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Abstract:  

Activities within processes occur in sequence, and the discovering of these sequences is an essential step and of 

great significance to process mining. This paper is aimed at intelligently discovering process sequences that lie 

within the helpdesk unit event log, which was primarily obtained from the 4TU repository. Explicit approaches 

have mostly being applied to mining rules and little attention given to sequences that can be generated via implicit 

approach. Hence, an implicit approach to association rule discovery was adopted using the modified temporal 

overlap scoring module (TOSM). The module was implemented using Java programming language. The 

experimental results showed that the temporal overlap module discovered sequences in an intelligent manner by 

factoring in the overlap property and identifying hidden dependencies. The resulting association rule generated for 

each sequence, as represented in the lift value, was recorded as significant to the entire log as compared to that of 

the explicit approach.  
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1. Introduction 

Help Desk unit which is also referred to as the end-user single point of contact (SPOC), is a vital resource and a 

solution for all businesses, because it assists customers in all suitable ways, handling both queries to complaints. 

As the saying goes, Customer is King; hence, having satisfied customers, is a clear indication for a company’s 

long-term profitability and on the other hand, epileptic processes in the help desk unit of every company can lead 

to customer frustration and in worse cases, the customer can be lost forever (Dumas et al., 2013). The principal 

aim of the help desk unit is to reduce business function’s downtime significantly and keep customers informed on 

the services of the organization. The ability to respond to customers in a timely manner helps them feel valued and 

improve their customer experience with the company. However, help desk processes at large scale businesses are 

very expensive, with regards to labor hours spent and cost of hourly pay (Aleem et al., 2015). The workload of 

help desk unit is very dynamic, employing a sufficiently large team of helpdesk staff can lead to several staff being 

idle during help desk operations and on the other hand, employing few staff will result in delay of issue resolution. 

Hence, overview of helpdesk processes helps plan staffing levels and minimized labor cost. Businesses are more 

dependent on IT and complexity of technology applied is increasing at a fast rate, all these developments have led 

to customers demanding more value for their money, hence the need to intelligently monitor the process of the 

unit that has direct impact on the customer. The business environment has grown to be a very competitive one, 

with every business trying to guard its existing customers and at same time grow its customer base. This can only 

be achieved with an intelligent and functioning help desk unit. The ability to accept huge amounts of query data 

and process or resolve issues within a short time interval is a measure of the quality of a help desk. The helpdesk 

however, needs to be monitored so as to improve the quality of the processes that lie therein.  

Event logs refer to data about business processes occurring during the system’s performance and they are 

collected and stored in the information systems which are advantageously used as input information for building 

and retrieving business process model (Grigorovia et. al., 2017). In event logs, each event refers to a case, an 

activity and a point in time. They are also said to be data that reveals the real events that has taken place rather 

than how it is supposed to be or how it is perceived by its authors. Event logs come from a wide variety of sources 

such as; patient data in a hospital, financial data on spreadsheets, transaction logs from trading systems, message 

log from middleware and a host of others (Dogen, 2011). Although event logs are available in information systems 

of organizations, they frequently lack the understanding of their real-life processes. 

The knowledge hidden within these event logs can be converted into useful information (van der Aalst, 2012). 

Figure 1 visualizes these definitions. An event log consists of events, which contain activities that can be seen in 

the IT systems and mapped to the process model. Every event is mapped to a case, a specific execution of the 

process. Every case has a sequence of ordered events (Dogen, 2011). Each sequence forms a variant. Different 

people in different cases execute these activities in a different order (Elzinga et al., 1995). Beside case identifiers, 

event names and timestamps, an event log can contain additional event properties, such as costs and resources 

(participants of the process), internet protocol (IP) addresses and much more (Kalenkova et al., 2017). To discover 

a control flow, an event log is represented as a multiset of traces, each of which is a sequence of events, 
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corresponding to a concrete case identifier: 

 
Figure 1: Visualization of CaseID, Activity and Variant (van der Aalst, 2012) 

 

2. Related Literature 

Customer service is one key factor in building a company’s reputation and brand. This service is offered by the 

help desk unit, which is a primary unit of every organization, aimed at resolving customer’s queries and complaints 

in an organized and systematic way to ensure customer satisfaction. Efficient functioning of the help desk unit aids 

organization in enhancing service quality. Figure 2 illustrate the various channels through which customers can 

log their complaints. Once the communication channels are identified, the next step is to funnel them down to 

create cases (Verenich, 2016). The figure shows customers request coming from various channels such as online 

inquiry, call support, email messaging and direct call in, each of this form is eventually classified as a case.  

  
Figure 2: Customer Communication Channels (Verenich, 2016) 

Improvement of customer digital experience has been sort by various researchers, Osman & Ghiran (2019), 

proposed a novel approach to generate customer traces from information systems such as customer relationship 

management systems (CRMS) in a bid to improve customer experience. Their work highlighted that IT methods, 

tools and methodologies are needed to better understand customer’s needs. Hinshaw (2012), in his article, 

highlighted some tools and methodologies that helps to improve customer experience, such of these include; design 

thinking, which is a methodology used by software designers in high-tech companies to assist them in better 

understanding the needs of the customers so as to provide desirable solutions. Other tools such as Big Data 

Analytics, Business Process Management, Machine Learning, Internet of Things and several others are being used 

optimally. Design of Customer Journey Maps (CJM) have posed a big challenge for companies as it involves a lot 

of integration such as web and mobile, to allow for interaction between company and client (Osman & Ghiran, 

2019).  SAP and Oxford Economics carried out a research in 2017 which involved over 3100 companies from all 
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over the world and these companies cut across all domains such as manufacturing, health, and banking. Their study 

showed that 96% of these companies have increased investment on technologies that helps to improve customer’s 

digital experience. 

Literature highlights an abundant of approaches of data mining techniques applied on customer relationship 

management systems (CRMS) including classification, association, regression, clustering, visualization, predictive 

analysis or sequence discovery. All these approaches were relevant to study; however, none of them provides a 

process-centric approach. An agile methodology known as Design Thinking (DT) has become very popular in the 

last decade because of its cognitive power to easily adapt to change and give visual overview to company’s 

processes (Osman & Ghiran, 2019).  Sakchaikun et al. (2018) applied three process discovery techniques to real 

life help desk event log previously extracted from the help desk unit of on IT company. These techniques include 

social network miner, time performance fuzzy miner supported by disco fluxicon tool and RapidProm tool. The 

helpdesk unit, to which these techniques were applied, was manned by 5 helpdesk staff. The retrieved data, which 

include the event processes and the staff id of the resource persons, were pre-processed, filtered and subjected to 

the process mining tools. Results showed the average SLA time recorded between the opening of a ticket and the 

close of the ticket was 4 days against the expected 4 hours according to the guideline of the company. Further 

findings revealed that of the five helpdesk staff, only four really handled the workload of the department; the last 

staff performed only 5 task in the entire year, probing the behavior of this last staff revealed that he used admin 

privilege to reassign all his task to the other four staff, hence, playing absolutely an inactive and idle role all year 

round (Sakchaikun et al., 2018). Results of the study assisted the company in improving their customer service 

efficiency. The life cycle of process management is characterized by an iterative set of activities. The cycle is 

repeated for various process instances. Before drawing up a process lifecycle, the organization’s goals must be 

fully understood and current processes must be identified.  

 

3. Process Aware Information System 

The PAIS can be defined as a system driven by process model (Rovani, et. al., 2005). It serves as a bridge that 

connects people and software through process technology. There are various software that can be used to create 

PAIS which include: WorkFlow Management (WFM), Customer Relation Management (CRM), Supply Chain 

Management (SCM), Product Data Management (PDM) and Enterprise Resource Planning (ERP) (van der Aalst, 

et. al, 2012). They have a built-in workflow component that is responsible for generating event logs. WFMS was 

birthed in the 90s and focused on proffering ways to automate tasks integrated to a human activity and to control 

the flow of information. In following years, BPMS emerged and became an extension of WFMS, however, it 

focused mainly on management roles, operation analysis and organization work. However, the applications of 

WFMS or BPMS are very limited in many organizations owing to the difficulties in dealing with semi-structured 

or unstructured processes. 

 

3.1 Event Logs 

Events are produced at transition firings, the sequence of events produced by the system is exactly the sequence 

of transition firings (Cook et al., 2004). On process-aware information systems (PAISs), these events have log file 

known as event logs. Event log is the start point of business process model analysis. When carrying out process 

mining for the reason of process discovery, it means there exist no previous model and hence, the event logs serves 

as the basic resource that helps to provide information about business process activities (Sarno and Effendi, 2017). 

Event logs can be gotten from large-scale information systems such as Customer Relationship Management (CRM), 

Enterprise Resource Planning (ERP) and Workflow Management Systems (WFMS). During the execution of 

business process, information of each activity and abstract procedure are recorded into these information systems. 

Event logs contain several information depending on the organizational information (Sarno et al., 2016). In general, 

event log is divided into three basic parts; Case identification number, the timestamp and the activity as illustrated 

in table 1 (Sutrisnowati et al., 2014). 

I) Case: this refers to a record of events related to a single executed process instance. It can also be 

described as the number of times an item is being executed. 

II) Timestamp: This, records a time of events that belong to same case. 

III) Activity: this is a part of an event log that represents the production process of a product  

Table 1 also include other attributes such as resource and cost, this shows that there are several other attributes 

that exist within the log, however, the basic attributes used in mining are case ID, timestamp and activity. The table 

shows a resource person identified as Emeka, carry out an activity A at 11.10, same resource person carried out all 

the activities within the segment of this table, using the timestamp and event id a graphical representation of the 

execution of these processes can be generated. 
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Table 1: A fragment of an event log (Sutrisnowati et al., 2014) 

Case ID Properties 

Timestamp Activity Resource … … 

35654423 

35654424 

35654425 

35654426 

35654427 

20-10-2018:11.10 

20-10-2018:13.21 

20-10-2018:13.32 

20-10-2018:15.05 

20-10-2018:15.55 

A 

B 

C 

D 

E 

Emeka 

Emeka 

Emeka 

Emeka 

Emeka 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… … … … … … 

 

4. Materials and Method 

The materials and method used in this paper was described in this section. Their individual and collective 

contribution to the work was also highlighted. 

 

4.1 Dataset  

The dataset was primarily obtained from synthetic event logs of the process mining 4TU Data centre, which was 

same data used by Ayo, et al. The dataset consists of helpdesk processes that have eight different activities being 

carried out at several different timestamps. The dataset comes from the Process Aware Information System (PAIS), 

and it is saved on the system in a comma separated value (CSV) format. Within the dataset, the different activities 

have been coded using short names as thus: a = register, b = examine casually, c = examine thoroughly, d = check 

ticket, e = decide, f = reinitiate request, g = pay compensation and h = archive request. Every case begins with the 

registration of the customer’s request and is properly ended with the pay compensation activity or archive request 

activity. There are six attributes on the dataset, which include; case ID, event ID, timestamp, activity, resource and 

cost. Every row in the dataset represents an event which is identified using an event ID. Related rows are being 

connected using the event ID and the case ID. 

 

4.2 Temporal Overlap 

The HTM theory is an online machine learning concept developed by Hawkins J. and George D. of Numenta in 

2004. The model copies some of the algorithmic and structural properties of the neocortex, which is the seat of 

intelligence in the human brain. In the book On Intelligence, (Hawkins & Blakeslee, 2004), Hawkins developed 

the idea to build a simple model of the neocortex not by simulating every part of it but by reducing it to its core 

function (Galetzka, 2014). The temporal aspect of the theory accounts for the activities that occur in a given order 

and it considers how the present meaning of the activities affects the next activity. The overlap scoring, accounts 

for associated activities with significant permanencies. The entire module was executed in java programming 

language and it handled the generation of the process sequences by executing an algorithm. The TOSM algorithm 

was adopted to improve the process sequence generation of an existing system developed by Ayo et al., 2017, 

where the Bayesian Scoring Function (BSF) was employed in explicitly defining the rules, however, it had a 

shortcoming of having its association rules for the process sequence being defined by the system developer, which 

implied that the robust nature of their system depended on the definition of the rules. This disadvantage poses a 

huge risk to real life processes which takes its toll in any direction. The existing algorithm is displayed in algorithm 

1 and the generated values for its rules are displayed on table 2. The TOSM module started with initializing 

variables, followed by the generation of process sequences by implementing the TOSMEventLog algorithm, as 

seen in algorithm 2. The algorithm was modified from an overlap scoring metric proposed earlier in 2015 (Ahmad 

& Hawkins). The modification introduced a random perturbation factor rb, to account for the entropy that may 

arise during the formation of overlapping patterns by the HTM. The CSV file was introduced into the execution 

of the TOSM using a java import statement. The corresponding sequences where then generated using the 

TOSMEventLog algorithm and its algorithm keeps account of its temporal variability. 

Algorithm 1: BSFEventLog. 

Input : Event Log 

Output : CompleteLog 

 Process :  

1. Input Event log  

2. Definition of Association Rule N  

3.  for i = CasesAtLog length  

4.  for j = ActivitiesAtLog length  

5.  for each association rule v  

6.   Compute Scoring function  

7.   if Deg Of Conf > = 0.5  

8.    for k = 1 to N  
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9.   if (predecessor (v) exists without successor(v))  

10.   insert successor(v) at i  

11. Return CompleteEventLog 

Table 2: Association rules and their respective scoring functions (Ayo, et al., 2017) 

Association Rules Degree of Support Degree of Confidence Lift Value 

a -> b 1.00 1.00 1.00 

a -> b -> c 1.00 1.00 1.00 

a -> b -> c -> d 0.47 0.47 0.73 

a -> b -> c -> d -> e  0.22 0.45 0.45 

a -> b -> c -> d -> e -> f 0.20 0.93 0.93 

a -> b -> c -> d -> e -> f -> g 0.18 0.94 0.94 

a -> b -> c -> d -> e -> f -> h 0.01 0.06 0.22 

a -> b -> c -> d -> e -> h -> g 0.01 1.00 1.00 

a -> b -> c -> d -> e -> h 0.02 0.06 0.24 

a -> c -> d -> f -> e -> h -> f 0.01 1.00 1.00 

Algorithm 2: TOSMEventLog. 

Input: Event Log 

Output: CompleteEventLog 

Process: 

1. Input Event log, Define breaking overlap threshold, ob and a random factor, rb 

2. Number of Process Sequences N 

3. for i = CasesAtLog length 

4. for j =ActivitiesAtLog length 

5. Compute Causality Process Sequence of the form A, A->B, AB->C, ABC -> D  

6.      for each process sequence, s 

7.             Compute an Overlap Scoring function, oth based on s 

8.             if oth  >= ob + rb  

9.                for k = 1 to N 

10.                 if (predecessor (v) exists without successor(v)) 

11                     insert successor(v) at I // the successor is predicted 

12. Return CompleteEventLog 

The values used to determine how relevant an association rule is to the universal set in terms of its degree of 

support and confidence was also evaluated using their mathematical notation as seen in equation 1 and 2. The lift 

value was also evaluated as the ratio of the confidence value to the support. 

Supp (A, B) = S (A ∪ B ) = 
�

�
; A ∩ B = φ     (1) 

 

Conf ( A, B ) =   
� ( � ,�) 

� ( � )
             (2) 

 

5. Result and Discussion 

After the execution of the TOSM block on the CSV file, a set of association rules was generated and each 

association rule was measured against degree of confidence, support and lift. These degrees served as the numerical 

attributes to each rule and their values range between 0 and 1, the more significant the rule is the higher the value 

and vice versa. Given that not every rule is significant to the entire set. The degree of Support, denoted as 

Supp(A,B), gives the percentage of traces containing all items present in the association rule. The mathematical 

notation is given in equation 1. While the degree of Confidence, denoted as Conf(A,B), depicts the frequency of 

B in all instances that A is present, where A and B are activities in the event log, it is mathematically demonstrated 

in equation 2. Lift, which is the resultant attribute of Confidence and Support, is the fraction of the rule confidence 

to B support. The output of the TOSM was dropped on the system’s drive. Table 3 shows the output file, which 

consists of the process sequences and their corresponding function scores. The fourth association rule, a -> c -> d 

-> e -> h, on one hand, can be seen to be very low on the degree of Confidence with a score of 0.0531,  which 

shows that the confidence of this rule is low and implied  that, there might hardly be a second trace of this form 

within the event logs. The first rule, a -> b, on the other hand, shows high degree of support and confidence, which 

eventually leads to a high lift value. This numbers implies that the rule is significant to the event log. The rules 

generated with the TOSM are more than those of the BSF, where rules were explicitly defined as seen in table 2 

and table 3; this implies that there exist other rules that were not defined using the Bayesian scoring approach. 

Hence, table 4 which holds the summary of findings shows the total number of rules discovered from both 

approaches and the average the degree of the association as calculated from the lift value between 0.6 and 1.0. The 
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TOSM recorded 7 more rule discoveries than the BSF, and an average degree that was higher than that of the 

explicit approach by 0.06. 

Table 3: Association rules and their respective scoring functions   

Association Rules Degree of Support Degree of Confidence Lift Value 

a -> b 0.8113 0.7003 0.8631 

a -> b -> c 0.7456 0.0345 0.4627 

a -> b -> d -> h 0.4781 0.4781 1.0003 

a -> c -> d -> e -> h 0.2156 0.0531 0.2462 

a -> b -> d -> e -> g 0.9784 0.5542 0.6564 

a -> c -> d -> e -> h 0.4788 0.4784 0.9916 

a -> c -> d -> f -> h 0.8152 0.4509 0.5531 

a -> b -> d -> e -> g -> h 0.9831 0.9388 0.9549 

a -> b -> c -> d -> b -> e -> g 0.9884 0.9412 0.9522 

a -> c -> d -> f -> e -> f -> g 0.7125 0.0653 0.9162 

a -> c -> d -> f -> e -> f -> g -> h -> g 0.7456 0.0654 0.8771 

a -> b -> d -> c -> e -> f -> g -> h -> g 0.8147 0.6521 0.8002 

a -> b -> d -> f -> e -> h -> g -> h -> g 0.6125 0.0467 0.7624 

a -> c -> d -> c -> b -> d -> e -> f 0.6337 0.0677 0.6833 

a -> d -> b -> d -> e -> f -> g -> h -> g 0.7193 0.4996 0.6945 

a -> b -> c -> d -> e -> f -> e -> g -> h 0.7456 0.0657 0.8811 

a -> c -> b -> c -> d -> e -> f -> g -> h 0.2146 0.1211 0.5643 

 

Table 4: Summary of Findings 

Rule Discovery Approach 

Implicit (TOSM) 

Explicit  (BSF) 

Number of Rules Discovered Average Degree of High Association 

17 0.88 

10 0.82 

 

6. Conclusion 

The help desk unit is an important aspect of every organization that intends to carry out business processes in an 

intelligent and proactive manner. The temporal memory component of the hierarchical temporal memory had been 

modified to address the peculiarities of the event logs in the helpdesk unit of organizations. The TOSM leverages 

on the sparse nature of the hierarchical regions to extract process sequences that are significant to the entire log. 

From which robust process model can subsequently be produced. The modified algorithm was implemented on 

helpdesk event logs extracted from the PAIS, the helpdesk unit was selected as a result of its crucial role it plays 

in every organization. The long term sustainability of every institution depends on the disposition of its end users. 

The modified algorithm will boost subsequent activities employed in mining processes, given that low and 

irrelevant associated process sequences will not be selected. 
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