease. Here tesdtrefers to a class of objects in a spatial siagh as specific
facilities or services. A customer may want to rainé& contents of this database with respect taqtisdity of
their locations, quantified by aggregating non-spatharacteristics of other features (e.g., restats, cafes,
hospital, market, etc.) in the spatial neighborhobthe flat (defined by a spatial range around@ality may
be subjective and query-parametric. For examplesea may define quality with respect to non-spatitributes
of restaurants around it (e.g., whether they sseafood, price range, etc.).

As another example, the user (e.g., a tourist) @ggh find a hotel p that is close to a high-quakistaurant and
a high quality cafe.
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Fig. 1. Examples of top-k spatial preference queries. (@) Range score, € =0:2 km. (b) Influence score, €=
0:2km.

Fig. 1a illustrates the locations of an object ds#a D (hotels) in white, and two feature data:sis setF;
(restaurants) in gray, and the $et(cafes) in black. Feature points are labeled bgliyuvalues that can be
obtained from rating providers (e.g., http://wwwgaacom/). For the ease of discussion, the qusilitiee
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normalized to values in [0; 1]. The sc((?) of a hotelp is defined in terms of: 1) the maximum quality &ach
feature in the neighborhood regionmfand 2) the aggregation of those qualities.

A simple score instance, called the rangeesduinds the neighborhood region to a circulaiae@t p with
radius € (shown as a circle), and the aggregate functioBUM. For instance, the maximum quality of gray
and black points within the circle pf are 0.9 and 0.6, respectively, so the scong, @d™(P1)=0:9 + 0:6 = 1.5.
Similarly, we obtair™(?2)=1:0 + 0:1 = 1:1 ar”(P)= 0:7 + 0:7 = 1:4. Hence, the hotel pl is returasdhe top
result.

In fact, the semantics of the aggregate funcsorelevant to the user’s query. The SUM funcittempts to
balance the overall qualities of all features. FHoe MIN function, the top result becomes, with the
scor¢™ (%) = min {0:7; 0:7} = 0:7. It ensures that the topukdas reasonably high qualities in all featufes:.
the MAX function, the top result is,, with™(P2)= max {1:0; 0:1} = 1:0. It is used to optimize theality in a
particular feature, but not necessarily all of them

The neighborhood region in the above spatieference query can also be defined by other Joocions.
A meaningful score function is the influence sc(a®e Section 4). As opposed to the crisp radiusnsteaint in
the range score, the influence score smoothensftibet o € and assigns higher weights to cafes that are closer
to the hotel. Fig. 1b shows a hopgland three cafes; s,; s; (with their quality values). The circles have thei
radii as multiples ¢ £ . Now, the score of a cafe si is computed by miyitig its quality with the weight 2
where j is the order of the smallest circle coritajrsi. For example, the scoresspfs,, ands; are 0:3/2 = 0:15,
0:9/7 = 0:225, and 1:072= 0:125, respectively. The influence scorggis taken as the highest value (0.225).

Traditionally, there are two basic ways for rankatgects: 1) spatial ranking, which orders the ofgj@ccording
to their distance from a reference point, and 2)-syatial ranking, which orders the objects by ggregate
function on their non

spatial values. Our tokspatial preference query integrates these two tgpeanking in an intuitive way. As
indicated by our examples, this new query has s wahge of applications in service recommendatioh a
decision support systems.

To our knowledge, there is no existing efficisotution for processing the tdpspatial preference query. A
brute force approach (to be elaborated in Sectidnf8r evaluating it is to compute the scoreslbbhjects in D
and select the top-k ones. This method, howeverxpected to be very expensive for large input data. In
this paper, we propose alternative techniquesaimatat minimizing the 1/0 accesses to the object @ature
data sets, while being also computationally effitieOur techniques apply on spatial-partitioning-ess
methods and compute upper score bounds for thetshijedexed by them, which are used to effectiyelyne
the search space. Specifically, we contribute ttendh-and-bound (BB) algorithm and the feature j@id)
algorithm for efficiently processing the top-k sphpreference query.

Furthermore, this paper studies three releeatensions that have not been investigated inpogiiminary
work [1]. The first extension (Section 3.4) is gutimized version of BB that exploits a more effitié¢echnique
for computing the scores of the objects. The se@tension (Section 3.6) studies adaptations optbeosed
algorithms for aggregate functions other than SléM., the functions MIN and MAX. The third externsio
(Section 4) develops solutions for the top-k spatiaference query based on the influence score.

The rest of this paper is structured as fafip®ection 2 provides background on basic and agdhgueries
on spatial databases, as well as top-k query et@ituin relational databases. Section 2 defineddpé spatial
preference query and presents our solutions. Seétistudies the query extension for the influenoeres In
Section 3, our query algorithms are experimentelgluated with real and synthetic data. Finallyctita 4
concludes the paper with future research directions

2. SPATIAL DATA MODEL AND QUERY LANGUAGE

A spatial data model [5], [3] is a type of alatbstraction that hides the details of data-stardbere are two
common models of spatial information: field-basedl abject based. The field-based model treats apati
information such as altitude, rainfall and tempeamtas a collection of spatial functions transfamgna space-
partition to an attribute domain. The object-bassutlel treats the information space as if it is pafd by
discrete, identifiable, spatially referenced eesti The operations on spatial objects include miistaand
boundary. The operations on fields include loaadaf, and zonal operations, as shown in Table 1.
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Fig. 2. Three-layer architecture.

TABLE 1

A SAMPLE OF SPATIAL OPERATIONS

Data model | Operator Group | Operation
Sef-Oriented | equals, 15 & member of, 15 empty, 15 & subsel of, 1 disjont
from, intersection, union, difference, cardinality
Vector Object | Topological | boundary, mterlor, closure, meefs, overlaps, 1s iside, covers,
connected, components, extremes, 1s within
Metric istance, bearing /angle, length, area, perimeter.
Direction east, north, left, above, between,
Network sttceessors, ancestors, connected, shortest-path
Dyname translate, rotate, scale, shear, split, merge
Local Potnt-vwise sums, differences, masimums, means, efc
Raster field | Focal slope, aspect, welghted average of neighborhood
Lonal s or mean or maximun of feld values 1n each zone

The fields may be continuous, differentiable, diser and isotropic or anisotropic, with positivenagative
autocorrelation. Certain field operations (slopénderpolation) assume certain field propertie$fédéntiable or

positive autocorrelation).

An implementation of a spatial data model ia ttontext of object-relational databases consise set of
spatial data types and the operations on thosa.tybech work has been done over the last decadeeotiesign
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of spatial Abstract Data Types (ADTs) and their edding in a query language. Consensus is slowlyging
via standardization efforts, and recently the OGd8sortium [2] has proposed a specification fooiporating
2D geospatial ADTs in SQL.

Geometry SpatialReferenceSystem

Point Surface GeometryCollection
LineString Polygon MultiSurface MultiCurve MultiPoint
1+
Line LinearRing MultiPolygon MultiLineString
1+

Fig. 4. Spatial data type hierarchy

Fig. 4, which illustrates this spatial data-typerhrchy, consists of Point, Curve, and Surfaceselmand a
parallel class of Geometry Collection. The basierafions operative on all datatypes is shown inéf'ab

TABLE 2
REPRESENTATIVE FUNCTIONS SPECIFIED BY OGIS

Basic Functions | SpatialReference() | Returns the Reference System of the geometry
Envelope() The minimum bounding rectangle of the geometry
Export() Convert the geometry into a different representation.
IsEmpty() Tests if the geometry is a empty set or not
IsSimple() Returns True if the geometry is simple(no self-intersection)
Boundary() Returns the boundary of the geometry
Topological / Equal Tests if the geometries are spatially equal
Set Disjoint Tests if the geometries are disjoint
Operators Intersect Tests if the geometries intersect
Touch Tests if the geometries touch each other
Cross Tests if the geometries cross each other
Within Tests if the given geomtry is within another given geometry
Contains Tests if the given geometry contains another given geometry
Overlap Tests if the geometry overlaps another geometry
Spatial Distance Returns the shortest distance between two geometries
Analysis Buffer Returns a geometry that represents all
points whose distance from the given
18 less than or equal to the specified distance
ConvexHull Returns the convex hull of the geometry
Intersection Returns the intersection of two geometries
Union Returns the union of two geometries
Difference Returns the difference of two geometries
SymDiff Returns the symmetric difference of two geometries

12
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The topological operations are based on the ulmigsitnine intersections model [10]. Using the OGIS
specification, common spatial queries can be imeli posed in SQL. For example, the query Findlaltkes
which have an area greater than 5 sq. km. andi#ha\20 km. from the campgrounds can be poseda®is in
Fig. 3a. Other example GIS queries which can bdemented using OGIS operations are provided in & &bl
The OGIS specification is confined to topologicatlanetric operations on vector data types. Othterésting
classes of operations are network, direction, dyoamd the field operations of focal, local and alofsee Table
1). While standards for field based raster datagyare still emerging, specifically designed fortagraphic
modeling and for general multidimensional discretgects (satellite images, X-rays, etc.), are irtgoar
milestones.

TABLE 3

TYPICAL SPATIAL QUERIESFROM GIS

Single Table Queries

Grouping Recode all land with silty soil to silt-loam soil
Isolate Select all land owned by Steve Steiner
Classify If the population density is less than 100 pcople / sq. mi., land is acccptable
Scale Change all measurement to the metric system
Rank If the road i1s an Interstate, assign it code 1; if the road

is a state or US Highway, assign it code 2; otherwise assign it code 3
Fualuate If the road code is 1, then assign it Interstate; if the road code is 2,

then assign it Main Artery; if the road code is 3, assign it Local Road
Rescale Apply a function to the population density

Multi-Table Queries

Attribute Join  Join the Forest layer with the layer containing forest-cover codes

Zonal Produce a new map showing state populations given county population
Registration Align two layers to a common grid reference
Spatial Join Overlay the land-use and vegetation layers to produce a new layer

SELECT L.name, Fa.name

FROM Lake L, Facilities Fa

WHERE  Area(L.Geometry) > 5 AND
Fatype= campground AND
Distance(Fa.Geometry, L.Geometry) < 20

(a)
L name, Fa.name

T
(‘5 Area(L..Geometry) > 5
(o)

N Distance(Fa.Geometry, L. Geometry) < 20

Fa.type = campground

Lake L Facilities Fa
(b)

Fig. 3: (a) SQL query with spatial operators; (b) corresponding query tree.
2.1 Spatial Query Processing

13
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The efficient processing of spatial queriequiees both efficient representation and efficiatgorithms.
Common representations of spatial data in an objextel include spaghetti, the node-arc-area (NAApah,
the doubly connected edge- list (DCEL), and boupndapresentation [7], some of which are shown ig. Bi
using entity-relationship diagrams? The NAA modiflerentiates between the topological conceptsiénarc,
areas) and the embedding space (points, liness)aréhe spaghetti-ring and DCEL focus on the topicial
concepts. The representation of the field data iiodkides a regular tessellation (triangular, squaexagonal
grid), as well as triangular irregular networksNJ.l

The spatial queries [7], shown in Table &, @ften processed using filter and refine techrsq@@proximate
geometry such as the minimal orthogonal boundictareygle of an extended spatial object is first usefilter
out many irrelevant objects quickly. Exact geomeésryhen used for the remaining spatial objectsamplete
the processing. Strategies for range-queries irctudcan and index-search in conjunction with taegesweep
algorithm [5]. Strategies for the spatial-join inde the nested loop, tree matching [5], when irdae present
on all participating relations, and space partitign2], in the absence of indices. To speed upmdation for
large spatial objects (it is common for polygonsh@ve 1,000 or more edges), object indices are irsed
extended filtering. Strategies such as object appration and tree matching originated in spatiahflases, and

can potentially be applied in other
Is
\\ Next
Pl —

/

Double-Connected-Edge List Model

Sequence No. Sequence No.

SequTlce No.

Spaghetti Data Model

Directed
Arc

Right
Bounded Ends

Node-Arc-Area Model

Fig.5. Entity relationship diagramsfor common representations of spatial data.
2.2 Spatial File Organization and Indices

The physical design of a spatial database dgairthe instructions to storage devices for perfiog common
operations on spatial data files. File designssimondary storage include clustering methods asasedpatial
hashing methods. The design of spatial clustere@hriiques is more difficult compared to the design
traditional clustering because there is no natordér in multidimensional space where spatial desades. This
is only complicated by the fact that the storagk @ a logical one-dimensional device. Thus, whateeded is
a mapping from a higher dimensional space to adimensional space that is distance-preserving:hab t
elements that are close in space are mapped oatbynpoints on the line, and one-one: no two paimtthe

14
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space are mapped onto the same point on the [n8¢R2eral mappings, none of them ideal, have Ipeeposed
to accomplish this. The most prominent ones inchade-order, z-order, and the Hilbert-curve (see Big
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Fig.6. Space-filling curvesto linearize a multidimensional space.

Metric clustering techniques use the notibdistance to group nearest neighbors togethemmetiic space.
Topological clustering methods like connectivitystiered access methods [7] use the min-cut paititioof a
graph representation to efficiently support graglversal operations. The physical organizationile§ fcan be
supplemented with indices, which are data-strusttwémprove the performance of search operations.

Classical one-dimensional indices such as Bhetree can be used for spatial data by lineagizin
multidimensional space using a space-filling cusueh as the Z-order (see Fig. 6). A large numbespatial
indices [3] have been explored for multidimensioRaktlidean space. Representative indices for patijects
include Grid files, multidimensional grid files [8Point-Quad-Trees, and Kd-trees. Representatidiedn for
extended objects include the R-tree family, thdd-teee, Cell tree, BSP tree, and Balanced andddegtid
files.

One of the first access methods created tolbaextended object. The R-tree is a height bathmagural
extension of the B+ tree for higher dimensions.€0ty are represented in the R-tree by their miniroaomding
rectangles (MBRs). Nonleaf nodes are composed toesrof the form (R, child-pointer), where R i€tNMBR
of all entries contained in the child pointer. Lealdes contain the MBRs of the data objects. Toagiee good
space utilization and height-balance, the parenRiIBre allowed to overlap.

A
e
d C
B 1
g
f
J
h
(2)
A|B]C
Y
[deff] | [efn] [ | i [ ]

®)
Fig. 7: (a) Spatial objects (bold) arranged in R-tree hierarchy; (b) R-treefile structure on disk.

Fig. 7a illustrates the spatial objects organizeén R-tree, while Fig. 7b shows the file structwigere the

nodes correspond to disk pages. Many variationthefR-tree structure exist whose main emphasisnis o

discovering new strategies to maintain the balarfi¢ke tree in case of a split and to minimizeakerlap of the

MBRs in order to improve the search time.
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Concurrency control for spatial access methi6fis provided by the R-link tree, which is a \ant of the R-
tree with additional sibling pointers that allovettracking of modifications. Concurrency is proddiuring
operations such as search, insert, and deleteRlimk tree is also recoverable in a write-aheagying
environment
2.3 Other Accomplishments

Spatial applications like NASA’s Earth Obsdiwa System (EOS) have some of the largest data set
encountered in any application to date. This hasnpted new research in database-file design foag&oon
tertiary storage devices such as juke-boxes. Reptagve results include those from the. High-pemiance
spatial applications such as flight simulators wj#ographic accuracy have triggered the developwienew
parallel formalizations for the range query and #patial join query, including declustering methaatsd
dynamic-load balancing techniques for multidimenaiospatial data [8], [9]. Other interesting deyetents
include hierarchical algorithms for shortest patimputation [4] and view materialization [6].

3. EXPERIMENTAL EVALUATION

In this section, we compare the efficiencyttaf proposed algorithms using real and synthetia slets. Each
data set is indexed by an R-tree with 4 K byteemge. We used an LRU memory buffer whose deizit is
set to 0.5 percent of the sum of tree sizes (far abject and feature trees used). Our algorithmee we
implemented in C++ and experiments were run on @tiffe D 2.8 GHz PC with 1 GB of RAM. In all
experiments, we measure both the 1/0O cost (in nurobpage faults) and the total execution timesgeonds) of
our algorithms. Section 5.1 describes the experiatesettings. Sections 3.2 and 3.3 study the pedoce of
the proposed algorithms for queries with range ex@nd influence scores, respectively. We theneptesur
experimental findings on real data in Section 3.4.

3.1 Experimental Settings

We used both real and synthetic data for #pegments. The real data sets will be describeSection 3.4.
For each synthetic data set, the coordinates oitpaire random values uniformly and independerdlyegated
for different dimensions. By default, an objectalag¢t contains 200K points and a feature dataosg¢dins 100K
points. The point coordinates of all data setsharenalized to the 2D space [0; 10000]

For a feature data set Fc, we generatedtmsafor its points such that they simulate a weatld scenario:
facilities close to (far from) a town center ofteave high (low) quality. For this, a single anclpamint s? is
selected such that its neighborhood region contaims number of points. Lalist,, (dists) be the minimum
(maximum) distance of a point i, from the anchc ¥+ . Then, the quality of a feature posis generated as

(s) = ((di5tmas = da‘sfw.m)”
wls | = Y
‘ fi'lll-‘gf.lr?rl:l‘ = t'-'f'll":jf--"-'-'-'I

where #51(5. 5.) stands for the distance betwegrmnd S+r and ¥ controls the skewness (default: 1.0) of
quality distribution. In this way, the qualities jpbints inFc lie in [0; 1] and the noints closer to the anchave
higher qualities. Also, the quality distributionhigyhly skewed for large values v

We study the performance of our algorithmdhwéspect to various parameters, which are disglay@able
4 (their default values are shown in bold). In eagperiment, only one parameter varies while theist are
fixed to their default values.

TABLE 4
Range of Parameter Values
Parameter Values
Ageregate function SUM, MIMN, MAX
Buffer size (va} 0.1, 0.2, 0.5, 1, 2, 5, 10
{__)bj{_*ct data size, |72 (> 1000) 104, 200, 400, S00, 1600
Feature data size, !_’FJ (< 1NN 50, 100, 200, 400, s00
: ™Number of results, & ' 1, 2, 4, B, 16, 32, 64
Mumber of features, m 1, 2. 3. 4. 5
Ouery range, « 10, 20, 50, 100, 200
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3.2 Performance on Queries with Range Scor es
This section studies the performance of ounritlgms for top-k spatial preference queries orgeascores.

TABLES
Effect of the Aggregate Function, Range Scores
SUM function SP GP BB | BB* | Fl
1/0 350927 | 22594 | 2033 | 1535 | 489
Time (s) 633.0 27 3.0 2.0 13
_MIN function [ SP [ GP [ BB [ BB* [ FJ |

/O 235602 | 1h2ad | 611 615 | 47
lime (s) 4268 227 0.9 08 | 02
MAX function SP oGP BB BB* F]
1/0 402704 | 26128 | 228 | 186 | &
Time (s) 7423 383 0.3 02 | 01

Table 5 shows the I/O cost and execution time efatyorithms, for different aggregate functions K§UIN,

and MAX). GP has lower cost than SP because GP utm®ighe scores of points within the same leaf node
concurrently. The incremental computation techni(used by SP and GP) derives a tight upper bouoi gof
each point) for the MIN function, a partially tighbund for SUM, and a loose bound for MAX. This lexps

the performance of SP and GP across different ggtgdunctions. However, the costs of the othehods are
mainly influenced by the effectiveness of pruniB& employs an effective technique

to prune unqualified non-leaf entries in the objeee so it outperforms GP. The optimized scoremgation
method enables BB* to save on average 20 percéntaiid 30 percent time of BB. FJ outperforms its
competitors as it discovers qualified combinatiéfeature entries early.

We ignore SP in subsequent experiments, angh@amthe cost of the remaining algorithms on sytithdata
sets with respect to different parameters.

Next, we empirically justify the choice of ngilevel-1 entries of feature trees Fc for the ugyaind score
computation routine in the BB algorithm. In thigpeximent, we use the default parameter settingsauntly how
the number of node accesses of BB is affected djetvel of Fc used.

TABLE 6
Effect of the Level of Fc Used for Upper Bound Score Computation in the BB Algorithm

- Level Node accesses (NA) Upper bound score computation |
Total | of T | of F. # of calls NA of F. per call |

0 3350 53 3297 3 G175 ,

1 2365 | 100 | 2433 [ 13 |

/] 13666 | 930 | 12736 13 2 .

Table 6 shows the decomposition of node accessmstioe tree D and the trees Fc, and the statisficgper
bound score computation. Each accessed non-lea¢ wbdD invokes a call of the upper bound score
computation routine.

When level-0 entries ¢fc are used, each upper bound computation call irectigh number (617.5) of node
accesses (ofc). On the other hand, using level-2 entries forarppound computation leads to very loose
bounds, making it difficult to prune the leaf nod#sD. Observe that the total cost is minimized whevel-1
entries (ofFc) are used. In that case, the node accesses per lipgpnd computation call is low (15), and yet the
obtained bounds are tight enough for pruning messthodes of D.
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Fig. 8. Effect of buffer size, range scores. (a) 1/0. (b) Time.
Fig. 8 plots the cost of the algorithms as a fuorctf the buffer size. As the buffer size increasies /O of all
algorithms drops. FJ remains the best method, BB*stcond, and BB the third; all of them outperf@mby a
wide margin. Since the buffer size does not affieetpruning effectiveness of the algorithms, it asnall

impact on the execution time
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Fig. 9. Effect of /Pl range scores. (a) 1/0. (b) Time.
Fig. 9 compares the cost of the algorithms wétspect to the object data /Pl Since the cost ofJ is
dominated by the cost of joining feature data dets,insensitive t/Pl. On the other hand, the cost of the other
methods (GP, BB, and BB*) increases w/Pl as score computations need to be done for moeetship D.
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Fig. 10. Effect of 7, range scores. (a) 1/0. (b) Time.
Fig. 10 plots the 1/0 cost of the algorithmishwespect to the feature data </ (of each feature data set).
Asl|¥| increases, the cost of GP, BB, and FJ increésesntrast, BB* experiences a slight cost redurcs its
optimized score computation method (for objects aml leaf entries) is able to perform pruning eatha large

|F| value.
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Fig. 11. Effect of m, range scores. (a) 1/0. (b) Time.
Fig. 11 plots the cost of the algorithms with redge the number m of feature data sets. The ais&P, BB,
and BB* rise linearly as m increases because tmebeu of component score computations is at mosatiro
m. On the other hand, the cost Bf increases significantly with m, because the numbierqualified
combinations of entries is exponentiahto
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Fig. 12. Effect of k, range scores. (a) 1/0. (b) Time.
Fig. 12 shows the cost of the algorithms as a fanadf the numbek of requested results. GP, BB, and BB*
compute the scores of objects in D in batcheshswo performance is insensitive ko As k increases, FJ has
weaker pruning power and its cost increases slightl
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Fig. 13. Effect of k, range scores. (a) 1/0. (b) Time.

Fig. 13 shows the cost of the algorithms, wharying the query range Ask increases, all methods access
more nodes in feature trees to compute the scdribe @oints. The difference in execution time begw BB*
and FJ shrinks as< € increases. In summary, althougd is the clear winner in most of the experimental
instances, its performance is significantly affddy the numbem of feature data sets. BB* is the most robust
algorithm to parameter changes and it is recomnekfateproblems with largen.

4. CONCLUSION
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In this paper, we studied top-k spatial erefice queries, which provide a novel type of nagkor spatial
objects based on qualities of features in theigmedrhood. The neighborhood of an object p is cegtby the
scoring function: 1) the range score restrictsribgyhborhood to a crisp region centered at p, vd®e®) the
influence score relaxes the neighborhood to thelavipace and assigns higher weights to locatiarsecio p.
We presented five algorithms for processing toppkitial preference queries. The baseline algorititn S
computes the scores of every object by queryindeature data sets. The algorithm GP is a variarf@Pthat
reduces I/O cost by computing scores of objecthénsame leaf node concurrently. The algorithm BBwes
upper bound scores for non-leaf entries in theathijee, and prunes those that cannot lead torlyetalts. The
algorithm BB* is a variant of BB that utilizes amtamized method for computing the scores of obj€atsd
upper bound scores of nonleaf entries). The algoriEJ performs a multi-way join on feature treeslbdain
qualified combinations of feature points and thearsh for their relevant objects in the object.t&ssed on our
experimental findings, BB* is scalable to largeadaets and it is the most robust algorithm wittpees to
various parameters. However, FJ is the best algorih cases where the number m of feature datais&tsy
and each feature data set is small. In the futweewill study the top-k spatial preference queryamoad
network, in which the distance between two poistsléfined by their shortest path distance rathen their
euclidean distance. The challenge is to develagradtive methods for computing the upper boundesctor a
group of points on a road network.
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