Some Fixed Point Theorems in Fuzzy Mappings

Ramakant Bhardwaj, R.P. Dubey*, Neeta Tiwari†, Manoj Solanki
Dept. of Mathematics Truba institute of Engineering & IT Bhopal (MP) India
* C.V. Raman University, Bilaspur (C.G.)
† Department of Mathematics Sadhuvasvani College Bhopal, India
rkbhardwaj100@gmail.com,

ABSTRACT
In this paper we established some fixed point and common fixed point theorems for sequence of fuzzy mappings,taking rational inequalities which generalized the results of Heilpern [2], Lee, Cho, Lee and Kim [16]

Keywords: Fixed point theory, Fuzzy Mappings, Contraction mappings, Upper semi-continuous, common fixed point.

1. Introduction:
The concept of fuzzy sets was introduced by Zadeh [1] in 1965. After that a lot of work has been done regarding fuzzy sets and fuzzy mappings. The concept of fuzzy mappings was first introduced by Heilpern [2], he proved fixed point theorem for fuzzy contraction mappings which is a fuzzy analogue of the fixed point theorem for multivalued mappings of Nadler [3], Vijayaraju and Marudai [4] generalized the Bose and Mukherjees [5] fixed point theorems for contractive types fuzzy mappings. Marudai and Srinivasan [6] derived the simple proof of Heilperns [2] theorem and generalization of Nadler’s [3] theorem for fuzzy mappings.

Bose and Sahani [7], Butnariu [8-10], Chang and Huang, Non-Jing [11], Chang [12], Chitra [13], Som and Mukharjee [14] studied fixed point theorems for fuzzy mappings.

Bose and Sahini [7] extends Heilpern’s result for a pair of generalized fuzzy contraction mappings. Lee and Cho [15] described a fixed point theorem for contractive type fuzzy mappings which is generalization of Heilpern’s [2] result. Lee, Cho, Lee and Kim [16] obtained a common fixed point theorem for a sequence of fuzzy mappings satisfying certain conditions, which is generalization of the second theorem of Bose and Sahini [7].

Recently Rajendran and Balasubramanian [21], worked on fuzzy contraction mappings. More recently Vijayaraju and Mohanraj [17] obtained some fixed point theorems for contractive type fuzzy mappings which are generalization of Beg and Azam [18], fuzzy extension of Kirk and Downing [19], and which obtained simple proof of Park and Jeong [20].
In this paper we are proving some fixed point theorems in fuzzy mappings containing the rational expressions. Perhaps this is first time when we are including such types of rational expressions. These results are extended form of Heilpern [2], Lee, Cho [15], Lee, Cho, Lee and Kim [16],

Preliminaries:

Fuzzy Mappings: Let \(X \) be any metric linear spaces and \(d \) be any metric in \(X \). A fuzzy set in \(X \) is a function with domain \(X \) and values in \([0,1]\). If \(A \) is a fuzzy set and \(x \in X \), the function value \(A(x) \) is called the grade of membership of \(x \) in \(A \). The collection of all fuzzy sets in \(X \) is denoted by \(\mathcal{F}(x) \).

Let \(A \in \mathcal{F}(x) \) and \(\alpha \in [0,1] \). The set \(\alpha \)-level set of \(A \), denoted by \(A_{\alpha} \), is denoted by

\[
A_{\alpha} = \{ x : A(x) \geq \alpha \} \quad \text{if} \quad \alpha \in [0,1],
\]

\[
\bigcap_{\alpha} B = \{ x : A(x) > \alpha \}, \text{whenever} \quad \overline{B} \text{ is clouser of } \ B
\]

Now we distinguish from the collection \(\mathcal{F}(x) \) a sub collection of approximate quantities, denoted \(\mathcal{W}(x) \).

Definition 2.1 A fuzzy subset \(A \) of \(X \) is an approximate quantity iff its \(\alpha \)-level set is a compact subset (non fuzzy) of \(X \) for each \(\alpha \in [0,1] \), and \(\sup_{x \in X} A(x) = 1 \).

When \(A \in \mathcal{W}(x) \) and \(A(x_0) = 1 \) for some \(x_0 \in \mathcal{W}(x) \), we will identify \(A \) with an approximation of \(x_0 \). Then we shall define a distance between two approximate quantities.

Definition 2.2 Let \(A, B, \in \mathcal{W}(x), \alpha \in [0,1] \), define

\[
p_\alpha(A,B) = \inf_{x \in A\alpha, y \in B\alpha} d(x,y), D_\alpha(A,B) = \text{dist}(A\alpha, B\alpha), d(A,B) = \sup_{\alpha} D_\alpha(A,B)
\]

Whenever \(\text{dist.} \) is Hausdorff distance. The function \(p_\alpha \) is called \(\alpha \)-spaces, and a distance between \(A \) and \(B \). It is easy to see that \(p_\alpha \) is non decreasing function of \(\alpha \). We shall also define an order \(\circ \) the family \(\mathcal{W}(x) \), which characterizes accuracy of a given quantity.

Definition 2.3 Let \(A, B \in \mathcal{W}(x) \). An approximate quantity \(A \) is more accurate then \(B \), denoted by \(A \preceq B \), iff \(A(x) \leq B(x) \), for each \(x \in X \).

Now we introduce a notion of fuzzy mapping, ie a mapping with value in the family of approximate quantities.

Definition 2.4 Let \(X \) be an arbitrary set and \(Y \) be any metric linear space. \(F \) is called a fuzzy mapping iff \(F \) is mapping from the set \(X \) into \(\mathcal{W}(Y) \), ie \(, F(x) \in \mathcal{W}(Y) \) for each \(x \in X \).

A fuzzy mapping \(F \) is a fuzzy subset on \(X \times Y \) with membership function \(F(x,y) \). The function value \(F(x,y) \) is grade of membership of \(y \) in \(F(x) \).
Let $A \in F(X), B \in F(Y).$ The fuzzy set $F(A)$ in $F(Y)$ is defined by

$$F(A)(y) = \sup_{x \in X} (F(x, y) \wedge A(x)), y \in Y$$

And the fuzzy set $F^{-1}(B)$ in $F(X)$, is defined as

$$F^{-1}(B)(x) = \sup_{y \in Y} (F(x, y) \wedge B(y)) \text{ where } x \in X$$

First of all we shall give here the basic properties of α-space and α-distance between some approximate quantities.

Lemma 3.1: Let $x \in X, A \in W(X),$ and $\{x\}$ be a fuzzy set with membership function equal a characteristic function of set $\{x\}.$ If $\{x\}$ is subset of a then $p_\alpha(x, A) = 0$ for each $\alpha \in [0,1].$

Lemma 3.2

$$p_\alpha(x, A) \leq d(x, y) + p_\alpha(y, A) \text{ for any } x, y \in X$$

Lemma 3.3 if $\{x_0\}$ is subset of A, then $p_\alpha(x_0, B) \leq D_\alpha(A, B)$ for each $B \in W(X)$.

Lemma 3.4[15]: Let (X, d) be a complete metric linear space , T be a fuzzy mapping from X into $W(X)$ and $x_0 \in X,$ then there exists $x_1 \in X$ such that $\{x_1\} \subseteq T\{x_0\}$

Lemma 3.5[16]: Let $A, B, \in W(X).$ then for each $\{x\} \subseteq A,$ there exists $\{y\} \subseteq B$ such that

$$D(\{x\}, \{y\}) \leq D(A, B)$$

Main Result 1: Let X be a complete metric linear space and T be a fuzzy mapping from X to $W(X),$ $p, q, r, \in (0,1)$ such that

$$D(T(x), T(y)) \leq p \max \{d(x, y) + d(x, T(y))\} + q \max \{d(x, y) + r \frac{d(x, y) + d(x, T(y))}{1 + d(x, y) + d(x, T(y))}\}$$

where $\forall x \neq y$ then there exists $x^* \in X$ such that $\{x^*\} \subseteq T(x^*)$

Proof: Let $x_0 \in X$ and $\{x_1\} \subseteq T(x_0)$, then there exist $\{x_2\} \subseteq T(x_1)$ and

$$d(x_2, x_1) \leq D_1(T(x_1), T(x_0)).$$

If $\{x_3\} \subseteq T(x_2),$ then there exists $\{x_4\} \subseteq T(x_3)$ such that

$$d(x_3, x_4) \leq D_1(T(x_2), T(x_3))$$

On continuing this in this way we produce a sequence (x_n) in X such that $\{x_n\} \subseteq T(x_{n-1})$ and

$$d(x_n, x_{n+1}) \leq D_1(T(x_{n-1}), T(x_n)) \text{ for each } n \in N$$

Now we shall show that (x_n) is a Cauchy sequence.
\[d(x_{k+1}, x_k) \leq D \left(T(x_k), T(x_{k-1}) \right) \]
\[\leq D \left(T(x_k), T(x_{k-1}) \right) \]
\[\leq p \max \{d(x_k, x_{k-1}), d(x_k, T(x_{k-1})) \} + q \cdot d(x_k, x_{k-1}) + r \cdot \frac{d(x_k, x_{k-1}) + d(x_k, T(x_{k-1}))}{1 + d(x_k, x_{k-1})} \]

where \(p, q, r \in (0,1) \)
\[d(x_{k+m}, x_k) \leq \sum_{j=k}^{k+m-1} s^j d(x_{j+1}, x_j) \leq s^k \sum_{j=k}^{k+m-1} d(x_{j+1}, x_j) \]
\[\leq s^k d(x_1, x_0) \]
\(s^k \) converges to 0 as \(k \to \infty \)

Then, since \(X \) is a complete space and \((x_n)\) is a Cauchy sequence, there exists a limit of sequence \((x_n)\), such that

\[\lim_{n \to \infty} x_n = x^* \]

\[p_0(x^*, T(x^*)) \leq d(x^*, x_n) + p_0(x_n, T(x^*)) \quad \text{by lemma 3.2} \]
\[\leq d(x^*, x_n) + D_0(T(x_{n-1}), T(x^*)) \quad \text{by lemma 3.3} \]
\[\leq d(x^*, x_n) + s d(x_{n-1}, x^*) \]

\(d(x^*, x_n) \) converges to 0 as \(n \to \infty \). Hence from lemma 3.1, we conclude that
\[\{x^*\} \subset T \{x^*\} \]

Remarks:

If we put \(T = F \) and \(p = 0, r = 0 \) we get the result of Heilpern, S [54]

Now we are giving a new result which also includes rational inequalities and which is extended form of Lee, Cho [15], Lee, Cho, Lee and Kim [16] for three mappings.

Main Result 2: Let \(g \) be a non expansive mapping from a complete metric spaces \(X \) into itself. If \(\{T_i\}_{i=1}^{\infty} \) is a sequence of fuzzy mappings from \(X \) into \(W(x) \) satisfying the following conditions:

For three fuzzy mapping \(T_i, T_j, T_k \) and for any \(x \in X \), \(\{u_i\} \subset T_i(x) \), there exist \(\{v_j\} \subset T_j(y), \{w_k\} \subset T_k(z) \) for all \(y, z \in X \) such that
\[D[\{u_n\}, \{v_n\}] \leq \alpha_1 d(g(x), g(u_n)) + \alpha_2 d(g(x), g(v_n)) + \alpha_3 d(g(x), g(w_n)) + \alpha_4 d(g(y), g(u_n)) + \alpha_5 d(g(y), g(v_n)) + \alpha_6 d(g(y), g(w_n)) + \alpha_7 d(g(z), g(u_n)) + \alpha_8 d(g(z), g(v_n)) + \alpha_9 d(g(z), g(w_n)) + \alpha_{10} d(g(x), g(w_n)) \]

\[+ \alpha_{10}^2 \frac{d[g(x), g(u_n)] + d[g(y), g(u_n)] + d[g(x), g(v_n)] + d[g(y), g(v_n)] + d[g(x), g(w_n)]}{1 + d[g(x), g(v_n)]} \]

For all \(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_8, \alpha_9, \alpha_{10} \) are non-negative reals, and \(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7 + 2\alpha_{10} < 1 \)

Then there exists \(r \in X \), such that \(\{r\} \subset \bigcap_{i=1}^{\infty} T_i(r) \)

Proof: Let \(x_0 \in X \), then we can choose \(\{x_n\} \in X \) such that \(\{x_n\} \subset T_1(x_0) \), so by assumption there exist \(x_2, x_1 \in X \), such that \(\{x_2\} \subset T_2(x_1) \), \(\{x_3\} \subset T_3(x_2) \), and

\[D[\{x_1\}, \{x_2\}] \leq \alpha_1 d(g(x_0), g(x_1)) + \alpha_2 d(g(x_0), g(x_2)) + \alpha_3 d(g(x_0), g(x_3)) + \alpha_4 d(g(x_0), g(x_4)) + \alpha_5 d(g(x_0), g(x_5)) + \alpha_6 d(g(x_0), g(x_6)) + \alpha_7 d(g(x_0), g(x_7)) + \alpha_8 d(g(x_0), g(x_8)) + \alpha_9 d(g(x_0), g(x_9)) + \alpha_{10} d(g(x_0), g(x_{10})) \]

We can find \(x_4 \in X \), such that \(\{x_4\} \subset T_4(x_3) \), and

\[D[\{x_3\}, \{x_2\}] \leq \alpha_1 d(x_0, x_1) + \alpha_2 d(x_0, x_2) + \alpha_3 d(x_0, x_3) + \alpha_4 d(x_1, x_2) + \alpha_5 d(x_1, x_3) + \alpha_6 d(x_2, x_3) + \alpha_7 d(x_2, x_4) + \alpha_8 d(x_3, x_4) + \alpha_9 d(x_3, x_5) + \alpha_{10} d(x_3, x_6) \]

On continuing this process we can obtain a sequence \(\{x_n\} \in X \) such that

\[\{x_{n+1}\} \subset T_{n+1}(x_n) \], and
Since \(D(\{x_n\}, \{x_{n+1}\}) = d(x_n, x_{n+1}) \), and using triangular inequality in metric spaces

\[
D[\{x_n\}, \{x_{n+1}\}] \leq \alpha_1 d(x_{n-1}, x_n) + \alpha_2 d(x_{n-1}, x_{n+1}) + \alpha_3 d(x_{n-1}, x_{n+2}) + \alpha_4 d(x_{n-1}, x_{n+3}) + \alpha_5 d(x_{n-1}, x_{n+4})
\]

On continuing this process we get,

\[
d(x_n, x_{n+1}) \leq p^n d(x_0, x_1) + q^n d(x_1, x_2)
\]

hence \(\{x_n\}_{n=1}^{\infty} \) is a cauchy sequence in \(X \).

Where \(p = \left[\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_9 + 2\alpha_{10} + \alpha_{11}}{1 - [\alpha_2 + \alpha_3 + \alpha_5 + \alpha_6 + \alpha_7 + 2\alpha_{10}]} \right] \) and \(q = \left[\frac{\alpha_3 + \alpha_6 + \alpha_{10}}{1 - [\alpha_2 + \alpha_3 + \alpha_4 + \alpha_6 + \alpha_7 + 2\alpha_{10}]} \right] \)

Since \(X \) is complete, there exists \(r \in X \), such that \(\lim (n \to \infty) \) \(x_n = r \).

Let \(T_m \) be an arbitrary member of \(\{T_i\}_{i=1}^{\infty} \), since \(\{x_n\} \subseteq T_d(x_{n-1}) \) for all \(n \) there exists \(v_n \in X \), such that \(\{v_n\} \subseteq T_m(r) \) for each values of \(n \).

Clearly \(D(\{r\}, \{x_n\}) \to 0 \) as \(n \to \infty \)

Since, \(T_m(r) \in W(X), T_m(r) \) is upper semi – continuous and so,

\(\lim (n \to \infty) \sup(T_m(r))(v_n) \leq [T_m(r)](r) \)

Since \(\{v_n\} \subseteq T_m(r) \) for all \(n \), so

\([T_m(r)](r) = 1 \)

Hence, \(\{r\} \subseteq T_m(r) \), and \(T_m(r) \) is arbitrary, so \(\{r\} = \bigcap_{n=1}^{\infty} T(r) \)

Remarks:

If we write \(a_1 \) as \(a_1, a_3 \) as \(a_2, a_4 \) as \(a_3, a_5 \) as \(a_4, a_11 \) as \(a_5 \).

And \(a_3 = a_5 = a_6 = a_7 = a_8 = a_9 = a_{10} = 0 \). Then we get the result of Lee, Cho, Lee and Kim [16]
COROLLARY 2.1: Let \((X,d)\) be a complete linear metric spaces t. If \(\{T_i\}_{i=1}^\infty\) is a sequence of fuzzy mappings from \(X\) into \(W(x)\) satisfying the following conditions:

For three fuzzy mapping \(T_i, T_j, T_k\) and for any \(x \in X\), \(\{u_x\} \subseteq T_i(x)\), there exist \(\{v_y\} \subseteq T_j(y), \{w_z\} \subseteq T_k(z)\) for all \(y, z \in X\) such that

\[
D[u_x, v_y] \leq \alpha_1 d((x), (u_x)) + \alpha_2 d((x), (v_y)) + \alpha_3 d((y), (u_x)) + \alpha_4 d((y), (v_y)) + \alpha_5 d((z), (u_x)) + \alpha_6 d((z), (v_y)) + \alpha_7 d((x), (u_x)) + \alpha_8 d((x), (v_y)) + \alpha_9 d((y), (u_x)) + \alpha_{10} d((y), (v_y))
\]

For all \(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_8, \alpha_9, \alpha_{10}\) are non negative reals, and \([\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_7 + 2\alpha_{10}] < 1\)

Then there exists \(r \in X\), such that \(\{r\} \subseteq \bigcap_{i=1}^\infty T_i(r)\)

Proof: On putting \(g(x) = x\) in result 2, we can get this corollary.

Acknowledgement: This work is done under the project No. 2556/ MPCOST/ Bhopal/India. This paper was accepted for journal of fuzzy mathematics Los Angeles, but not published due to technical fault till now. So it is published with IISTE journals

References

12. S.S.Chang ,Fixed point theorems for fuzzy mappings ,Kexue Tongbao,14(1984),833-836

15. B.S.Lee and S.J.Cho,common fixed point theorems for sequence of fuzzy mappings , Fuzzy Sets and Systems, (1993),

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There’s no deadline for submission. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/journals/ The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Recent conferences: http://www.iiste.org/conference/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar