
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 2, No.5, 2011

5

 Logical Topology Design Using Efficient Heuristics in

Wavelength Routed Networks

Y. Rama Mohan

 Department of Computer Science & Engineering, G.Pulla Reddy Engineering College

Kurnool-518007, Andhra Pradesh. India.

E-mail: yekkanti@gmail.com

V. Raghunatha Reddy

Department of Computer Science & Technology, Sri Krishnadevaraya University

Anantapur, Andhra Pradesh, India.

E-mail: vraghu9@gmail.com

Abstract

Wavelength Division Multiplexed (WDM) point to point networks play a vital role in the backbone

transport networks. The set of light paths at optical layer forms a Logical Topology. This paper deals with

the design of Logical Topology for wavelength routed WDM networks. This paper proposes new heuristics

on fiber optic networks to develop efficient logical topology design and to examine the critical aspects of

performance constraints like single hop traffic maximization, Average weighted hop count and number of

wavelengths/Transceivers. Further two new heuristics LUMHSN and ILUMHSN are proposed, tested and

compared the performances with the existing HLDA on 14-node NSFNET Model.

Keywords: wavelength routed WDM, Logical Topology, single hop traffic, Average weighted hop Count,

LUMHSN, ILUMHSN.

1. Introduction

Wavelength-division multiplexing (WDM) networks are believed to be a promising candidate to meet the

explosive increase of bandwidth demand in the Internet. In wavelength routed optical networks, a virtual

topology is overlaid on the physical network that minimizes the electro optical conversion of the traffic

flow. This paper deals with the logical topology design for wavelength routed WDM Networks proposed by

Rajiv Ramaswami and Kumar N.Sivarajan(2002), B.Mukherjee, (1997) and C.siva Ram Murthy and

Mohan Gurusamy,(2002) using efficient heuristics as proposed in the following sections. Several heuristic

solutions for logical topology design problems are available as proposed by R.Ramaswami and

A.Segall,(1996) in the literature.

The proposed heuristics are implemented in a standard 14-node NSFNET model. The various performance

measures obtained over the network models for the different proposed heuristics: 1) Lightpath Utility

Maximization Heuristic based on Source Nodes 2) Iterative Lightpath Utility Maximization Heuristic based

on Source Nodes are compared with the existing Heuristic Logical Topology Design Algorithm. Some

possible objective functions for the virtual topology design problem are given below.

(i) Minimizing average weighted number of hops: If ttotal is the total amount of offered traffic onto the

network, then the average weighted number of (virtual) hops, denoted by have, is computed as

ds

ds
ds

total

ave XthX
t

h ,

,
,

1
 (1)

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 2, No.5, 2011

6

The objective function is given by Minimize have

(ii) Minimizing network congestion. The maximum flow on any lightpath in a network is called network

congestion. It is denoted by fave is computed as

ji
ji

ff ,
,

max max
 (2)

 The objective function is given by Minimize fmax

(iii) Maximizing single-hop traffic. The amount of traffic that is carried in one (virtual) hop, denoted as

tsingle, is computed as

ds

ds
ds

gle Xtpt ,

,
,

sin 
 (3)

The objective function is given by Maximize tsingle

The heuristic logical topology design algorithm (HLDA) and the proposed Heuristics for the design of

logical topology are presented in the following sections.

1.1 Heuristic Logical Topology Design Algorithm (HLDA):

The heuristic logical topology design algorithm (HLDA) heuristic proposed to minimize congestion in a

given network. The traffic matrix and the physical topology are taken as the input. The number of

transmitters and receivers available at every node is assumed to be given. Also, the number of available

wavelengths per fiber is assumed to be fixed. This algorithm attempts to maximize single. (Virtual)-hop

traffic flow.

 The HLDA propsed by Bala Rajagopalan et al.,(2000) considers node pairs in non increasing order of

their traffic. It selects the node pair (say, x) with the most nonzero traffic flow between them. A

lightpath is established between this node pair, if permissible. A lightpath is permissible for node pair x is a

physical route, a wavelength on the route, a transmitter at the source node of x, and a receiver at the

destination node of x are all available. When a lightpath is established between pair x, the traffic

associated with x is updated by subtracting from it the traffic associated with pair y. Here, node pair y has

the highest traffic after pair x. If a lightpath cannot be established between node pair x, the traffic

associated with it is set to zero. Now, the node pair which has the maximum amount of nonzero traffic is

chosen and the above procedure is repeated. Note that the chosen node pair could be either x or y. When

all the node pairs with nonzero traffic have been considered, the procedure stops. It may so happen that a

few transmitters and receivers are available at some nodes when the procedure terminates. The HLDA

creates lightpahts between such nodes to exhaust the available transmitters and receivers.

Pseudo code for HLDA:

HeuristicBasedMethod (ulTransmitterCount, ulReceiverCount)

{

/* Initialize the traffic values and the transmitter and reciever count at each node */

for each physical node (ucRow)

{for each physical node (ucColumn)

{ set ucLoc to (ucRow * MAX_PHY_NODE) + ucColumn

check if (ucRow is equal to ucColumn)

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 2, No.5, 2011

7

 { set pointer of (ppucTraffic + ucLoc) to 0 } else

 {set *(ppucTraffic + ucLoc) to aucVPathCost[ucRow][ucColumn]}}

 set aucTransmitters[ucRow] to ulTransmitterCount

 set aucReceivers[ucRow] to ulReceiverCount

 increment ucAvailTransmitter by aucTransmitters[ucRow]

 increment ucAvailReceiver by aucReceivers[ucRow] }

 while (1)

{ /* Break the loop if no transmitters or receivers are available */

check if ((ucAvailTransmitter <= ucAllocTransmitter) || (ucAvailReceiver <= ucAllocReceiver))

 {break}

 /* Get the maximum traffic pair from the 2d array */

call the API GetMaxTrafficPair (&MaxRow, &MaxCol, &SMaxRow, &SMaxCol) to get the first and

second max traffic value vertices

set ucLoc to (MaxRow * MAX_PHY_NODE) + MaxCol

/* Check if there are no transmitters on the sender node and no receivers on the receiving node */

if ((aucTransmitters[MaxRow] is equal to 0) || (aucReceivers[MaxCol] is equal to 0))

 {*(ppucTraffic + ucLoc) = 0;

 /* Check if any traffic node exists in the array */

 for each physical node (ucRow)

 { for each physical node (ucColumn)

 { set ucLoc to (ucRow * MAX_PHY_NODE) + ucColumn

 increment ulSum by *(ppucTraffic + ucLoc) }}

 check if (0 is equal to ulSum)

 { break} set ulSum to 0 continue }

decrement *(ppucTraffic + ucLoc) by *(ppucTraffic + ((SMaxRow * MAX_PHY_NODE) + SMaxCol))

 decrement aucTransmitters[MaxRow] by 1

 decrement aucReceivers[MaxCol] by 1

 increment ucAllocTransmitter by 1

 increment ucAllocReceiver by 1

call the API AddVirtualPath (ucColumn, ucRow) to add the virtual path informatio to the global list}

call the API DisplayVirtualPath (ulTransmitterCount) to display the virtual path information

call the API GetPrintHeavyTrafficLink () to display the heavily loaded link information

call the API GetPrintLowTrafficLink () to display the least loaded link information

 /* Release the allocated memory */

 while (NULL != pstVPHead)

 { pstTmpNode = pstVPHead->pstNext;

 free (pstVPHead);

 pstVPHead = pstTmpNode; }

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 2, No.5, 2011

8

 return SUCCESS; }

2. Proposed Heuristics

2.1 Lightpath Utility Maximization Heuristic Based On Source Node (LUMHSN):

The Heuristic proposed here is a lightpath Utilization with respect to Source node. In this heuristic the

selection of lightpath from source to destination is based on the total cost of source node and depends upon

the number of transceivers placed at each node. For example, if there are 2-transceivers select only two

maximum lightpaths with respect to the source node. The selection of lightpath with respect to the source

node will be continued until the scope of transmitters and receivers exhausted or utilized at each node.

The input to the heuristic is traffic matrix (arbitrarily chosen) for given physical topology network model.

The procedure of selection of virtual lightpath based on the criteria of arranging the total source cost with

respect to each row in the traffic matrix in ascending order and then selecting the row with maximum cost.

This procedure is iteratively repeated until the scope of transceivers is exhausted or utilized at each node.

Pseudo Code for LUMHSN:

Method1_SRCNode (ulTransmitterCount, ulReceiverCount)

{

 /* Initialize the traffic values and the transmitter and reciever count at each node */

 for each physical node (ucRow)

 { for each physical node (ucColumn)

 { set ucLoc to (ucRow * MAX_PHY_NODE) + ucColumn

 check if (ucRow is equal to ucColumn)

 {set pointer of (ppucTraffic + ucLoc) to 0 }else

 {set pointer of (ppucTraffic + ucLoc) to aucVPathCost[ucRow][ucColumn] }}

 /* Initialize the transmitter and receiver info of the physical node */

 set aucTransmitters[ucRow] to ulTransmitterCount

 set aucReceivers[ucRow] to ulReceiverCount }

 for each physical node (ucRow)

 {for each physical node (ucColumn)

 {increment ulRowSum by aucVPathCost[ucRow][ucColumn] }

 set aulRowSum[ucRow] to ulRowSum

 set ulRowSum to 0

 } for each physical node (ucIter)

 { call the API GetMaxVal (aulRowSum) to get the max traffic sum row

 check if (0 is equal to aulRowSum[ucRow])

 {continue}for each physical node (ucIter1)

 { /* Check if transmitters of the row are non zero */

 check if (0 is equal to aucTransmitters[ucRow])

 { break }call the API GetMaxColVal (ppucTraffic, ucRow) to get the column (ucColumn)

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 2, No.5, 2011

9

 having highest traffic value from the row (ucRow)

 set ucLoc to (ucRow * MAX_PHY_NODE) + ucColumn

 check if (0 is equal to pointer of (ppucTraffic + ucLoc))

 {continue} set pointer of (ppucTraffic + ucLoc) to 0

 /* Check if receivers of column are non zero */

 check if (0 is equal to aucReceivers[ucColumn])

 {continue } /* Add virtual path */

 call the API AddVirtualPath (ucColumn, ucRow) to add the virtual path informatio to the global list

 decrement aucTransmitters[ucColumn] by 1

 decrement aucReceivers[ucRow] by 1

 }aulRowSum[ucRow] = 0; }

 call the API DisplayVirtualPath (ulTransmitterCount) to display the virtual path information

 call the API GetPrintHeavyTrafficLink () to display the heavily loaded link information

 call the API GetPrintLowTrafficLink () to display the least loaded link information

 /* Release the allocated memory */

 while (NULL != pstVPHead)

 { pstTmpNode = pstVPHead->pstNext;

 free (pstVPHead);

 pstVPHead = pstTmpNode;

 } return SUCCESS ;}

2.2 Iterative Lightpath Utility Maximization Heuristic Based on Source Node (ILUMHSN)

The Heuristic proposed here is based on Iterative Lightpath Utilisation with respect to Source node. In this

heuristic the selection of one lightpath is from source to destination is performed on the maximum total cost

of source node and the next lightpath is from source to destination is based on the next total cost of source

node, this will be continued to complete one cycle i.e., until all the source nodes total traffic cost are

processed the same procedure is implemented repeatedly and it depends upon the number of transceivers

fixed at each node. For example, if there are 2-transceivers, select only one maximum lightpath with respect

to the source node and another maximum lightpath with respect to other source node are processed. This

procedure is repeated until all the transceivers at all nodes are processed. However the iterative lightpath

selection is subject to the condition that the source nodes will be processed until the scope of transmitters

and receivers exhausted or utilized at each node.

 The input to the heuristic is traffic matrix (arbitrarily chosen) for given physical topology

network model. The procedure of selection of Virtual lightpath based on the criteria of arranging the total

source cost with respect to each row in the traffic matrix in ascending order and then selecting the row with

maximum cost. This procedure is iteratively repeated until the scope of transceivers is exhausted or utilized

at each node

Pseudo Code for ILUMHSN:

Method_IterativeSouce(ulTransmitterCount, ULONG ulReceiverCount)

{

 /* Initialize the traffic values and the transmitter and reciever count at each node */

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 2, No.5, 2011

10

 for each physical node (ucRow)

 {for each physical node (ucColumn)

 {set ucLoc to (ucRow * MAX_PHY_NODE) + ucColumn

 check if (ucRow is equal to ucColumn)

 { set *(ppucTraffic + ucLoc) to 0 } else

 { set *(ppucTraffic + ucLoc) to aucVPathCost[ucRow][ucColumn]}}

 /* Initialize the transmitter and receiver info of the physical node */

 set aucTransmitters[ucRow] to ulTransmitterCount

 set aucReceivers[ucRow] to ulReceiverCount

 increment ucAvailTransmitter by aucTransmitters[ucRow]

 increment ucAvailReceiver by aucReceivers[ucRow] }

 for each physical node (ucRow) { for each physical node (ucColumn)

 { increment ulRowSum by aucVPathCost[ucRow][ucColumn] }

 set aulRowSum[ucRow] to ulRowSum

 set aucRowOrder[ucRow] to ucRow

 set ulRowSum to 0 }

 /* Sort the array and update the elements with the appropriate row number */

 call the API GetSortedElmOrder (aulRowSum, MAX_PHY_NODE, aucRowOrder) to sort the column

 sum values

 set ucIter to 0

 while (1){ /* Break the loop if no transmitters or receivers are available */

 check if ((ucAvailTransmitter <= ucAllocTransmitter) || (ucAvailReceiver <= ucAllocReceiver))

 { break }

 /* Check if every node is reacheable from every other node */

 set ulSum to 0

 /* Check if any traffic node exists in the array */

 for each physical node (ucIter1)

 { for each physical node (ucIter2){ set ucLoc to (ucIter1 * MAX_PHY_NODE) + ucIter2

 increment ulSum by pointer (ppucTraffic + ucLoc) } }

 check if (0 is equal to ulSum)

 { break }

 set ucLoc to (ucIter % MAX_PHY_NODE)

 set ucRow to aucRowOrder[ucLoc]

 /* Check if transmitters of the row are non zero */

 check if (0 is equal to aucTransmitters[ucRow])

 { increment ucIter by 1 continue }

 call the API GetMaxColVal (ppucTraffic, ucRow) to get the column (ucColumn) having highest

 traffic matrix

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 2, No.5, 2011

11

 from the specified row (ucRow)

 set ucLoc to (ucRow * MAX_PHY_NODE) + ucColumn

 check if (0 is equal to *(ppucTraffic + ucLoc))

 { /* If there is no more traffic left from the current row, then mark that

 all the receivers and transmitters of the row node are engaged */

 increment ucAllocTransmitter by aucTransmitters[ucRow]

 increment ucAllocReceiver by aucReceivers[ucRow]

 increment ucIter by 1 continue }

 set pointer of (ppucTraffic + ucLoc) to 0

 /* Check if receivers of column are non zero */

 check if (0 is equal to aucReceivers[ucColumn])

 { increment ucIter by 1 continue }

call the API AddVirtualPath (ucColumn, ucRow) to add the virtual path informatio to the global list

 decrement aucTransmitters[ucColumn] by 1

 decrement aucReceivers[ucRow] by 1

 increment ucAllocTransmitter by 1

 increment ucAllocReceiver by 1

 increment ucIter by 1 }

call the API DisplayVirtualPath (ulTransmitterCount) to display the virtual path information

call the API GetPrintHeavyTrafficLink () to display the heavily loaded link information

call the API GetPrintLowTrafficLink () to display the least loaded link information

 /* Release the allocated memory */

 while (NULL != pstVPHead)

 { pstTmpNode = pstVPHead->pstNext;

 free (pstVPHead);

 pstVPHead = pstTmpNode; }

 return SUCCESS; }

3. Results and Discussions

The Heuristics proposed are implemented on 14-node NSFNET MODEL. The above proposed heuristics

LUMHSN, ILUMHSN are compared with existing HLDA. The critical comparison and performance

analysis takes place with various Objective Functions like T-single, Lightpath, Wavelength, Average

Weighted Hop Count, Maximum congestion and Minimum congestion.

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 2, No.5, 2011

12

Figure 1: 14-Node NSFNET Backbone Network with Traffic Matrix

Table 1: Heuristic Logical Topology Design Algorithm (HLDA) Results on 14-NSFNET

N

o

d

e

s

T-Sin

gle

TR

A

NS

Ligh

tpat

h

Wave

lengt

h

Physi

cal

Hops

Hop

Weight

Total Hop

Weight

Average

Weighted

Hop Count

havg

Maximum

Congestion

Minimum

Congestion

14 459 2 28 5 68 2339 5653 2.417 9->6(529) 11 ->13(82)

14 696 3 42 7 101 3407 8216 2.412 3->1(737) 12 ->13(70)

14 892 4 54 9 134 4308 10663 2.475 1->4(939) 9 ->7(68)

14 1132 5 69 11 168 5193 12692 2.444 1->4(1121) 9 ->7(68)

14 1543 6 82 11 188 5923 13894 2.346 1->4(1229) 9 ->4(66)

14 1585 7 96 13 228 6758 16185 2.395 1->4(1473) 9 ->4(66)

14 1676 8 108 15 256 7291 17377 2.383 1->4(1800) 9 ->4(66)

14 1795 9 126 17 298 7894 18805 2.382 1->4(1946) 9 ->4(66)

14 1913 10 139 17 321 8253 19429 2.354 1->4(2024) 9 ->4(66)

Table2: Lightpath utility Maximization Heuristic based on Source Node (LUMHSN) Results on

14-NSFNET

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 2, No.5, 2011

13

N

O

d

e

s

T-Sin

gle

TR

A

NS

Ligh

tpat

h

Wave

lengt

h

Physi

cal

Hops

Hop

Weight

Total Hop

Weight

Average

Weighted

Hop Count

havg

Maximum

Congestion

Minimum

Congestion

14 498 2 26 4 62 2132 5138 2.410 9->6(457) 11 ->13(32)

14 609 3 39 7 97 3181 7935 2.494 9->6(786) 13 ->11(81)

14 785 4 53 9 133 4031 10181 2.526 9->6(989) 9 ->7(68)

14 1117 5 66 9 157 4889 11712 2.396 6->3(937) 9 ->4(66)

14 1248 6 78 10 185 5510 13261 2.407 1->4(1131) 9 ->4(66)

14 1463 7 92 12 219 6303 15221 2.415 1->4(1333) 9 ->4(66)

14 1496 8 104 13 248 6812 16389 2.406 1->4(1441) 9 ->4(66)

14 1564 9 117 16 277 7419 17857 2.407 1->4(1790) 9 ->4(66)

14 1686 10 133 18 315 7784 18585 2.388 1->4(2125) 9 ->4(66)

Table3: Iterative Lightpath utility Maximisation Heuristic based on Source Node (ILUMHSN) Results on

14-NSFNET

N

o

d

e

s

T-Sin

gle

TR

A

NS

Ligh

tpat

h

Wave

lengt

h

Physi

cal

Hops

Hop

Weight

Total Hop

Weight

Average

Weighted

Hop Count

havg

Maximum

Congestion

Minimum

Congestion

14 459 2 28 5 68 2350 5705 2.428 10->1(639) 6 ->3(60)

14 534 3 41 7 105 3363 8618 2.563 9->6(787) 13 ->11(75)

14 974 4 54 9 132 4279 10402 2.431 10->1(977) 9 ->7(68)

14 1185 5 69 10 166 5181 12484 2.410 9->6(1098) 12 ->13(70)

14 1614 6 82 11 189 5998 14057 2.344 1->4(1246) 9 ->4(66)

14 1701 7 97 13 230 6660 15862 2.382 1->4(1581) 9 ->4(66)

14 1725 8 111 16 265 7267 17409 2.396 1->4(1936) 9 ->4(66)

14 1836 9 123 17 290 7759 18408 2.372 1->4(2061) 9 ->4(66)

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 2, No.5, 2011

14

14 1913 10 136 19 321 8161 19350 2.371 1->4(2139) 9 ->4(66)

Figure 2: Comparison of T-Single of HLDA, LUMHSN, ILUMHSN

Figure 3: Comparison of Average Weighted Hop Count of HLDA, LUMHSN, ILUMHSN

Comparison of T-Single: HLDA Vs LUMHSN Vs ILUMHSN

0

500

1000

1500

2000

2500

2 3 4 5 6 7 8 9 10

Transcievers

T
-S

in
g

le

HLDA LUMHSN ILUMHSN

Comparison of Average Weighted Hop Count: HLDA Vs LUMHSN Vs

ILUMHSN

2.2

2.3

2.4

2.5

2.6

2 3 4 5 6 7 8 9 10

Transcievers

A
v
e
ra

g
e
 W

e
ig

h
te

d

H
o
p
 C

o
u
n
t

HLDA LUMHSN ILUMHSN

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 2, No.5, 2011

15

Figure 4: Comparison of Number of Wavelengths of HLDA, LUMHSN, ILUMHSN.

4. Conclusion

 On comparison of the results obtained and presented in the tables 1, 2, and 3 the following observations

on the existing heuristics i.e. HLDA and the proposed heuristics in this paper i.e. LUMHSN, ILUMHSN.

a) The algorithmic complexity is simple with respect to all the three heuristics.

b) The average weighted hop length is found to be slightly varying for different wavelengths with

respect to all the three heuristics. However, the existing heuristic HLDA gives better results when

compared to LUMHSN but ILUMHSN is better when the number of transceivers is less than four

and all the three heuristics converges when the number of transceivers enhanced.

c) For the Single Hop Maximisation (T-single) ILUMHSN is performing better than both HLDA and

LUMHSN.

d) In the case of number of wavelengths utilized it is observed that both the proposed heuristics

LUMHSN and ILUMHSN are performing better than existing heuristics namely HLDA.

e) Hence it is concluded that the proposed heuristics namely Lightpath Utilization Maximum

heuristics based of Source Node(LUMHSN) and Iterative Lightpath Utilization Maximum

Heuristics based on source Node(ILUMHSN) are competent heuristic algorithms for the Virtual

Topology design in WDM networks.

5. References

 Rajiv Ramaswami and Kumar N.Sivarajan,(2002), “Optical Networks – A Practical Perspective”,

 Second Edition, Moran Kaufmann Publishers, San Francisco.

 B.Mukherjee, (1997), “Optical Communication Networks”, McGraw Hill, New York .

 C.siva Ram Murthy and Mohan Gurusamy, ,(2002), “WDM optical Networks: concepts Design,

 And Algorithms”, Prentice Hall of India.

Comparison of Wavelengths : HLDA Vs LUMHSN Vs ILUMHSN

0

5

10

15

20

2 3 4 5 6 7 8 9 10

Transcievers

W
a
v
e
le

n
g
th

s

HLDA LUMHSN ILUMHSN

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 2, No.5, 2011

16

 R.Ramaswami and A.Segall,(1996), “ Distributed Network Control for Wavelength Routed Optical

 Networks, “Proc. of IEEE INFOCOM’96.

 Bala Rajagopalan et al.,(2000), “IP Over Optical Networks: Architectural Aspects, “IEEE

 Communications Magazine, 38(9), 94-102.

http://www.iiste.org/

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. Prospective authors of

IISTE journals can find the submission instruction on the following page:

http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified

submissions in a fast manner. All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than

those inseparable from gaining access to the internet itself. Printed version of the

journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/Journals/

