
Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.4, 2013

1

Distributed Hash Tables in P2P Network: Detection and

Prevention of Threats and Vulnerability

Mohammad Naderuzzman (Corresponding Author)

Department of Computer Science & Engineering

Dhaka University of Engineering & Technology,

Gazipur, Dhaka

E-mail: nader_u@yahoo.com

Dr. Md. Nasim Akhtar

Department of Computer Science & Engineering

Dhaka University of Engineering & Technology,

Gazipur, Dhaka

E-mail: nasim_duet@yahoo.com

Abstract

Currently the peer-to-peer search focuses on efficient hash lookup systems which can be use in building

more complex distributed systems. These system works well when their algorithms are executed in right

direction but generally they don’t consider how to handle misbehaving nodes. In our paper we considers

different sorts of security problems which are inherent in peer-to peer systems based on distributed hash

lookup systems. We examine different types of problems that this kind of systems might face, taking

examples from existing systems. Here we propose some design principles for detecting as well preventing

those problems.

Keywords- Distributed hash lookup systems, verifiable system invariants, verifiable key assignment,

Server selection in routing.

1. Introduction

Recently a great number of systems were built on top of distributed peer-to-peer hash lookup systems

[6,9,10]. Keys lookups are performed by queries routing through a series of nodes; each of these nodes

maintains a local touting table to forward query towards the node which is ultimately responsible for the

key. These nodes can be used to store data, i.e. as a distributed hash table or may be file system [1,7]. Some

researcher took advantage of other aspects of the lookup system, like the properties of lookup routing [8].

This is unfortunate that the architecture of many of these systems assume that the nodes involved in a

system are trusted. In an intranet, such as inside a corporate firewall, the assumption of trust might be

justified, but on an open network, like the Internet, still it may be possible to exclude un-trusted nodes with

the help of a central certificate granting authority; whose solution was proposed by Pastry [6]. But there

may be many situations in which it is not desirable to constrain membership of a peer-to-peer system. In

situations like this, the system should be able to operate even though some participants are likely a

malicious.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.4, 2013

2

A kind of attacks on distributed hash tables causes the system to return incorrect data to the application.

Fortunately, the authenticity and correctness of such data can be addressed by using techniques like

cryptographic, for example self-certifying path names [3]. The techniques detect and ignore un-authentic

data in the systems. This paper focuses on the those attacks that threaten the aliveness of the system by

preventing participants from finding data. The main part of the paper is a series of examples of particular

weaknesses in existing distributed hash algorithms. Our paper discusses potential defenses for few of these

problems, and derives a set of general design principles from them and summarized in Table 1. All these

principles are driven by the fact that any information obtained over the network can not be trusted and

hence must be verified.

Sl. Design Principles

1 Allow the querier node to observe lookup progress

2 Define verifiable system invariants by a node

3 Assign keys to nodes in a verifiable way

4 Server selection in routing may be abused

5 Cross-check routing tables using random queries

6 Avoid responsibility to a single point (node).

Table 1: Design Principles

2. Background

In general distributed hash tables consist of a storage API layered on top of a lookup protocol. Each lookup

protocols consist of a few basic components:

1. a key identifier space

2. a node identifier space

3. rules for associating keys to a particular node

4. routing tables for each node that refer to other nodes

5. set of rules for updating routing tables as nodes joins and leave

 Any lookup protocol maps a desired key identifier to the IP address of a node responsible for that key. A

storage protocol is layered on top of the lookup protocol, then storing, caching, replicating, and

authenticating of data are taking care of. CAN[5], Chord[9] and Pastry [6] all these protocol fits into this

general framework.

In the lookup, routing is handled by defining by a distance function on the identifier space, such that

distance can be measured between the current node and the desired key; the node responsible is defined to

be the node closest to the key. Typically a lookup protocol has an invariant that must be maintained in order

to guarantee that data can be found. As an example, in the Chord system, nodes are arranged in a

one-dimensional identifier space; here the required invariant is that every node knows the other node that

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.4, 2013

3

immediately follows it in the identifier space. In case an attacker breaks this invariant, Chord system will

not be able to look up keys correctly.

Similarly, in order to be sure that each piece of data is available, the storage layer will also maintain some

invariants. In DHash [1], a storage API layered on Chord used by CFS, there have been two important

invariants, first, it must ensure that the node which Chord believes is responsible for a key actually stores

the data associated with that key. It is important that DHash maintain replicas of each piece of data because

nodes can fail, and that those replicas be at predictable nodes. An attacker may potentially target either of

these invariants.

3. Define Adversary Model

In this paper, the adversaries that we considered are participants in a distributed hash lookup system that do

not follow the protocol correctly. Instead, by providing them with false information, they seek to mislead

legitimate nodes.

We assumed that a malicious mode is able to generate a packet with arbitrary contents, including forged

source IP, but that node is only able to examine packet’s addressed to itself. i.e. malicious nodes are not

able to modify communication or overhear between other nodes. A malicious node can only receive packets

addressed to its own IP address means that an IP address can be used as a weak form of node identity. If

any node receives a packet from an IP address, it can verify that the packet’s sender owns the address by

sending request for confirming that IP address. We consider malicious nodes conspire together, but each

one is limited as above. This allows to gather additional data by an adversary and act more deviously by

providing false but confirmable information.

Rest of the paper will examine different ways in which a malicious node can use these abilities to subvert

the system.

4. Different Attacks and Defenses

This part of the paper organized into attacks against the routing, attacks against the data storage system and

finally some general considerations.

We know that the first line of defense for any attack is detection of the attack. Many attacks can be detected

by the node being attacked, because the nodes which are involved violating invariants or procedure

contracts. However, once an attack has been detected, it is less clear what to do. A node may really be

malicious or may be it have failed to detect that it was being tricked. So, our discussion focuses on the

methods to detect and possibly correct in consistent information. Here we will see that achieving

verifiability underlies all of our detection techniques.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.4, 2013

4

4.1. Attacks on Routing

In a lookup protocol only the routing portion involves maintaining routing tables; it then dispatches

requests to the nodes in the routing table. It is quite difficult to identify that the routing is correct in a

distributed hash table. n existing system. There are considerable chances for an adversary to play in existing

systems. This kind of attacks can be detected if the system defines considers verifiable system invariants

and verify them. When an invariant fails, the system must have some recovery mechanism.

Incorrect Lookup Routing A single malicious node may forward lookups to an incorrect or non-existent

node. Because the malicious node will be participating in the system’s routing update in a usual way, it will

appear to be alive and will not ordinarily be removed from the routing tables of other existing nodes. In this

way re-transmissions of the misdirected lookups will also be sent to the malicious nodes.

Luckily blatantly incorrect forwarding can easily be detected. The querier knows that the lookup is

supposed to get ‘closer’ to the key identifier at each hop. The querier should check, so that this attack can

be detected. If this kind of attack is detected, the querier might recover by backtracking to the last good hop

and may ask for an alternative steps which offers less progress.

For a querier node to be able to perform this kind of check, each steps of progresses must be visible to the

querier. As an example, CAN proposes an optimization where each node keep tracks of the network RTTs

to neighbor nodes and forward to the neighbors with the best ratio of progress to RTT. This proofs that

queries are normally forwarded without consulting with the querier node. Thus in CAN, a querier node

simply can’t verify forward progress. So the querier node should be allowed to observe the lookup

progress.

The malicious nodes may also may declare (incorrectly) that a random node is the node which is

responsible for a key. Because the querying node may be far away in the identifier space, It may not know

that this node is not the closest node in fact, which could cause a key to be stored in an incorrect node or

may prevent the key from being found. This type of problem can be fixed in following two ways:

Firstly, the querier node must ensure that the destination node itself agrees that it is in fact a correct

termination point for the particular query. In Cord system, the predecessor returns the address of the

query’s endpoint (i.e. ‘successor’) instead of the endpoint itself, which allows the attack possible. A

malicious node may cause the query to undershoot the right successor, which may cause DHash to violate

its storage location invariant. If the node that referred to is a good node, then it should not be responsible

for this key and can generate an error.

Secondly, assignment of keys to a node should be in a verifiable way by the system. Particularly in some

systems, keys are assigned to the node which is closest to them in the identifier space. Thus, to assign keys

to nodes verifiably. it is sufficient to derive node identifiers in a verifiable way. In contrast this to CAN,

that allows any dode to specify ots own identity. Which makes it not possible by another node to verify that

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.4, 2013

5

a node is validly claiming responsibility for a key. In some system, like Chord, gave an effort to defend

against this by basing a node’s identifier on a cryptographic hash of IP address and port. Since this needs to

contact the node, it is easy to say if one is speaking to the correct node.

A long-term identities based on public keys may be derived by a system, which has performance penalties

because of the cost of signatures, but would allow systems to have faith on the origin of messages and will

validate of their contents. This means, public keys will facilitate the verifiability of the system. Particularly,

a certificate with a node’s public key and address can be used by new nodes to safely join the system.

Incorrect Routing Updates In a lookup system each node builds its own routing table by consulting

other nodes, a malicious node may corrupt the routing tables of other nodes by sending them incorrect

updates. Effect of these updates would cause good nodes to misdirect queries to inappropriate nodes ot to

non-existent nodes. If the system knows correct routing updates follows certain requirements, this can be

verified. For example, in Pastry systems, updates require that every table entry has a correct prefix.

Blatantly incorrect updates can easily be identified and dropped. Only after verifying itself that the remote

node is reachable, the updates should be incorporated in a node’s routing table.

By taking advantage of systems that allow nodes to choose between multiple correct routing entries, a more

delicate attack would be eminent. For example, to minimize latency, CAN’s RTT optimization allows

precisely in order to minimize latency. A malicious node may take advantages of this flexibility and my

provide nodes that are undesirable. For example, it may choose an unreliable node, node with high latency

or even a fellow malicious node. This may not affect strict correctness of the protocol but it may affect

applications that may wish to use underlying lookup system to find nodes satisfying certain criteria. For

example, in Tarzan anonymizing network [2] it proposes the use of Chord as a way of discovering random

nodes to be used in dynamic anonymizing tunnels. Any flexibility in Chord may allow adversary to bias the

nodes chosen and may have to compromise the design goals of Tarzan. The applications of this should be

aware that server selection in routing may be abused.

Partition For a bootstrap to happen, a new node wish to participate in any lookup system must contact

some existing node. At the time of bootstrap, it is vulnerable of being partitioned into an incorrect network.

For example, suppose a set of malicious nodes formed a parallel network, which are running the same

protocols as the real and legitimate network. This type of parallel network is entirely internally consistent

and may contain some data from the real network. Accidentally any new node may join this network and

thus will fail to achieve correct results. Any malicious node might also cross-register in the legitimate

network and may cause new participants to be connected to the parallel network even if they have a valid

bootstrap node.

Malicious nodes may deny service by using partitions or may learn about the behavior of clients that it

would otherwise be unable to observe. For example, let say a service was made available to publish

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.4, 2013

6

documents anonymously, at that time an adversary could establish a malicious system that shadows the real

one but allows it to track clients who are storing and reading files.

Preventing a new node from being diverted into an incorrect network, the node must bootstrap via some

sort of trusted source. Such trusted sources are likely be out-of-band to the system itself. At the time of

rejoining to the system, a node can either use these trusted nodes or it may use one of the other nodes it has

previously discovered in the network. However developing trust metrics for particular nodes can be risky in

a network with highly transient nodes that lack any strong sense of identity. Via DHCP if a particular

address is assigned, for example, sometime a node could be malicious but benign the next. Also in this case

use, use of public keys may reduce the risk.

In case a node believes that it has successfully joined a network in the past, then the node can detect new

malicious partitions by cross-checking with the history stored with it. A node can maintain a set of other

node’s information that it has used successfully in the past. So that it can cross-check routing tables by

using random queries. Also by asking those nodes to do the same random queries and lastly comparing

those results with its own. This way a node can verify whether its view of the network is consistent with the

other nodes. Randomness is important because a malicious partition can not distinguish verification probes

from a legitimate query that it would like to divert. On the contrary a node which has been trapped in a

malicious partition may accidentally discover the correct network in this way, where the right network may

be defined as the one which serve desired data.

4.2 Attacks on Storage and Retrieval

Any malicious node is able join and participate in the lookup protocol correctly, but will be denied the

existence of data it was responsible for. It might also claim to actually store data when asked, but then

refuse to serve it to clients. To handle this type of attack, the storage layer must imply replication. The

replication should be handled in such a way that no single node is responsible for replication or facilitating

access to the replicas; that node will be a single point of failure. So, the client must be able to determine

independently the correct node to contact for replicas. This will allow them to verify that truly data is

unavailable with all replica sites. Similarly, all nodes those are holding replicas must ensure that the

replication invariant (i.e. at least n copies exist at all times) is maintained. If not so, a single node would be

able to prevent all replication process to happen. This is to avoid single points of responsibility.

Nodes doing lookups should be prepared for the threat of possible malicious nodes as well. For this, it must

consult at least two replica sites to be sure that either all of the replicas are bad or that the data is truly

missing.

For example, a DHash does not follow this principle; here only the node immediately associated with the

key will be responsible for the replication. Even, if the storing node performed replication, DHash will still

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.4, 2013

7

be vulnerable to the actual successor lying about the r later successors. As proposed in CAN, replication

with multiple hash functions is one way to avoid this reliance on a single machine.

The attack can further be refined in a system which does not assign nodes verifiable identifiers. In this type

of system, node can choose to become responsible for the data that it wishes to hide. Here DHash still are at

risk, despite Chord having verifiable node identifiers, which is because the identifier was derived from a

hash of node’s IP address, port number and virtual node number. Because of a person in control of a node

can run a large number of virtual nodes, still they effects some degree of choice in which data they wish to

hide. IPv6 or sparsely used IPv4 networks may also allow to have access to many addresses by a single

host.

4.3. Other Miscellaneous Attacks

Inconsistent Behavior If a malicious node presents a good face to part of the network, it would be more

difficult to detect when it attacks. A malicious node may choose to maximize its impact by ensuring its

behavior correctly for certain nodes. In the identifier space, one possible class would be nodes near it.

Despite the fact that nodes that are distant see poor or invalid behavior, these nodes will not see any reason

to remove the node from their routing tables. If queries must routed through close nodes before reaching the

target node, this may not be a serious problem. However, most of the routing systems have their ways of

jumping to distant points in the identifier space for speeding up queries.

Ideally, a distant node would be able to convince local nodes that ‘locally good’ malicious node is in fact a

malicious. However, without public keys and digital signatures, it is not possible for a node to distinguish a

report of a ‘locally good’ node being malicious. From a malicious report trying to tarnish a node which is

actually a benign. On the other hand, this can be proven with public keys by requiring nodes to sign all of

their responses, then a report would contain the incorrect response and the inappropriateness could be

verified. Lacking this, every node must determine of its own as to whether another node is malicious.

Overload of Targeted Nodes It can attempt to overload targeted nodes with garbage packets because and

adversary can generate packets. It is a standard denial of service attack and not a subversion of the system.

This would cause the node to appear to fail and hence the system will be adapted to this as if the node failed

in some normal manner. A system must use some degree of data replication so that it can handle even the

normal node failure case. The attack will be effective if the replication is weak or if the malicious node is

one of the replicas or may be colluding with some of the replicas.

Denial of service attacks impact can be partially mitigated by ensuring that the node’s identifier assignment

algorithm assigns identifiers to nodes randomly with respect to network topology. Additionally, the replicas

should be located in such locations where they will be physically disparate. These would prevent a

localized attack by preventing access to an entire portion of key space. If an adversary wishes to shut out an

entire portion of the key space, it should have to flood packets all over the Internet.

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.4, 2013

8

Rapid Joins and Leaves Nodes join and leave the system, the rules imply that ne nodes must obtain data

from replicas which was store by nodes that left the system. In order for the lookup procedures to work

correctly, this rebalancing is required. A malicious node may trick the system into rebalancing which

unnecessarily causes excess data transfer and control traffic. Which in turn reduce the efficiency and

performance of the system. This kind of attack will work best if the attacker can avoid being involved in

data movement since this will consume the bulk of the bandwidth. An adversary may try to convince the

system that a particular node was unavailable or a new node joined (falsely). However our model allows the

adversary no way of accomplishing the former; the latter case it will involve acknowledged data transfers

which the adversary can not correctly acknowledge. Other rebalancing involve the adversary node itself,

requiring it to be involved in the data movement.

Any distributed hash table must provide a mechanism to deal with this problem, regardless of whether there

are malicious nodes present. Previously it was shown that in some file sharing systems, peers join and leave

the system very rapidly [4]. The amount of data stored and the rate of replication at each node must be kept

at levels that allow for timely replication without causing network overload, even when regular nodes join

and leave the network.

Unsolicited messages Sometime a malicious node is able to create a situation where it can send an

unsolicited response to a query. For example, consider a lookup process where querier Q referred by node

N to node A. Node N knows that Q’s next contact A, presumably with a follow-up to the query just

processed by N. Thus N can attempt to forge a message from A to Q with incorrect results.

Employing standard authentication techniques such as digital signatures or message authentication code

would be the best defense against this. Since, digital signatures are expensively currently and MAC’s

require shared keys. A more reasonable defense might include a random nonce with each query to ensure

that the response is accurate.

5. Conclusion

This paper categorized and presents with examples the basic attacks which a peer-to-peer hash lookup

systems must be aware of. Here it discusses all the details of such attacks as applied to some specific

systems, and also suggests defenses in many cases. It then accumulates these defenses into a set of general

design principles: (a) Allow the querier node to observe lookup progress, (b) Define verifiable system

invariants by a node, (c) Assign keys to nodes in a verifiable way, (d) Server selection in routing may be

abused, (e) Cross-check routing tables using random queries, (f) Avoid responsibility to a single point

(nodes).

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.4, 2013

9

References

[1] DABEK, F., KAASHOEK, M. F., KARGER, D.,MORRIS, R., AND STOICA, I. Wide-area cooperative storage

with CFS. In Proceedings of the 18
th
 ACM SOSP (Banff, Canada, Oct. 2001), pp. 202–215.

[2] FREEDMAN, M. J., SIT, E., CATES, J., AND MORRIS,R. Tarzan: A peer-to-peer anonymizing network

layer. In Proceedings of the First InternationalWorkshop on Peer-to-Peer Systems (Cambridge,MA, Mar.

2002).

[3] FU, K., KAASHOEK, M. F., AND MAZI`E RES, D.Fast and secure distributed read-only file system. In

Proceedings of the 4th USENIX Symposium on OperatingSystems Design and Implementation (OSDI)

(Oct. 2000), pp. 181–196.

[4] KRISHNAMURTHY, B., WANG, J., AND XIE, Y. Early measurements of a cluster-based architecture

for P2P systems. In Proceedings of the First ACMSIGCOMM Internet Measurement Workshop (San

Francisco, California, Nov. 2001), pp. 105–109.

[5] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. A scalable content

addressable network. In Proceedings of ACM SIGCOMM (San Diego, California, Aug. 2001),

pp. 161–172.

[6] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, distributed object location and routing for

large-scale peer-to-peer systems. In Proceedings of the 18th IFIP/ACM International Conference on

Distributed Systems Platforms (Middleware 2001) (Nov. 2001).

[7] ROWSTRON, A., AND DRUSCHEL, P. Storage management and caching in PAST, a large-scale, persistent

peer-to-peer storage utility. In Proceedings of the 18th ACM SOSP (Banff, Canada, Oct. 2001), pp.

188–201.

[8] ROWSTRON, A., KERMARREC, A.-M., CASTRO, M., AND DRUSCHEL, P. SCRIBE: The design of a

large-scale event notification infrastructure. In Networked Group Communication: Third International

COST264 Workshop (Nov. 2001), J. Crowcroft and M. Hofmann, Eds., vol. 2233 of Lecture Notes in

Computer Science, Springer-Verlag, pp. 30–43.

[9] STOICA, I., MORRIS, R., KARGER, D.,KAASHOEK, M. F., AND BALAKRISHNAN, H. Chord: A scalable

peer-to-peer lookup service for internet applications. In Proceedings of ACM SIGCOMM (San Diego,

California, Aug. 2001),pp. 149–160.

[10] ZHAO, B., KUBIATOWICZ, J., AND JOSEPH, A. Tapestry: An infrastructure for fault-tolerant widearea

location and routing. Tech. Rep. UCB/CSD-01-1141, Computer Science Division, U. C. Berkeley, Apr.

2001.

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

CALL FOR PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. There’s no deadline for

submission. Prospective authors of IISTE journals can find the submission

instruction on the following page: http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified

submissions in a fast manner. All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than

those inseparable from gaining access to the internet itself. Printed version of the

journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/Journals/

