
Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.4, No.9, 2013 

 

 

49 

 

Some Fixed Point Theorems in Fuzzy Mappings 

Ramakant Bhardwaj, R.P. Dubey
*
   Neeta Tiwari

*1
, Manoj Solanki 

Dept. of Mathematics Truba institute of Engineering & IT Bhopal (MP) India 
*
C.V. Raman University, Bilaspur (C.G.) 

2
Department of Mathematics Sadhuvasvani College  Bhopal, India 

rkbhardwaj100@gmail.com ,  

ABSTRACT 
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1. Introduction: 

The concept of fuzzy sets was introduced by Zadeh [1] in 1965. After that a lot of work has been done 

regarding fuzzy sets and fuzzy mappings. The concept of fuzzy mappings was first introduced by Heilpern[2],he 

proved fixed point theorem for fuzzy contraction mappings which is a fuzzy analogue of the fixed point theorem 

for multyvaluied mappings of Nadler[3],Vijayraju and Marudai[4] generalized the Bose and Mukherjee
,
s[5] 

fixed point theorems for contractive types fuzzy mappings .Marudai and Srinmivasan [6] derived the simple 

proof of Heilpern
,
s [2] theorem and generalization of Nadler

’
s [3] theorem for fuzzy mappings.  

Bose and Sahani [7], Butnariu [8-10], Chang and Huang, Non-Jing [11], Chang[12], Chitra [13], Som and 

Mukharjee [14] studied fixed point theorems for fuzzy mappings. 

Bose and Sahini[7] extends Heilpern
,
s result for a pair of generalized fuzzy contraction mappings .Lee and 

Cho[15] described a fixed point theorem for contractive type fuzzy mappings which is generalization of 

Heilpern
,
s [2] result. Lee, Cho, Lee and Kim [16] obtained a common fixed point theorem for a sequence of 

fuzzy mappings satisfying certain conditions, which is generalization of the second theorem of Bose and Sahini 

[7]. 

Recently Rajendran and Balasubramanian [21], worked on fuzzy contraction mappings. More recently Vijayraju 

and Mohanraj [17] obtained some fixed point theorems for contractive type fuzzy mappings which are 

generalization of Beg and Azam [18] , fuzzy extension of Kirk and Downing[19] ,and which obtained simple 

proof of Park and Jeong [20].  
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In this paper we are proving some fixed point theorems in fuzzy mappings containing the rational expressions. 

Perhaps this is first time when we are including such types of rational expressions. These results are extended 

form of  Heilpern [2], Lee, Cho [15], Lee, Cho, Lee and Kim [16],  

Preliminaries: 

Fuzzy Mappings: Let X be any metric linear spaces and d be any metric in x. A fuzzy set in X is a function with 

domain X and values in [0,1]. If A is a fuzzy set and x ε X, the function value A(x) is called the grade of 

membership of x in A. The collection of all fuzzy sets in X is denoted by ₣(x). 

Let A ε ₣(x).and α ε [0,1].The set α –level set of A, denoted by Aα is denoted by 

Aα  = { x: A(x) ≥ α } if α ε [0,1], 

( ) BofclouserisBwheneveroxAxA
--------

= },:{0 f  

 Now we distinguish from the collection ₣(x) a sub collection of approximate quantities, denoted W(x). 

Definition 2.1 a fuzzy subset A of X is an approximate quantity iff its α-level set is a compact subset (non fuzzy) 

of X for each α ε [0,1],and 1)(sup =xA
Xxe

 

When A ε W(x) and A(x0) =1 for some x0 ε W(x), we will identify A with an approximation of x0 .Then we shall 

define a distance between two approximate quantities. 

Difinetion 2.2 Let A,B,ε W(x), α ε [0,1],define 

( ) ),(sup),(),,(),(,,inf),(
,

BADBAdBAdistBADyxdBAp
ByAx

a
a

aaaaeea
a

===  

Whenever dist. is Hausdorf distance. The function pα is called α-spaces, and a distance between A and B. It is 

easy to see that pα is non decreasing function of α. We shall also define an order o the family W(x) ,which 

characterizes accuracy of a given quantity. 

Definition 2.3 Let A, B ε W(x). An approximate quantity A is more accurate then B, denoted by A C B, iff A(x) 

≤ B(x), for each x ε X. 

Now we introduce a notion of fuzzy mapping, ie a mapping with value in the family of approximate quantities. 

Definition 2.4 Let X be an arbitrary set and Y be any metric linear space. F is called a fuzzy mapping iff F is 

mapping from the set X into W(Y), ie , F(x) ε W(Y) for each x ε X 

         A fuzzy mapping F is a fuzzy subset on X x Y with membership function F(x,y).The function value F(x,y) 

is grade of membership of y in F(x). 



Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.4, No.9, 2013 

 

 

51 

 

Let A ε ₣(X),B ε ₣(Y).The fuzzy set F(A) in ₣(Y) is defined by  

YyyAyxFyAF
Xx

e
e

,))(),((sup)()( ^=  

And the fuzzy set F
-1

(B) in ₣(X), is defined as  

 

XxwhereyByxFxB
Yy

e
e

)(),((sup))((F ^

1 =-
 

First of all we shall give here the basic properties of α-space and α-distance between some approximate 

quantities. 

Lemma3.1: Let x ε X,A ε W(X),and {x} be a fuzzy set with membership function equal a characteristic function 

of set {x} .If {x} is subset of a then pα(x,A) = 0 for each α ε [0,1]. 

Lemma 3.2  

pα (x, A) ≤ d(x,y) + pα(y,A) for any x,y ε X  

Lemma 3.3 if {x0} is subset of A, then pα(x0,B) ≤ Dα(A,B) for each B ε W(X). 

Lemma 3.4[15]: Let (X,d) be a complete metric linear space , T be a fuzzy mapping from X into W(X) and x0 ε 

X , then there exists x1 ε x such that {x1}  Ì   T{x0}  

Lemma 3.5[16] Let A, B, ε W(X).then for each {x}  Ì  A, there exists {y}  Ì  B such that  

D ({x}, {y}) ≤ D (A, B) 

Main Result 1:Let X be a complete metric linear  space and T be a fuzzy mapping from X to W(X), p,q,r, ε (0,1) 

such that  

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( )

)(}{

,
,,1

,,
,},,{max))(),((

*** xTxthatsuchXxexiststhereythenxwhere

yTxdyxd

yTxdyxd
ryxdqyTxdyxdpyTxTD

Ì¹"

++
+

+++£

e

 

Proof; Let x0 ε X and {x1}  Ì  T(x0), then there exist {x2}  Ì  T(x1) and 

 d(x2,x1)≤ D1 (T(x1,T(x0)) .If {x3}  Ì  T(x2),then there exists {x4}  Ì  T(x3) such that 

d(x3, x4) ≤ D1 (T(x2),T(x3)) 

 On continuing this in this way we produce a sequence (xn) in X such that {xn}  Ì  T(xn-1) and 

( ) ( )( ) NneachforxTTxDxxd nnnn e,, 111 -+ £  

Now we shall show that (xn) is a Cauchy sequence. 
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Then, since X is a complete space and (xn) is a Cauchy sequence, there exists a limit of sequence (xn), such that 

we assume 
*lim xxn

n
=

¥®
 

( )( ) ( ) ( )( )
( ) ( )( )
( ) ( ).,,

3.3),(,

2.3,,,

*

1

*

*

10

*

*

0

***

0

xxdsxxd

lemmabyxTxTDxxd

lemmabyxTxpxxdxTxp

nn

nn

nn

-

-

+£

+£

+£

 

d(x
*
,xn) converges to 0 as n→ ∞ .Hence from lemma 3.1 ,we conclude that 

{x
*
} Ì   T{x

*
) 

Remarks: 

If we put T= F and p =0,r = 0 we get the result of Heilpern, S[54]  

Now we are giving a new result which also includes rational inequalities and    which is extended form of Lee, 

Cho [15], Lee, Cho, Lee and Kim [16] for three mappings. 

Main Result 2: Let g be a non expansive mapping from a complete metric spaces X,into itself. If {Ti}
¥
=1i  is a 

sequence of fuzzy mappings from X into W(x) satisfying the following conditions: 

For three fuzzy mapping Ti, Tj, Tk and for any x ε X, {ux} ÌTi(x), there exist 

{vy} ÌTj(y),{wz} Ì  Tk(z) for all y,z ε X such that 
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Proof: Let x0 ε X, then we can choose {x1] ε X such that {x1} Ì  T1(x0), so by assumption there exist x2, x3 ε X, 

such that {x2} Ì  T2(x1), {x3} Ì  T3(x2), and  

 

D ({x1},{x2}) 

  We can find x4 ε X, such that {x4} Ì  T4(x3), and  
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On continuing this process we can obtain a sequence {xn} in X such that  

 {xn+1} Ì  Tn+1(xn), and 
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Since D ({xn}, {xn+1}) = d (xn, xn+1), and using triangular inequality in metric spaces  
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Since X is complete, there exists r ε X, such that lim ( n→∞ ) xn = r,  

Let Tm be an arbitrary member of {Ti}
¥
=1i .since {xn} Ì  Tn(xn-1) for all n there exists vn ε X,such that {vn} Ì  

Tm(r) for each values of n. Clearly D( {r},{xn}) → 0 as  n→∞ 

Since, Tm(r) ε W(X),Tm(r) is upper semi –continuous and so, 

Lim (n→∞) Sup[Tm(r)](vn) ≤ [Tm(r)](r) 

Since {vn} C Tm(r) for all n, so 

[Tm(r)] (r) = 1 

Hence, {r} C Tm(r), and Tm(r) is arbitrary, so ( )I
¥

=
Ì

1
}{

i i rTr  

Remarks: 

If we write α1 as a1,α5 as a2, α4 as a3, α2 as a4, α11 as a5. 

And α3 =α5 =α6 =α7 =α8 =α9 =α10 = 0.Then we get the result of Lee, Cho, Lee and Kim [16] 
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COROLLARY 2.1: Let (X,d) be a complete linear metric spaces t. If {Ti}
¥
=1i  is a sequence of fuzzy mappings 

from X into W(x) satisfying the following conditions: 

For three fuzzy mapping Ti, Tj, Tk and for any x ε X, {ux} ÌTi(x), there exist 

{vy} ÌTj(y),{wz} Ì  Tk(z) for all y,z ε X such that 
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Proof: On putting g(x) =x in result 2, we can get this corollary. 
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