Fixed Point Theory on a Soft Banach Space

Tarannum khan *, Ramakant Bhardwaj ${ }^{2}$, Abha Tenguriya* ${ }^{1}$
, ${ }^{ 1}$ Department of Methematics "Govt M.L.B. Girls P.G. Autonomous College, Bhopal (M.P.)
${ }^{2}$ Department of Methematics "Technocrats" Institute of Technology, Bhopal (M.P.)

Abstract

In this present paper some soft point and comman soft point results are provrd.which generalized some wellkown results. Selection and Peer -review under responsibility of the Conference Committee Members of Functional Nonmaterial's in Industrial Application.

Keywards :- soft point ,contractive mapping, soft Banach space, normed linear space.
Email:- tarannumkhan1119@rediffmail.com,rkbhardwaj100@gmail.com, ten_abha@yahoo.co.in
2. Introduction and Preliminaries:- In 1999, Molodtsov [10]proposed a completely new approach, which is called soft set theory for modeling uncertainly. Then Maji et al.(2003)[8] introduced several operations on soft sets .Aktas and Cagman (2007) [1] compared soft set with fuzzy sets and rough sets. Resently studies on soft vector spaces and soft normed linear space have been intiated by Das and Samanta [3, 4, 5] and later on studied by Yazar et al[19]. Maji et al[9], Chen [2] introduced a new definition of soft set theory.
we introduced soft contractive mapping on soft Banach space and section 1 study some of its properties.In section 2 preliminary results are given. In section 3 show that concept of soft Banach space and Related theorem proved.
Definition 2.1:- Let X be an initial universe set and E be a set of parameters. A pair (F, E) is called a soft set over X if and only if X is a mapping from E into the set of all subsets of the set X i.e. $F: E \rightarrow P(X)$ is the power set of X.
Definition 2.2:- The intersection of two sets (A,D) and (B,C) over X is the soft set (F,G), where
$\mathrm{C}=\mathrm{D} \cap \mathrm{C}$ and $\forall \varepsilon \in \mathrm{C}, \mathrm{H}(\varepsilon)=\mathrm{A}(\varepsilon) \cap \mathrm{B}(\varepsilon)$. This is denoted by $(\mathrm{A}, \mathrm{D}) \cap(\mathrm{B}, \mathrm{C})=(\mathrm{F}, \mathrm{G})$.
Definition 2.3:- The union of two sets (A, D) and (B, C) over X is the soft set,where $C=A U$ B and $\forall \varepsilon \in \mathrm{C}$,
$H(\varepsilon)= \begin{cases}A(\varepsilon) & \text { if } \varepsilon \in D-C \\ B(\varepsilon) & \text { if } s \in C-D \\ A(\varepsilon) \cup B(\varepsilon) & \text { if } \varepsilon \in D \cap C\end{cases}$
This relationship is denoted by $(A, D) \cup(B, C)=(F, G)$.
Definition 2.4:- The soft set (A,D) over X is said to be a null soft set denoted by \emptyset if for all $\varepsilon \in \mathrm{D}, \mathrm{A}(\varepsilon)=\emptyset($ null set).
Definition 2.5:- A soft set (A, D) over X is said to be an absolute soft set, if for all $\varepsilon \in D$, $\mathrm{A}(\varepsilon)=X$.
Definition 2.6:- The difference (F, E) of two soft sets (F, E) and (F, E) over X denoted by $(\mathrm{F}, \mathrm{E}) /(\mathrm{F}, \mathrm{E})$, is defined as $\mathrm{F}(\mathrm{e})=\mathrm{A}(\mathrm{e}) / \mathrm{B}(\mathrm{e})$ for all $\mathrm{e} \epsilon \mathrm{E}$
Definition 2.7:- The complement of a soft set (A, D) is denoted by $(A, D)^{c}$ and is defined by $(A, D)^{c}=\left(A^{c}, D\right)$ where $A^{c}: D \rightarrow S(X)$ mapping given by $A^{c}(\alpha)=A(\alpha), \forall \alpha \in \mathrm{D}$.
Definition 2.8:- Let μ be the set of real number and $\mathrm{B}(\mu)$ be the collection of all nonempty bounded subsets of μ and E taken set of parameters. Then a mapping $\mathrm{A}: \mathrm{E} \rightarrow \mathrm{B}(\mu)$ is called a soft real set. It is denoted by (A, E). If specifically (A, E) is a singleton soft set, then identififying (A, E) with the corresponding soft element, it will be called a soft real number and denoted $\tilde{r}, \tilde{s}, \widetilde{t}$ etc. $\overline{0}, \overline{1}$ are the soft real number where $\overline{0}(\mathrm{e})=0, \overline{1}(\mathrm{e})=1$ for all e ϵ

E,respectively.

Definition 2.9:- for two soft real numbers
I. $\tilde{r} \leq \tilde{s}$ if $\tilde{r}(\mathrm{e}) \leq \tilde{s}(\mathrm{e})$, for all $\mathrm{e} \in \mathrm{E}$.
II. $\tilde{r} \geq \tilde{s}$ if $\tilde{r}(\mathrm{e}) \geq \tilde{s}(\mathrm{e})$, for all $\mathrm{e} \in \mathrm{E}$.
III. $\tilde{r}<\tilde{s}$ if $\tilde{r}(\mathrm{e})<\tilde{s}(\mathrm{e})$, for all $\mathrm{e} \in \mathrm{E}$.
IV. $\tilde{r}>\tilde{s}$ if $\tilde{r}(\mathrm{e})>\tilde{s}(\mathrm{e})$, for all $\mathrm{e} \in \mathrm{E}$.

Definition 2.10:- A soft set over X is said to be a soft point if there is exactly one $e \in E$, such that $\mathrm{P}(\mathrm{e})=\{\mathrm{x}\}$ for some $\mathrm{x} \in \mathrm{X}$ and $\mathrm{P}(\mathrm{e})=\emptyset, \forall \varepsilon \in \mathrm{E} \backslash\{\mathrm{e}\}$. It will be denoted by \tilde{x}_{λ}.
Definition 2.11:- Two soft point $\tilde{x}_{\lambda}, \tilde{y}_{\lambda}$ are said to be equal if $\mathrm{e}=\mathrm{e}^{\prime}$ and $\mathrm{P}(\mathrm{e})=\mathrm{P}\left(\mathrm{e}^{\prime}\right)$ i.e. $\mathrm{x}=\mathrm{y}$.
Thus $\tilde{x}_{\lambda} \neq \tilde{y}_{\lambda} \Leftrightarrow \mathrm{x} \neq y$ or $\mathrm{e} \neq \mathrm{e}$.
Definition 2.12:- A mapping $\tilde{d}: \operatorname{SP}(\tilde{X}) * \operatorname{SP}(\tilde{X}) \rightarrow \tilde{\mathrm{R}}(\mathrm{E})^{*}$, is said to be a soft metric on the soft set \tilde{X} if d satisfies the following condition:
(M1) $\tilde{d}\left(\tilde{x}_{\lambda_{1}}, \tilde{y}_{\lambda_{2}}\right) \cong \overline{0}$ for all $\tilde{x}_{\lambda_{1}}, \tilde{y}_{\lambda_{2}} \widetilde{\epsilon} \tilde{X}$,
(M2) $\tilde{d}\left(\tilde{x}_{\lambda_{1}}, \tilde{y}_{\lambda_{2}}\right)=\overline{0} \quad$ if and only if $\tilde{x}_{\lambda_{1}}=\tilde{y}_{\lambda_{2}}$,
(M3) $\tilde{d}\left(\tilde{x}_{\lambda_{1}}, \tilde{y}_{\lambda_{2}}\right) \geqq \tilde{d}\left(\tilde{y}_{\lambda_{2}}, \tilde{x}_{\lambda_{1}}\right)$ for all $\tilde{x}_{\lambda_{1}}, \tilde{y}_{\lambda_{2}} \tilde{\epsilon} \tilde{X}$,
(M4) $\tilde{d}\left(\tilde{x}_{\lambda_{1}}, \tilde{z}_{\lambda_{s}}\right) \cong \tilde{d}\left(\tilde{x}_{\lambda_{1}}, \tilde{Y}_{\lambda_{2}}\right)+\tilde{d}\left(\tilde{y}_{\lambda_{2}}, \tilde{z}_{\lambda_{s}}\right)$ for all $\tilde{x}_{\lambda_{1}}, \tilde{y}_{\lambda_{2}}, \tilde{z}_{\lambda_{s}} \tilde{\varepsilon} \tilde{X}$.
The soft set \tilde{X} with a soft metric \tilde{d} on \tilde{X} is called a soft metric space and denoted by (\bar{X}, \bar{d}, E).
Definition 2.13:- (Cauchy Sequence): A sequence $\left\{\tilde{x}_{d_{n}}\right\}_{\mathrm{n}}$ of soft point $\operatorname{in}(\bar{X}, \bar{d}, E)$ is considered as a Cauchy Sequence in \tilde{X} if corresponding to every $\tilde{\varepsilon} \leqq \overline{0}, \exists \mathrm{~m} \in \mathrm{~N}$ such that $\mathrm{d}\left(\tilde{x}_{\lambda_{i}}, \tilde{x}_{\lambda_{j}}\right) \widetilde{\leq} \tilde{\varepsilon}, \forall i, j \geq \mathrm{m}$,i.e. $\mathrm{d}\left(\tilde{x}_{\lambda_{i}}, \tilde{x}_{\lambda_{j}}\right) \rightarrow \overline{0}$ as $\mathrm{i}, \mathrm{j} \rightarrow \infty$.
Definition 2.14:- (Complete Metric Space): A soft metric space ($\bar{X}, \bar{d}, E)$ is called complete, if every Cauchy Sequence in \tilde{X} converges to some point of \tilde{X}.
Definition 2.15:- Let \tilde{X} be the absolute soft vecter space i.e $\tilde{x}_{\lambda}=x, \forall \lambda \widetilde{\epsilon} A$.Then a mapping $\|\|:. \mathrm{SE} \rightarrow \hat{\mathrm{R}}(\mathrm{A})^{*}$ is said to be soft norm on the soft vector space \tilde{X} if $\|$.$\| satisfies the following$ condition.

1. $\|\tilde{x}\| \leqq \tilde{o}$, for all $\tilde{x} \tilde{\epsilon} \tilde{X}$.
2. $\|\tilde{x}\|=\tilde{o}$, if and only if $\tilde{x}=\tilde{o}$
3. $\|\alpha \tilde{x}\| \S|\tilde{a}|\|\tilde{x}\|$,for all $\tilde{x} \tilde{\epsilon} \tilde{X}$ and for every soft scalar $\tilde{\alpha}$.

Definition 2.16:- A sequence of soft element $\left\{\widetilde{x_{n}}\right\}$ in a normed linear space $(\tilde{x},\|\|, \mathrm{A}$.$) is said$ to be convergent and converges to a soft element $\tilde{x} i f\left\|\widetilde{x_{n}}-\widetilde{x}\right\| \rightarrow \tilde{0}$ as $n \rightarrow \infty$. This means for every $\widetilde{\epsilon} \subseteq \tilde{0}$, choose arbitrary,there exists a natural number $=N(\in)$,such that $\tilde{0} \leq\left\|\widetilde{x_{n}}-\widetilde{x}\right\| \leq \tilde{\epsilon}$, whenever $\mathrm{n}>N$.we denoted this by $\widetilde{x_{n}} \rightarrow \tilde{x}$ as $\mathrm{n} \rightarrow \infty$ or by $\lim _{n \rightarrow \infty} \widetilde{x_{n}}=\tilde{x}$ is said to be the limit of the sequence $\widetilde{x_{n}}$ as $n \rightarrow \infty$.
Definition 2.17:- Let $(\tilde{x},\|\|, A$.$) be a soft normed linear space. Then \tilde{x}$ is said to be complete if every of Cauchy sequence in \tilde{x} convergents to a soft element of \tilde{x}.Every complete soft normed linear space is called a soft Banach space.

Definition 2.18:- A sequence of soft real number $\left\{\tilde{s_{n}}\right\}$ is said to be convergent if for arbitrary $\widetilde{\epsilon} \subseteq \tilde{0}$, there exists a natural number N such that for all $\mathrm{n} \geq \mathrm{N},\left|\tilde{s}-\tilde{s_{n}}\right| \leq \widetilde{\epsilon}$.we denoted it by $\lim _{n \rightarrow \infty} \tilde{\widetilde{n}}_{n}=\tilde{s}$.

3. MAIN RESULT

THEORAM 3.1: Let (f, φ) be a soft mapping of Banach space \widetilde{X} in to itself. If F satisfies the following contractive conditions.
$(f, \varphi)^{2}=I$, Where I is the identity mapping (3.1.1)

$$
\begin{aligned}
& \left\|\left((f, \varphi)\left(\widetilde{x_{\lambda}}\right)-(f, \varphi)\left(\widetilde{\gamma_{\lambda}}\right)\right)\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{\left\|\left(\tilde{x}_{i}-\left(f_{\phi}\right)\left(\tilde{x}_{i}\right)\right)\left(\tilde{x}_{i}-\left(f_{\phi}\right)\left(\tilde{r}_{i}\right)\right)\right\|+\|\left(\tilde{r}_{i}-\left(f_{p}\right)\left(\tilde{r}_{i}\right)\right)\left(\tilde{r}_{i}-\left(f_{p}\right)\left(\tilde{x}_{i}\right) \|\right.}{\left\|\left(\tilde{x}_{i}-\tilde{r}_{i}\right)\right\|}\right\}+ \\
& \left.\rho\left\{\|\left(\tilde{x}_{i}\right)-(f, \varphi)\left(\tilde{x}_{i}\right)\right)\|+\|\left(\tilde{y}_{k}-(f, \varphi)\left(\tilde{y}_{i}\right)\right) \|\right\}+\omega \tilde{d}\left\|\left(\tilde{x}_{i}-\tilde{y}_{i}\right)\right\|
\end{aligned}
$$

For Every $\hat{x_{\lambda}}, \widetilde{y_{\lambda}} \in \operatorname{SP}(\tilde{X})$. Where $\mu, \rho, \omega>0$ and $\mu+\omega<1$. Then (f, φ) has a soft point, if $4 \mu+3 \rho+\omega<2$. then (f, φ) has a unique soft point.

PROOF: Suppose \hat{x}_{λ} in a point in the Banach sapace.

$$
\begin{gathered}
\tilde{y}_{\lambda}=\frac{1}{2}[(f, \varphi)+\mathrm{I}] \tilde{x}_{\lambda} \\
\widetilde{z}_{\lambda}=(f, \varphi)\left(\tilde{y}_{\lambda}\right) \text { and } \\
\tilde{u}=2 \tilde{y}_{\lambda}-\widetilde{z}_{\lambda}
\end{gathered}
$$

We have

$$
\begin{aligned}
& \left\|\tilde{z}_{\lambda}-\hat{x}_{A}\right\|=\left\|\left((f, \varphi)\left(\tilde{y_{\lambda}}\right)-(f, \varphi)^{2}\left(\tilde{x}_{\lambda}\right)\right)\right\|=\left\|\left((f, \varphi)\left(\tilde{y_{i}}\right)-(f, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}\right)\right)\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \left.\rho \quad\left\{\quad\left\|\left(\left(\overrightarrow{x_{\lambda}}\right)-(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)\right)\right\|+\|(f, \varphi)\left(\overrightarrow{x_{i}}\right)-(f, \varphi)^{2}\left(\tilde{x}_{\lambda}\right)\right) \| \quad\right\} \\
& +\omega\left\|\left(\overline{y_{2}}\right)-(f, p)\left(x_{\lambda}\right)\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \rho\left\{\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)\right\|+\left\|(f, \varphi)\left(\overrightarrow{x_{\lambda}}\right)-\hat{x_{\lambda}}\right\|\right\}+\omega\left\|\frac{1}{2}((f, \varphi)+I) \hat{x_{\lambda}}-\hat{x_{\lambda}}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \rho\left\{\left\|\overrightarrow{y_{\lambda}}-(f, \varphi)\left(\hat{y_{\lambda}}\right)\right\|+\left\|(f, \varphi)\left(\hat{x_{A}}\right)-\hat{x}_{\lambda}\right\|+\frac{\omega}{2}\left\|(f, \varphi) \hat{x_{A}}-\widehat{x_{\lambda}}\right\|\right\}
\end{aligned}
$$

$\leq \mu \quad \max \quad\left\{\quad 2\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{k}}\right)\right\|+\left\|(f, \varphi)\left(\overrightarrow{x_{1}}\right)-(f, \varphi)\left(\widetilde{y_{\lambda}}\right)\right\|,\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{2}}\right)\right\|+\right.$ $\left.2\left\|(f, \varphi)\left(\widehat{x_{X}}\right)-(f, \varphi)\left(\widetilde{\xi_{\lambda}}\right)\right\|\right\}$

$$
\rho\left\{\left\|\overline{y_{\lambda}}-(f, \varphi)\left(\overline{y_{\lambda}}\right)\right\|+\left\|(f, \varphi)\left(\tilde{x_{\lambda}}\right)-\hat{x_{\lambda}}\right\|\right\}+\frac{\omega}{2}\left\|(f, \varphi)\left(\tilde{x_{\lambda}}\right)-\left(\tilde{x_{\lambda}}\right)\right\|
$$

CASE I: When

$$
=2\left\|\tilde{y_{d}}-(f, \varphi)\left(\overrightarrow{y_{k}}\right)\right\|+\left\|(f, \varphi)\left(\hat{x_{\lambda}}\right)-(f, \varphi)\left(\widetilde{y_{\lambda}}\right)\right\|
$$

Then

$$
\left\|\tilde{z_{\lambda}}-\hat{x_{\lambda}}\right\| \leq \mu \quad\left\{\quad 2\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\widehat{y_{2}}\right)\right\|+\left\|(f, \varphi)\left(\hat{x_{\lambda}}\right)-(f, \varphi)\left(\widetilde{y_{2}}\right)\right\|\right\}
$$ $+P\left\{\left\|\left(\hat{y_{k}}\right)-(f, \varphi)\left(\widehat{y_{1}}\right)\right\|+\left\|(f, \varphi)\left(\hat{x_{1}}\right)-\widehat{x_{\lambda}}\right\|\right\}+\frac{\omega}{2}\left\|\widetilde{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\|$

$\leq \mu\left\{2\left\|\widetilde{y_{i}}-(f, \varphi)\left(\widetilde{y_{k}}\right)\right\|+\left\|(f, \varphi)\left(\widetilde{x_{i}}\right)-\widetilde{y_{k}}\right\|+\left\|\tilde{y_{i}}-(f, \varphi)\left(\widetilde{y_{i}}\right)\right\|\right\}$
$+\mathrm{p}\left\{\left\|\overrightarrow{\boldsymbol{r}_{\lambda}}-(f, \varphi)\left(\hat{y_{\lambda}}\right)\right\|+\left\|(f, \varphi)\left(\hat{x_{\lambda}}\right)-\hat{x_{\lambda}}\right\|\right\}+\frac{\omega}{2}\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\overrightarrow{x_{\lambda}}\right)\right\|$
$\leq \mu \quad\left\{3\left\|\overrightarrow{y_{i}}-(f, \varphi)\left(\overrightarrow{y_{k}}\right)\right\|+\left\|(f, \varphi)\left(\overrightarrow{x_{\lambda}}\right)-\widetilde{y_{k}}\right\|\right\}+\mathrm{p} \quad\left\{\left\|\overrightarrow{y_{i}}-(f, \varphi)\left(\overrightarrow{y_{i}}\right)\right\|+\right.$ $\left.\left\|(f, \varphi)\left(\hat{x}_{\lambda}\right)-\hat{x}_{\lambda}\right\|\right\}+\frac{\omega}{2}\left\|\hat{x}_{\lambda}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\|$

$$
\leq(3 \mu)\left\|\tilde{y_{n}}-(f, \varphi)\left(\overline{y_{2}}\right)\right\|+\mu\left\|(f, \varphi)\left(\overrightarrow{x_{\lambda}}\right)-\tilde{y_{\lambda}}\right\|+\mathrm{P}\left\{\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\overline{y_{k}}\right)\right\|+\right.
$$ $\left.\left\|(f, \varphi)\left(\hat{x}_{\lambda}\right)-\hat{x}_{\lambda}\right\|\right\}+\frac{\omega}{2}\left\|\tilde{x}_{\lambda}-(f, \varphi)\left(\tilde{x_{\lambda}}\right)\right\|$

$$
\begin{aligned}
& \leq(3 \mu+\mathrm{F})\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)\right\|+\mu\left\|(f, \varphi)\left(\tilde{x_{\lambda}}\right)-\frac{1}{2}\left((\mathrm{~F}+\mathrm{I}) \overrightarrow{x_{\lambda}}\right)\right\|+\mathrm{P}\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)\right\| \\
& \left.+\left\|(f, \varphi)\left(\hat{x}_{\lambda}\right)-\widehat{x}_{\lambda}\right\|\right\}+\frac{\omega}{2}\left\|\widehat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\| \\
& \leq(3 \mu+\mathrm{P})\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\widehat{y_{\lambda}}\right)\right\|+\left(\frac{2}{2}+\mathrm{P}+\frac{\omega}{2}\right)\left\|\widehat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{1}}\right)\right\|
\end{aligned}
$$

Also,

$$
\begin{align*}
\left\|\hat{u}-\hat{x_{\lambda}}\right\| \leq\left\|2 \tilde{y_{\lambda}}-\hat{z_{\lambda}}-\hat{x_{\lambda}}\right\| & =\left\|(f, \varphi)+\eta \hat{x_{1}}-(f, \varphi)\left(\tilde{x_{i}}\right)-\hat{x}_{\lambda}\right\| \tag{B}\\
& =\|(f, \varphi)(\hat{x})-(f, \varphi)(\widetilde{m})\|
\end{align*}
$$

$$
\begin{aligned}
& \rho\left\{\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\tilde{x_{\lambda}}\right)\right\|+\left\|\tilde{\gamma_{\lambda}}-(f, \varphi)\left(\tilde{y_{\lambda}}\right)\right\|\right\}+\omega\left\|\widehat{x_{\lambda}}-\widetilde{y_{\lambda}}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \rho\left\{\left\|\widehat{x_{\lambda}}-(f, \varphi)\left(\tilde{x_{\lambda}}\right)\right\|+\left\|\tilde{y_{\lambda}}-(f, \square)\left(\widetilde{y_{\lambda}}\right)\right\|\right\}+\omega\left\|\widetilde{x_{\lambda}}-\frac{1}{2}(f, \varphi)+I \tilde{x_{\lambda}}\right\|
\end{aligned}
$$

$+\rho\left\{\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\|+\left\|\hat{\gamma_{\lambda}}-(f, \varphi)\left(\tilde{y_{\lambda}}\right)\right\|\right\}+\frac{\omega}{2}\left\|\widehat{x_{\lambda}}-(f, \varphi)\left(\tilde{x_{\lambda}}\right)\right\|$

$$
\begin{equation*}
+\rho\left\{\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\tilde{x_{\lambda}}\right)\right\|+\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\tilde{y_{\lambda}}\right)\right\|+\frac{\omega}{2}\left\|\tilde{x_{\lambda}}-(f, \varphi)\left(\tilde{x_{\lambda}}\right)\right\|\right\} \tag{C}
\end{equation*}
$$

CASE I When

$$
=2\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\widetilde{y_{\lambda}}\right)\right\|+\widehat{x_{\lambda}}-(f, \varphi)\left(\widetilde{y_{\lambda}}\right)
$$

Then

$$
\begin{align*}
& \left\|\tilde{u}-\hat{x_{\lambda}}\right\| \leq \mu \quad\left\{\quad 2\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{d}}\right)\right\|+\left\|\overrightarrow{x_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{i}}\right)\right\| \quad\right\} \quad+\quad \rho \quad\{ \\
& \left.\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\widetilde{z_{d}}\right)\right\|+\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)\right\|\right\}+\frac{\omega}{2}\left\|\widehat{x_{\lambda}}-(f, \varphi)\left(\tilde{x_{d}}\right)\right\| \\
& \leq \mu\left\{2\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\widetilde{y_{\lambda}}\right)\right\|+\left\|\tilde{x_{\lambda}}-\widetilde{y_{\lambda}}\right\|\right\}+\rho\left\{\left\|\tilde{x_{\lambda}}-(f, \varphi)\left(\tilde{x_{\lambda}}\right\}\right\|+\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\widetilde{y_{h}}\right)\right\|\right\} \\
& +\frac{\omega}{2}\left\|\widehat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\| \\
& \leq \mu\left\{3\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\widetilde{y_{\lambda}}\right)\right\|+\left\|\widehat{x_{\lambda}}-\widetilde{y_{\lambda}}\right\|+\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\widetilde{y_{\lambda}}\right)\right\|\right\}+\rho\left\{\left\|\widehat{x_{\lambda}}-(f, \varphi)\left(\tilde{x_{\lambda}}\right)\right\|\right. \\
& +\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\hat{y_{\lambda}}\right)\right\|+\frac{\omega}{2}\left\|\widehat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\| \\
& \leq \mu\left\{3\left\|\widetilde{\gamma_{\lambda}}-(f, \varphi)\left(\widetilde{x_{\lambda}}\right)\right\|+\frac{1}{2}\left\|\hat{x_{\lambda}}-(f, \varphi) \hat{x_{\lambda}}\right\|\right\}+\rho\left\{\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right\}\right\|\right. \\
& +\left\|\widehat{y_{\lambda}}-(f, \varphi)\left(\overline{y_{\lambda}}\right)\right\|+\frac{\omega}{2}\left\|\widehat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\| \\
& \leq(3 \mu+P)\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\hat{y_{\lambda}}\right)\right\|+\left(\frac{\mu}{2}+\rho+\frac{\omega}{2}\right)\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x}_{\lambda}\right)\right\| \tag{D}
\end{align*}
$$

Now by equations (B) and (D)
$\left\|\tilde{z_{\hat{\lambda}}}-\tilde{u}\right\| \leq\left\|\tilde{z}_{\hat{\lambda}}-x_{\lambda}\right\|+\left\|\hat{x_{\lambda}}-\tilde{u}\right\|$
$\leq(3 \mu+\rho)\left\|\overrightarrow{y_{\lambda}}-(f, \varphi)\left(\hat{y_{2}}\right)\right\|+\left(\frac{\mu}{2}+\rho+\frac{\omega}{2}\right)\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\|$

$$
+(3 \mu+\rho)\left\|\overrightarrow{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{k}}\right)\right\|+\left(\frac{\mu}{2}+\rho+\frac{\omega}{2}\right)\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{k}}\right)\right\|
$$

$\leq 2(3 \mu+\rho)\left\|\overrightarrow{y_{\lambda}}-(f, \varphi)\left(\hat{y_{i}}\right)\right\|+2\left(\frac{\mu}{2}+\rho+\frac{\omega}{2}\right)\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{1}}\right)\right\|$
$\leq 2(3 \mu+\rho)\left\|\overrightarrow{y_{\lambda}}-(f, \varphi)\left(\hat{y_{i}}\right)\right\|+(\mu+2 \rho+\omega)\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\|$

Also
$\|z-u\| \leq\left\|(f, \varphi)\left(\tilde{夕_{k}}\right)-\left(2 \overrightarrow{y_{n}}\right)-\tilde{z}\right\|=\left\|(f, \varphi)\left(\overrightarrow{y_{k}}\right)-2 \overline{y_{i}}-\hat{z}\right\|$

$$
=2\left\|(f, \varphi)\left(\tilde{y_{\lambda}}\right)-\widetilde{y_{\lambda}}\right\|
$$

So
$2\left\|(f, \varphi)\left(\tilde{y_{\lambda}}\right)-\overrightarrow{y_{\lambda}}\right\| \leq 2(3 \mu+\rho)\left\|\widetilde{y_{d}}-(f, \varphi)\left(\tilde{y_{k}}\right)\right\|+(\mu+2 \rho+\omega)\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{d}}\right)\right\|$
$\left\|(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)-\widetilde{y_{\lambda}}\right\| \leq(3 \mu+\rho)\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)\right\|+\left(\frac{\mu+2 P+\omega}{2}\right)\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\|$
$(1-3 \mu-\rho)\left\|\overrightarrow{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{i}}\right)\right\| \leq \frac{(\mu+2 P+w)}{2}\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{i}}\right)\right\|$

$$
\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\widehat{y_{\lambda}}\right)\right\| \leq \frac{(\mu+2 P+\omega)}{2(1-3 \mu-\mathbb{P})}\left\|\widehat{x_{\lambda}}-(f, \varphi)\left(\tilde{x}_{\lambda}\right)\right\|
$$

Since

$$
4 \mu+3 \rho+\omega<2
$$

CASE II :- When
$\max \left\{2\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)\right\|+\left\|(f, \varphi)\left(\overrightarrow{x_{\lambda}}\right)-(f, \varphi)\left(\overrightarrow{y_{i}}\right)\right\|,\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)\right\|+2\left\|(f, \varphi)\left(\tilde{x_{\lambda}}\right)-(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)\right\|\right.$ $=\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{n}}\right)\right\|+2\left\|(f, \varphi)\left(\overrightarrow{x_{\lambda}}\right)-(f, \varphi)\left(\widetilde{y_{\lambda}}\right)\right\|$,
Then
$\left\|\tilde{z_{\lambda}}-\hat{x_{\lambda}}\right\| \leq \mu\left\{2\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\hat{y_{\lambda}}\right)\right\|+2\left\|(f, \varphi)\left(\tilde{x_{\lambda}}\right)-\tilde{y_{i}}\right\|+\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\hat{y_{\lambda}}\right)\right\|\right\}$

$$
p\left\{\left\|\overline{y_{\lambda}}-(f, \varphi)\left(\overline{x_{\lambda}}\right)\right\|+\left\|(f, \varphi)\left(\hat{x}_{\lambda}\right)-\hat{x}_{\lambda}\right\|\right\}+\frac{\omega}{2}\left\|(f, \varphi)\left(\tilde{x}_{\lambda}\right)-\hat{x}_{\lambda}\right\|
$$

$\left.\leq \mu\left\{3\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{\xi_{k}}\right)\right\|+\|(f, \varphi) \tilde{x}_{A}-\frac{1}{2}((f, \varphi)+I) \hat{x}_{\lambda}\right) \|\right\}$

$$
+\rho\left\{\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{x_{\lambda}}\right)\right\|+\left\|(f, \varphi)\left(\overrightarrow{x_{\lambda}}\right)-\widehat{x_{\lambda}}\right\|\right\}+\frac{\omega}{2}\left\|\widehat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\|
$$

$\leq(3 \mu)\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{k}}\right)\right\|+\mu\left\|(f, \varphi)\left(\hat{x_{\lambda}}\right)-\hat{x_{\lambda}}\right\|+\mathrm{P}\left\{\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)\right\|\right.$

$$
\left.+\left\|(f, \varphi)\left(\hat{x}_{\lambda}\right)-\hat{x}_{\lambda}\right\|\right\}+\frac{\omega}{2}\left\|(f, \varphi) \hat{x}_{\lambda}-\hat{x}_{\lambda}\right\|
$$

$\leq(3 \mu+\mathrm{P})\left\|\overline{y_{\lambda}}-(f, \varphi)\left(\overline{y_{\lambda}}\right)\right\|+\left(\mu+\mathrm{P} \frac{\omega}{2}\right)\left\|(f, \varphi) \hat{x}_{\lambda}-\tilde{x_{\lambda}}\right\|$

CASE II :- By equation (C) When

$$
=2\left\|\hat{x_{n}}-(f, \varphi)\left(\widetilde{r_{d}}\right)\right\|+\left\|\tilde{y_{d}}-(f, \varphi)\left(\tilde{r_{\lambda}}\right)\right\|
$$

Then
$\left\|\hat{y}-\hat{x_{\lambda}}\right\| \quad \leq \quad\left\{\quad 2\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\widetilde{y_{\lambda}}\right)\right\|+\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\overline{y_{\lambda}}\right)\right\| \quad\right\} \quad \mathrm{P} \quad\{$ $\left.\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{y_{d}}\right)\right\|+\left\|\overline{x_{1}}-(f, \varphi)\left(\overline{x_{i}}\right)\right\|\right\}+\frac{\omega}{2}\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{i}}\right)\right\|$
$\leq \mu\left\{2\left\|\hat{x_{\lambda}}-\overline{y_{\lambda}}\right\|+\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\hat{y_{\lambda}}\right)\right\|+\left\|\overrightarrow{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)\right\|\right\}+\mathrm{P}\left\{\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\overrightarrow{x_{\lambda}}\right)\right\|+\right.$ $\left.\left\|\widetilde{y_{\lambda}}-(f, \varphi)\left(\hat{y_{k}}\right)\right\|\right\}+\frac{\omega}{2}\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\tilde{x_{\lambda}}\right)\right\|$
$\leq \mu\left\{\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{1}}\right)\right\|+3\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)\right\|\right\}+\mathrm{P}\left\{\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\tilde{x}_{\lambda}\right)\right\|+\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\hat{y_{\lambda}}\right)\right\|\right\}$

$$
+\frac{\omega}{2}\left\|\widehat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\|
$$

$\leq(3 \mu+P)\left\|\overline{\tilde{y_{\lambda}}}-(f, \varphi)\left(\overline{y_{k}}\right)\right\|+\left(\mu+\mathrm{P}+\frac{\omega}{2}\right)\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\tilde{x_{\lambda}}\right)\right\|$

Now by equations (E) and (F)
$\left\|\tilde{z_{\hat{Z}}}-\tilde{u}\right\| \leq\left\|\tilde{z}_{\hat{Z}}-\hat{x}_{\lambda}\right\|+\left\|\hat{x_{\lambda}}-\tilde{u}\right\|$
$\leq(3 \mu+P)\left\|\widetilde{\gamma_{\lambda}}-(f, \varphi)\left(\overline{y_{k}}\right)\right\|+\left(\mu+P+\frac{\omega}{2}\right)\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\tilde{x_{\lambda}}\right)\right\|$
$+\leq(3 \mu+\mathrm{P})\left\|\overrightarrow{y_{\lambda}}-(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)\right\|+\left(\mu+\mathrm{P}+\frac{\omega}{2}\right)\left\|\overrightarrow{x_{\lambda}}-(f, \varphi)\left(\hat{x}_{\lambda}\right)\right\|$
$\leq 2(3 \mu+\mathrm{P})\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\tilde{y_{\lambda}}\right)\right\|+2\left(\mu+\mathrm{P}+\frac{\omega}{2}\right)\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\|$
Also
$\left\|\tilde{z_{\lambda}}-\hat{u}\right\| \leq\left\|(f, \varphi)\left(\widetilde{y_{\lambda}}\right)-\left(2 \tilde{y_{\lambda}}\right)-\hat{z}_{\lambda}\right\|=\left\|(f, \varphi)\left(\tilde{y_{\lambda}}\right)-2 \widetilde{y_{\lambda}}+\tilde{z_{\lambda}}\right\|=2\left\|(f, \varphi)\left(\tilde{y_{\lambda}}\right)-\tilde{y_{\lambda}}\right\|$ So
$2\left\|(f, \varphi)\left(\tilde{y_{d}}\right)-\overrightarrow{y_{\lambda}}\right\| \leq 2(3 \mu+\mathrm{P})\left\|\tilde{y_{d}}-(f, \varphi)\left(\overrightarrow{y_{\lambda}}\right)\right\|+2\left(\mu+2 \mathrm{P}+\frac{\omega}{2}\right)\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\|$

$$
\leq(3 \mu+\mathrm{P})\left\|\tilde{y_{\lambda}}-(f, \varphi)\left(\hat{y_{\lambda}}\right)\right\|+\left(\mu+2 \mathrm{P}+\frac{\omega}{2}\right)\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\|
$$

$(1-3 \mu-\mathrm{P})\left\|(f, \varphi)\left(\overline{y_{k}}\right)-\tilde{y_{i}}\right\| \leq\left(\mu+\mathrm{P}+\frac{\omega}{2}\right)\left\|\hat{x_{1}}-(f, \varphi)\left(\hat{x_{1}}\right)\right\|$

$$
\left\|(f, \varphi)\left(\tilde{y_{\lambda}}\right)-\tilde{y_{i}}\right\| \leq \frac{\left(\mu+\mathrm{P}+\frac{\omega}{2}\right)}{(1-3 \mu-\mathrm{P})}\left\|\hat{x_{\lambda}}-(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\|
$$

Since

$$
\begin{aligned}
& \frac{\left(\mu+\mathrm{P}+\frac{\omega}{2}\right)}{(1-3 \mu-\mathrm{P})}<1 \\
& 4 \mu+2 \mathrm{P}+\frac{\omega}{8}<2
\end{aligned}
$$

On taking

$$
\mathrm{F}=\frac{1}{2}((f, \varphi)+I) \text { then for every } \hat{x_{\lambda}} \in \hat{x}
$$

By definition of q . we claim that $\left\{\hat{x_{\lambda}}\right\}$ is a Cauchy sequence in \tilde{x} There fore by the property of completeness
$\left\{(g, \varphi)^{n}\left(\widehat{x_{\lambda}}\right)\right\}$ converge to same element ${\widetilde{x_{\lambda}}}^{\text {D }}$ in \tilde{x}.

$$
\text { i.e. } \quad \lim _{n \rightarrow \infty}(g, \varphi)^{n}\left(\hat{x_{\lambda}}\right)=\widetilde{x_{\lambda}}
$$

which implice $(g, \varphi)^{\text {n }}\left(\widehat{x_{\lambda}}\right)=\widetilde{x_{d}}$ hence $(f, \varphi)\left(\widetilde{x_{d}}{ }^{\mathbb{D}}\right)=\widetilde{x_{d}}{ }^{\mathbb{D}}$
i.e. x_{D} is a soft point of (f, φ)

Uniqueness :- If possible let $\widetilde{y_{\lambda}^{D}}\left(\neq \widetilde{x_{\lambda}}\right)$ be another soft point of (f, φ)
Then
$\left\|\tilde{x}_{\lambda}{ }^{0}-{\tilde{y_{A}}}^{0}\right\|=\left\|(g, \varphi)\left(\tilde{x}_{\lambda}{ }^{0}\right)-(g, \varphi)\left(\tilde{h}^{0}\right)\right\|$

$$
\begin{aligned}
& +\rho\left\{\left\|\hat{x}_{\lambda}{ }^{0}-(g, \varphi)\left(\hat{x}_{\lambda}{ }^{0}\right)\right\|+\left\|{\widetilde{y_{\lambda}}}^{0}-(g, \varphi)\left(\tilde{y}_{\lambda}{ }^{0}\right)\right\|\right\}+\omega\left\|{\hat{x_{\lambda}}}^{0}-{\widetilde{y_{\lambda}}}^{0}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& +\rho\left\{\left\|{\hat{x_{\lambda}}}^{0}-{\hat{x_{\lambda}}}^{0}\right\|+\left\|{\tilde{g_{\lambda}}}^{0}-{\tilde{y_{\lambda}}}^{0}\right\|\right\}+\omega\left\|{\hat{x_{\lambda}}}^{0}-{\tilde{y_{\lambda}}}^{0}\right\| \\
& \leq \mu \max \left\{\left\|\widehat{x}_{\lambda}{ }^{0}-{\tilde{y_{\lambda}}}^{0}\right\|, 0\right\}+\mathrm{p}(0)+\omega\left\|{\widehat{x_{\lambda}}}^{0}-{\tilde{y_{\lambda}}}^{0}\right\| \\
& <(\mu+\omega)\left\|\hat{x}_{\lambda}{ }^{0}-{\tilde{y_{\lambda}}}^{0}\right\|
\end{aligned}
$$

Since $\mu+<1$, there for $\left\|\widehat{x_{\lambda}}-\widetilde{y_{\lambda}}\right\|=0$

$$
\text { Hence } \hat{x}_{\lambda}^{0}={\widetilde{y_{\lambda}}}^{0}
$$

This complete the proof.

THEOREM 3.2:- let K closed and convex subset of a soft Banach space \tilde{X}.Let $(g, \varphi): \mathrm{K} \rightarrow \mathrm{K}$, $(f, \varphi): K \rightarrow K$, satisfy the following condition,
(3.2.1) $\quad(g, \varphi)$ and (f, φ) commute.
(3.2.2) $(g, \varphi)^{2}=\mathrm{I}$ and $(f, \varphi)^{2}=\mathrm{I}$, where I denotes identity mappings.
$\left\|(g, \varphi)\left(\tilde{x}_{\lambda}\right)-(g, \varphi)\left(\tilde{y}_{\lambda}\right)\right\| \leq \mu_{\max }$
$\left\{\frac{\left\|(f, \varphi)\left(\hat{x}_{2}\right)-(\hat{g}, \varphi)\left(\hat{x_{2}}\right)\right\|\left\|(f, \varphi)\left(\tilde{y_{\lambda}}\right)-(\hat{g}, \varphi)\left(\hat{y_{2}}\right)\right\|+\left\|(f, \varphi)\left(\hat{\tilde{x}_{2}}\right)-(\hat{g}, \varphi)\left(\hat{y_{2}}\right)\right\|\left\|(f, \varphi)\left(\hat{y_{2}}\right)-(\hat{0}, \varphi)\left(\hat{x}_{2}\right)\right\|}{\left\|(f, \varphi)\left(\hat{x_{2}}\right)-(f, \varphi)\left(\hat{y_{2}}\right)\right\|}\right.$,
$\left.\frac{\left\|(f, \varphi)\left(\hat{x}_{2}\right)-(\hat{g}, \varphi)\left(\hat{x}_{2}\right)\right\|\left\|(f, \varphi)\left(\hat{x}_{2}\right)-(\rho, \varphi)\left(\hat{y}_{\lambda}\right)\right\|+\left\|(\hat{f}, \varphi)\left(\hat{y}_{2}\right)-(\rho, \varphi)\left(\hat{y}_{2}\right)\right\|\left\|(f, \varphi)\left(\hat{y}_{2}\right)-(\hat{\rho}, \varphi)\left(\tilde{x}_{\lambda}\right)\right\|}{\left\|(f, \varphi)\left(\hat{x}_{2}\right)-(f, \varphi)\left(\hat{\hat{y}_{2}}\right)\right\|}\right\}$
$+\quad \rho \quad\left\{\quad\left\|(f, \varphi)\left(\tilde{x}_{\lambda}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}\right)\right\|+\left\|(f, \varphi)\left(\tilde{y}_{\lambda}\right)-(g, \varphi)\left(\tilde{y}_{\lambda}\right)\right\| \quad\right\}$
$+\omega\left\|(f, \varphi)\left(\tilde{x}_{\lambda}\right)-(f, \varphi)\left(\tilde{y}_{\lambda}\right)\right\|$
For every $\widetilde{x}, \tilde{y} \widetilde{\epsilon} \tilde{X} . \mu+\omega+\eta+\rho \Xi \tilde{0}$ and there exist at leaJst one soft point $\tilde{x}_{\lambda}^{o}=\tilde{X}$. such that $(g, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)=(f, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)=\tilde{x}_{\lambda}^{o}$
futher if $(\mu+\omega)<1$.
Then \tilde{x}_{λ} is the unique soft point of (f, φ) and (g, φ).

PROOF:-

From (3.2.1) and (3.2.2) if follows that $[(g, \varphi)(f, \varphi)]^{2}=\mathrm{I}$ and (3.2.2) and (3.2.3) imply $\left\|(g, \varphi)(f, \varphi)^{2}\left(\tilde{x}_{\lambda}\right)-(g, \varphi)(f, \varphi)^{2}\left(\tilde{y}_{\lambda}\right)\right\| \leq$
$+\rho\left\{\left\|(f, \varphi)(f, \varphi)^{2}\left(\tilde{x}_{\lambda}\right)-(g, \varphi)(f, \varphi)^{2}\left(\tilde{x}_{\lambda}\right)\right\|+\left\|(f, \varphi)(f, \varphi)^{2}\left(\tilde{y}_{\lambda}\right)-(g, \varphi)(f, \varphi)^{2}\left(\tilde{y}_{\lambda}\right)\right\|\right\}$
$+\omega\left\|(f, \varphi)(f, \varphi)^{2}\left(\tilde{x}_{\lambda}\right)-(f, \varphi)(f, \varphi)^{2}\left(\tilde{y}_{\lambda}\right)\right\|$
Now we put $(f, \varphi)\left(\tilde{x}_{\lambda}\right)=\tilde{z}_{\lambda}$ and $(f, \varphi)\left(\tilde{y}_{\lambda}\right)=\tilde{v}_{\lambda}$, then we get
$\left\|(g, \varphi)(f, \varphi)\left(\tilde{z}_{\lambda}\right)-(g, \varphi)(f, \varphi)\left(\tilde{v}_{\lambda}\right)\right\| \leq$

We have
$(g, \varphi)(f, \varphi)^{2}=\mathrm{I}, \quad(g, \varphi)(f, \varphi)$ has at least one fixed point,say \tilde{x}_{λ}^{0} in K,i.e

$$
\begin{equation*}
(g, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)=\tilde{x}_{\lambda}^{0} \tag{3.2.4}
\end{equation*}
$$

and $(g, \varphi)(g, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)=(g, \varphi)\left(x_{\lambda}^{0}\right)$

$$
\begin{equation*}
(f, \varphi)\left(x_{\lambda}^{0}\right)=(g, \varphi)\left(x_{\lambda}^{0}\right) \tag{3.2.5}
\end{equation*}
$$

NOW
$\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right\|=\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)^{2}\left(\tilde{x}_{\lambda}^{0}\right)\right\|=\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|$

$$
\leq \mu \max \left(\left\|(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|\left\|(f, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|+\right.
$$

$$
\frac{\left.\|(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right)\left\|\|(f, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right) \|}{\left.\|(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right)-(f, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right) \|}
$$

$\left\|(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|\left\|(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|+$
$\left.\frac{\left\|(f, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|\left\|\left\|(f, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|\right.}{\left.\|(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right)-(f, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right) \|}\right\}$
$+\rho\left\{\left\|(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|+\left\|(f, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|\right\}$
$+\omega\left\|(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(f, \varphi)(g ; \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|$

$$
\begin{aligned}
& \leq \mu \max \left\{\frac{\left\|\left(\hat{z}_{\lambda}\right)-(\rho, \varphi)\left(\left(\hat{z}_{\lambda}\right)\| \|\left(\hat{v}_{\lambda}\right)-(g, \varphi)(f, \varphi)\left(\left(\hat{v}_{2}\right)\right) \|\left(\hat{s}_{\lambda}\right)-(\rho, \varphi)\right)(f, \varphi)\left(\left(\hat{v}_{\lambda}\right)\right)\right\|\left\|\left(\hat{z}_{\lambda}\right)-(g, \varphi)(f, \varphi)\left(\left(\hat{z}_{\lambda}\right)\right)\right\| \|}{\left\|\hat{z}_{\lambda}-\hat{v}_{\lambda}\right\|},\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\rho\left\{\left\|\left(\tilde{z}_{\lambda}\right)-(g, \varphi)(f, \varphi)\left(\left(\tilde{z}_{\lambda}\right)\right)\right\|+\left\|\left(\tilde{v}_{\lambda}\right)-(g, \varphi)(f, \varphi)\left(\left(\tilde{v}_{\lambda}\right)\right)\right\|\right\} \\
& +\omega\left\|\left(\tilde{z}_{\lambda}\right)-\left(\tilde{v}_{\lambda}\right)\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left\|(f, \varphi)(f, \varphi)^{2}\left(\tilde{x}_{\lambda}\right)-(\hat{0}, \varphi)(f, \varphi)^{2}\left(\hat{\hat{N}_{\lambda}}\right)\right\|\left\|(f, \varphi)(f, \varphi)^{2}\left(\hat{\hat{N}_{\lambda}}\right)-(g, \varphi)(f, \varphi)^{2}\left(\tilde{x}_{\lambda}\right)\right\|}{\left\|(f, \varphi)(f, \varphi)^{2}\left(\hat{\tilde{x}_{\lambda}}\right)-(f, \varphi)(f, \varphi)^{2}\left(\hat{\hat{N}_{\lambda}}\right)\right\|}, \\
& \left\|(f, \varphi)(f ; \varphi)^{2}\left(\tilde{x}_{\lambda}\right)-(\rho, \varphi)(f, \varphi)^{2}\left(\tilde{u}_{\lambda}\right)\right\|\left\|(f, \varphi)(f, \varphi)^{2}\left(\tilde{x}_{\lambda}\right)-(\rho, \varphi)(f, \varphi)^{2}\left(\tilde{y}_{\lambda}\right)\right\|+
\end{aligned}
$$

```
\(\left.\frac{\left.\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|\left\|\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right\|+\|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right)\left\|\left\|\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|\right.}{\left.\|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right)-\left(\tilde{x}_{\lambda}^{0}\right) \|}\right\}\)
\(+\rho\left\{\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|+\left\|\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right\|\right\}+\omega\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right\|\)
    \(\left.\left.\leq \mu \max \left\{\|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right) \|, 0\right\}+\rho(0)+\omega \|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right) \|\)
    \(\leq(\mu+\omega)\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right\|\)
```

There for

$$
\left.\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right\| \leq(\mu+\omega) \|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right) \|
$$

Since $\mu+\omega+\eta+\rho<1$, it follow
$(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)=\left(\tilde{x}_{\lambda}^{0}\right)$ i.e
$\left(\tilde{x}_{\lambda}^{0}\right)$ is the soft point of $(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)=(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)$ therefor, we have

$$
(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)=\left(\tilde{x}_{\lambda}^{0}\right)
$$

i.e. $\quad \tilde{x}_{\lambda}^{0}$ is the common soft point of (g, φ) and (f, φ).

Uniqueness:-Now we shall prove that \tilde{x}_{λ}^{0} is the uniqness common soft point of (g, φ) and (f, φ).If possible let \tilde{y}_{λ}^{0} be another soft point of (g, φ) and (f, φ).
Now by using (3.2.1),(3.2.2)(3.2.3) and (3.2.4), (3.2.5)
We have

$$
\begin{aligned}
& \left\|\tilde{x}_{\lambda}^{0}-\tilde{y}_{\lambda}^{0}\right\|=\left\|(g, \varphi)^{2}\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)^{2}\left(\tilde{y}_{\lambda}^{0}\right)\right\|=\left\|(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{y}_{\lambda}^{0}\right)\right\| \\
& \leq \mu \max \left\{\left\|(f, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|\left\|(f, \varphi)(g, \varphi)\left(\hat{\gamma}_{\lambda}^{0}\right)-(g, \varphi)(f, \varphi)\left(\tilde{\gamma}_{\lambda}^{0}\right)\right\|_{+}\right. \\
& \frac{\left\|(g, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(f, \varphi)\left(\tilde{\dot{\gamma}}_{\lambda}^{0}\right)\right\|\left\|(f, \varphi)(g, \varphi)\left(\tilde{\dot{x}}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|}{\left\|(g, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(f, \varphi)\left(\tilde{\gamma}_{\lambda}^{0}\right)\right\|}, \\
& \left\|(f, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|\left\|(f, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{v}_{\lambda}^{0}\right)\right\|+ \\
& \left.\frac{\left\|(f, \varphi)(g, \varphi)\left(\tilde{\gamma}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\hat{y}_{\lambda}^{0}\right)\right\|\left\|(f, \varphi)(g, \varphi)\left(\hat{y}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|}{\left\|(f, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(q, \varphi)(f, \varphi)\left(\tilde{\gamma}_{\lambda}^{0}\right)\right\|}\right\} \\
& +\rho\left\{\left\|(f, \varphi)(g, \varphi)\left(\hat{x}_{l}^{b}\right)-(g, \varphi)(f, \varphi)\left(x_{l}^{b}\right)\right\|+\left\|(f, \varphi)(g, \varphi)\left(\tilde{y}_{h}^{b}\right)-(g, \varphi)(g, \varphi)\left(\eta_{\lambda}^{p}\right)\right\|\right\} \\
& +\omega\left\|(f, \varphi)(g, \varphi)\left(x_{h}^{b}\right)-(g, \varphi)(f, \varphi)\left(f_{h}^{b}\right)\right\|
\end{aligned}
$$

$$
+\rho\left\{\left\|\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right\|+\left\|\left(\tilde{y}_{\lambda}^{0}\right)-\left(\tilde{y}_{\lambda}^{0}\right)\right\|\right\}+w\left\|\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{y}_{\lambda}^{0}\right)\right\|
$$

$\leq \mu \max \left\{\left\|\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{y}_{\lambda}^{0}\right)\right\|, 0\right\}+\rho\{0\}+\omega\left\|\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{y}_{\lambda}^{0}\right)\right\|$
$\leq(\mu+\omega) \quad\left\|\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{y}_{\lambda}^{0}\right)\right\|$
Since $\mu+\omega+\eta+\rho<1$, it follow that

$$
\left(\tilde{x}_{\lambda}^{0}\right)=\left(\tilde{y}_{h}^{0}\right)
$$

Proving the uniqueness of \tilde{x}_{λ}^{0}, the proof of the theorem 2 is complete.
THEOREM 3.3:- Let k be closed and convert subset of a soft Banach space $\widetilde{X} \cdot \operatorname{Let}(g, \phi)$ and (f, φ) and (h, φ) be three mapping of \tilde{X} in to it self such that

$$
\begin{align*}
& (g, \varphi)(f, \varphi)=(f, \varphi)(g, \varphi), \quad(f, \varphi)(h, \varphi)=(h, \varphi)(f, \varphi), \text { and } \tag{3.3.1}\\
& (g, \varphi)(h, \varphi)=(h, \varphi)(g, \varphi)
\end{align*}
$$

(3.3.2) $(g, \varphi)^{2}=\mathrm{I},(f, \varphi)^{2}=\mathrm{I},(h, \varphi)^{2}=\mathrm{I}$, where I denotes the identity mapping.

$$
\begin{equation*}
\left\|(f, \varphi)(h, \varphi)\left(\tilde{x}_{2}\right)-(g, \varphi)\left(\tilde{\tilde{\lambda}}_{2}\right)\right\|(f, \varphi)(h, \varphi)\left(\tilde{\beta}_{\lambda}\right)-(\rho, \varphi)\left(\hat{y}_{2}\right) \|+ \tag{3.3.3}
\end{equation*}
$$

$\left\|(g, \varphi)\left(\tilde{x}_{\lambda}\right)-(g, \varphi)\left(\tilde{y}_{\lambda}\right)\right\| \leq \mu \max \left\{\frac{\left\|(f, \varphi)(h, \varphi)\left(\hat{x}_{\lambda}\right)-(g, \varphi)\left(\hat{y}_{\lambda}\right)\right\|\left\|(f, \varphi)(h, \varphi)\left(\hat{\hat{y}_{\lambda}}\right)-(g, \varphi)\left(\hat{\hat{x}_{2}}\right)\right\|}{\left\|(f, \varphi)\left(\hat{x}_{\lambda}\right)-(f, \varphi)\left(\hat{y_{2}}\right)\right\|}\right.$,
$\left\|(f, \varphi)(h, \varphi)\left(\hat{x}_{\lambda}\right)-(\rho, \varphi)\left(\hat{x}_{2}\right)\right\|\left\|(f \varphi)(h, \varphi)\left(\hat{x}_{\lambda}\right)-(\rho, \varphi)\left(\hat{y}_{\lambda}\right)\right\|+$ $\left.\frac{\left\|(f, \varphi)(h, \varphi)\left(\hat{y}_{\lambda}\right)-(\rho, \varphi)\left(\hat{y}_{\lambda}\right)\right\|\left\|(f, \varphi)(h, \varphi)\left(\hat{y}_{\lambda}\right)-(\rho, \varphi)\left(\hat{x}_{\lambda}\right)\right\|}{\left\|(f, \varphi)\left(\tilde{x}_{\lambda}\right)-(f, \varphi)\left(\hat{y}_{\lambda}\right)\right\|}\right\}$

$$
\begin{array}{r}
+\rho\left\{\left\|(f, \varphi)(h, \varphi)\left(\tilde{x}_{\lambda}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}\right)\right\|+\left\|(f, \varphi)(h, \varphi)\left(\tilde{y}_{\lambda}\right)-(g, \varphi)\left(\tilde{y}_{\lambda}\right)\right\|\right\} \\
+\omega)\left\|(f, \varphi)(h, \varphi)\left(\tilde{x}_{\lambda}\right)-(f, \varphi)\left(\tilde{y}_{\lambda}\right)\right\|
\end{array}
$$

For every $\widetilde{x}, \tilde{y} \widetilde{\epsilon} \widetilde{K}$ and $\mu, \omega, \rho \mathbb{\Xi} \tilde{0}$ such that $+\omega+\rho<2$. Then there exist at least one soft point $\tilde{x}_{\lambda}^{o}=\tilde{X}$. such that $(g, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)=(f, \varphi)(h, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)$ and $(g, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)=(h, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)$ futher if $(\mu+\omega+\rho)<1$. Then \tilde{x}_{λ}^{0} is the common soft point of $(g, \varphi)(f, \varphi)$ and (h, φ).
Proof:- From (3.3.1) and (3.3.2) if follows that $[(g, \varphi)(f, \varphi)(h, \varphi)]^{2}=\mathrm{I}$, where I is the identity mapping, from (3.3.2) and (3.3.3)
We have
$\left\|(g, \varphi)(h, \varphi)(f, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}\right)-(g, \varphi)(h, \varphi)(f, \varphi)(f, \varphi)\left(\tilde{y}_{\lambda}\right)\right\|=$ $\left\|(g, \varphi)(f, \varphi)(h, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}\right)-(g, \varphi)(f, \varphi)(h, \varphi)(f, \varphi)\left(\tilde{y}_{\lambda}\right)\right\| \leq$

```
\(\leq \mu \max \left\{\left\|(f, \varphi)(h, \varphi)(f, \varphi)^{2}\left(\hat{x}_{\lambda}\right)-(\rho, \varphi)(f, \varphi)(h, \varphi)(f, \varphi)\left(\hat{x}_{\lambda}\right)\right\|\left\|(f, \varphi)(h, \varphi)^{2}(f, \varphi)\left(\hat{\gamma_{\lambda}}\right)-(\rho, \varphi)(f, \varphi)(h, \varphi)(f, \varphi)\left(\hat{x_{\lambda}}\right)\right\|+\right.\)
    \(\left\|(f, \varphi)(n, \varphi)^{2}(f, \varphi)\left(\hat{x}_{\lambda}\right)-(g, \varphi)(f, \varphi)(n, \varphi)(f, \varphi)\left(\hat{x}_{\lambda}\right)\right\|\left\|(f, \varphi)(h, \varphi)^{2}(f, \varphi)\left(\hat{\gamma}_{\lambda}\right)-(\rho, \varphi)(f, \varphi)(n, \varphi)(f, \varphi)\left(\hat{x}_{\lambda}\right)\right\|\)
                \(\|(f, \varphi)(h, \varphi) 2(f, \varphi)\left(\hat{x}_{\lambda}\right)-(f, \varphi)(n, \varphi) 2(f, \varphi)\left(\hat{\gamma}_{\lambda}\right.\) ill
    \(\left\|(f, \varphi)(h, \varphi)^{2}(f, \varphi)\left(\hat{x}_{\lambda}\right)-(\rho, \varphi)(f, \varphi)(\eta, \varphi)(f, \varphi)\left(\hat{x}_{\lambda}\right)\right\|\left\|(f, \varphi)(\eta, \varphi)^{2}(f, \varphi)\left(\hat{x}_{\lambda}\right)-(\rho, \varphi)(f, \varphi)(\eta, \varphi)(f, \varphi)\left(\hat{\bar{\gamma}}_{\lambda}\right)\right\|+\)
```



```
\(+\quad\left\|(f, \phi)(h, \phi)^{2}(f, \phi)\left(\tilde{x}_{2}\right)-(\rho, \phi)(f, \phi)(h, \phi)(f, \phi)\left(\tilde{x}_{2}\right)\right\|+\|(f, \phi)(h, \phi)^{2}(f, \phi)\left(\tilde{y}_{3}\right)-\{\)
                \((g, \phi)(f, \varphi)(h, \phi)(f, \phi)\left(\tilde{y}_{\lambda}\right) \|\)
\}
        \(+\omega\left\|(f, \varphi)(h, \varphi)^{2}(f, \varphi)\left(\tilde{x}_{\lambda}\right)-(f, \varphi)(h, \varphi)^{2}(f, \varphi)\left(\tilde{y}_{\lambda}\right)\right\|\)
    \(\leq \mu \max \left\{\left\|(f, \varphi)\left(\tilde{x}_{\lambda}\right)-(\rho, \varphi)(f, \varphi)(h, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}\right)\right\|\left\|(f, \varphi)\left(\hat{\gamma}_{\lambda}\right)-(\rho, \varphi)(f, \varphi)(h, \varphi)(f, \varphi)\left(\hat{x}_{\lambda}\right)\right\|+\right.\)
    \(\frac{\left\|(f, \varphi)\left(\tilde{x}_{\lambda}\right)-(g, \varphi)(f, \varphi)(h, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}\right)\right\|\left\|(f, \varphi)\left(\tilde{y}_{\lambda}\right)-(g, \varphi)(f, \varphi)(h, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}\right)\right\|}{\left\|(f, \varphi)\left(\tilde{x}_{\lambda}\right)-(f, \varphi)\left(\hat{y}_{\lambda}\right)\right\|}\),
        \(\left\|(f, \varphi)\left(\tilde{x}_{\lambda}\right)-(\rho, \varphi)(f, \varphi)(n, \varphi)(f, \varphi)\left(\hat{x}_{\lambda}\right)\right\|\left\|(f, \varphi)\left(\tilde{x}_{\lambda}\right)-(\rho, \varphi)(f, \varphi)(n, \varphi)(f, \varphi)\left(\hat{y}_{\lambda}\right)\right\|+\)
        \(\left.\frac{\left\|(f, \varphi)\left(\tilde{\gamma_{\lambda}}\right)-(g, \varphi)(f, \varphi)(h, \varphi)(f, \varphi)\left(\hat{y}_{\lambda}\right)\right\|\left\|(f, \varphi)\left(\hat{y}_{\lambda}\right)-(\rho, \varphi)(f, \varphi)(h, \varphi)(f, \varphi)\left(\hat{x}_{\lambda}\right)\right\|}{\left\|(f, \varphi)\left(\hat{\hat{x}_{\lambda}}\right)-(f, \varphi)\left(\hat{y}_{\lambda}\right)\right\|}\right\}\)
    \(+\rho\left\{\left\|(f, \varphi)\left(\hat{x}_{\lambda}\right)-(\beta, \varphi)(f, \varphi)(h, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}\right)\right\|+\left\|(f, \varphi)\left(\tilde{y}_{\lambda}\right)-(g, \varphi)(f, \varphi)(h, \varphi)(f, \varphi)\left(\tilde{y}_{\lambda}\right)\right\|\right\}\)
    \(+\infty\left\|(f, \varphi)\left(\tilde{x}_{\lambda}\right)-(f, \varphi)\left(\tilde{y}_{\lambda}\right)\right\|\)
```

Now if we put $(f, \varphi)\left(\tilde{x}_{\lambda}\right)=\tilde{z}_{\lambda}$ and $(f, \varphi)\left(\tilde{x}_{\lambda}\right)=\tilde{v}_{\lambda}$,

```
\(\left\|(g, \varphi)(f, \varphi)(h, \varphi)\left(\tilde{z}_{\lambda}\right)-(g, \varphi)(f, \varphi)(h, \varphi)\left(\tilde{v}_{\lambda}\right)\right\|\)
\(\leq \mu \max \left\{\left\|\left(\tilde{z}_{\lambda}\right)-(g, \varphi)(f, \varphi)(h, \varphi)\left(\tilde{z}_{\lambda}\right)\right\|\left\|\left(\tilde{v}_{\lambda}\right)-(g, \varphi)(f, \varphi)(h, \varphi)\left(\tilde{v}_{\lambda}\right)\right\|+\right.\)
    \(\left\|\left(\hat{z}_{\lambda}\right)-(\hat{g}, \varphi)(h, \varphi)(f, \varphi)\left(\hat{v}_{\lambda}\right)\right\|\left\|\left(\hat{v}_{\lambda}\right)-(\rho, \varphi)(f, \varphi)(n, \varphi)\left(\hat{\bar{z}}_{\text {R }}\right)\right\|\)
                        \(\left\|(f, \varphi)\left(\hat{x}_{\lambda}\right)-(f \varphi)\left(\hat{y_{3}}\right)\right\|\)
    \(\left\|\left(\tilde{z}_{\lambda}\right)-(g, \varphi)(f, \varphi)(h, \varphi)\left(\tilde{z}_{\lambda}\right)\right\|\left\|\left(\tilde{z}_{\lambda}\right)-(g, \varphi)(f, \varphi)(h, \varphi)\left(\tilde{v}_{\lambda}\right)\right\|+\)
    \(\left.\frac{\left\|\left(\tilde{v}_{\lambda}\right)-(g, \varphi)(f, \varphi)(h, \varphi)\left(\tilde{v}_{\lambda}\right)\right\|\left\|\left(\tilde{v}_{\lambda}\right)-(g, \varphi)(f, \varphi)(h, \varphi)\left(\tilde{z}_{\lambda}\right)\right\|}{\left\|(f, \varphi)\left(\tilde{x}_{\lambda}\right)-(f, \varphi)\left(\tilde{\gamma}_{\lambda}\right)\right\|}\right\}\)
    \(\left.+\rho\left\{\|\left(\tilde{z}_{h}\right)-(g, \varphi)(f, \varphi)(h, \varphi)\left(\tilde{z}_{h}\right)\right)\|+\|\left(\tilde{v}_{h}\right)-(g, \varphi)(f, \varphi)(h, \varphi)\left(\tilde{v}_{h}\right) \|\right\}\)
```

$$
+\omega\left\|\left(\tilde{z}_{\lambda}\right)-\left(\tilde{v}_{\lambda}\right)\right\|
$$

We have $[(g, \varphi)(f, \varphi)(h, \varphi)]^{2}=\mathrm{I}$ and $\mu+\omega+\rho<2$. We infer that $(g, \varphi)(f, \varphi)(h, \varphi)$ has at least one soft point, say \tilde{x}_{R}^{o} in here exist at least one soft point in \widetilde{K}
such that
(3.3.4)

$$
(g, \varphi)(f, \varphi)(h, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)=\left(\tilde{x}_{\lambda}^{o}\right) \quad \text { and }
$$

$(f, \varphi)(h, \varphi)(f, \varphi)(g, \varphi)(h, \varphi)\left(\tilde{x}_{\lambda}^{\circ}\right)=(f, \varphi)(h, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)$

$$
\begin{equation*}
(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)=(f, \varphi)(h, \varphi)\left(\tilde{x}_{\lambda}^{o}\right) \tag{3.3.5}
\end{equation*}
$$

also
$(h, \varphi)\left[(f, \varphi)(g, \varphi)(h, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)\right]=(h, \varphi)\left(\tilde{x}_{\lambda}^{\circ}\right)$ and there for

$$
\begin{equation*}
(h, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)=(h, \varphi)\left(\tilde{x}_{\lambda}^{o}\right) \tag{3.3.6}
\end{equation*}
$$

Now by using (3.3.1),(3.3.2),(3.3.3) and (3.3.4),(3.3.5),(3.3.6) we have

$$
\begin{aligned}
& \left\|(h, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right\|=\left\|(g, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)-(g, \varphi)^{2}\left(\tilde{x}_{\lambda}^{0}\right)\right\|= \\
& \triangleq \mu \max \left\|(f, \varphi, \varphi)(h, \varphi)(f, \varphi)\left(\tilde{x_{\lambda}^{0}}\right)-(g, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)\right\|\left\|(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|+ \\
& \left\|(f, \varphi)(h, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|\left\|(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\| \\
& \left\|(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|
\end{aligned},
$$

$$
\left\|(f, \varphi)(h, \varphi)(f, \varphi)\left(\tilde{x}_{2}^{0}\right)-(\varphi, \varphi)(f, \varphi)\left(\tilde{x}_{2}^{0}\right)\right\|\left\|(f, \varphi)(n, \varphi)(f, \varphi)\left(\hat{x}_{R}^{0}\right)-(0, \varphi)(\rho, \varphi)\left(\tilde{x}_{2}^{0}\right)\right\|+
$$

$$
\left.\frac{\left\|(f, \varphi(h, \varphi)(g, \varphi))\left(x_{2}^{0}\right)-(g, \varphi)(f, \varphi)\left(\tilde{x}_{2}^{0}\right)\right\|\left\|(f, \varphi)(h, \varphi)(f, \varphi)\left(\tilde{x}_{2}^{0}\right)-(g, \varphi)(f, \varphi)\left(x_{2}^{0}\right)\right\|}{\left\|(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(f, \varphi)\left(x_{2}^{0}\right)\right\|}\right\}
$$

$$
+\rho\left\{\left\|(f, \varphi)(h, \varphi)(f, \varphi)\left(\tilde{x}_{j}^{0}\right)-(\underline{Q}, \varphi)(f, \varphi)\left(\tilde{x}_{h}^{o}\right)\right\|+\right.
$$

$$
\left.\left.\|(f, \varphi)(h, \varphi)(f, \varphi)\left(\tilde{x}_{h}^{\rho}\right)-b, \varphi\right)(f, \varphi)\left(\tilde{x}_{h}^{\rho}\right) \|\right\}
$$

$$
+\omega\left\|(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|
$$

$$
\leq \mu \max \frac{\left\|(n, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(h, \varphi)\left(\hat{x}_{\lambda}^{0}\right)\right\|\left\|\left(\hat{x}_{\lambda}^{0}\right)-\left(\hat{x}_{\lambda}^{0}\right)\right\|+\left\|(h, \varphi)\left(\hat{x}_{\lambda}^{0}\right)-\left(\hat{x}_{\lambda}^{0}\right)\right\|\left\|\left(\tilde{x}_{\lambda}^{0}\right)-(h, \varphi)\left(\hat{x}_{\lambda}^{0}\right)\right\|}{\left\|\left(h, \varphi_{0}^{0}\right)\right\|},
$$

$$
+\rho\left\{\left\|(h, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(h, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|+\left\|\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{\circ}\right)\right\|\right\}+\omega\left\|(h, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right\|
$$

$\leq \mu \max \left\{\left\|\left(\tilde{x}_{\lambda}^{o}\right)-(h, \varphi)\left(\tilde{x}_{\lambda}^{\circ}\right)\right\|, 0\right\}+\rho(0)+\omega\left\|(h, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right\|$
$\leq(\mu+\omega)\left\|(h, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right\|$
Since $\mu+\omega+\rho<1$.it follows that

$$
(h, \varphi)\left(\tilde{x}_{\lambda}^{\circ}\right)=\left(\tilde{x}_{\lambda}^{0}\right)
$$

i.e. \tilde{x}_{h}° is the soft point of (h, φ). Thus we have from (3.3.5)

$$
(f, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)=(g, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)
$$

Again
$\left\|(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{\circ}\right)-\left(\tilde{x}_{\lambda}^{\circ}\right)\right\|=\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{\circ}\right)-(g, \varphi)^{2}\left(\tilde{x}_{\lambda}^{\circ}\right)\right\|$

$$
=\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{\circ}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|
$$

$\leq \mu \max \left(\left\|(f, \varphi)(h, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{\circ}\right)\right\|\left\|(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|+\right.$
$\frac{\left\|(f, \phi)(h, \phi)\left(\tilde{x}_{\lambda}^{o}\right)-(g, \varphi)(g, \phi)\left(\tilde{x}_{\lambda}^{o}\right)\right\|\left\|(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)\right\|}{\left\|(f, \varphi)(h, \phi)\left(\tilde{x}_{\lambda}^{o}\right)-(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)\right\|}$,

$$
\begin{gathered}
\left\|(f, \varphi)(h, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|\left\|(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|_{+} \\
\left.\frac{\left.\left\|(f, \varphi(h, \varphi)(g, \varphi))\left(\tilde{x_{\lambda}^{0}}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\| \|(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)-(g, \varphi)\right)\left(\tilde{x}_{\lambda}^{0}\right) \|}{\|(f, \varphi)(h, \varphi)\left(\tilde{\left.x_{\lambda}^{0}\right)}\right)-(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{\left.x_{\lambda}^{0}\right)} \|\right.}\right\}
\end{gathered}
$$

$+\rho\left\{\left\|(f, \varphi)(h, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|+\left\|(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|\right\}$ $+\omega\left\|(f, \varphi)(h, \varphi)\left(\tilde{x}_{\lambda}^{\circ}\right)-(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{\circ}\right)\right\|$
 $\left.\frac{\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-\left(\hat{x}_{\lambda}^{0}\right)\right\|+\left\|\left(\tilde{x}_{\lambda}^{0}\right)-\left(\hat{x}_{\lambda}^{0}\right)\right\|\left\|\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|}{\left\|(g, \varphi)\left(\hat{x}_{\lambda}^{0}\right)-\left(\hat{x}_{R}^{0}\right)\right\|}\right\}$

$$
+\rho\left\{\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)\right\|+\left\|\left(\tilde{x}_{\lambda}^{o}\right)-\left(\tilde{x}_{\lambda}^{o}\right)\right\|\right\}+\omega\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)-\left(\tilde{x}_{\lambda}^{o}\right)\right\|
$$

$\leq \mu \max \left\{\left\|\left(\tilde{x}_{\lambda}^{\circ}\right)-(g, \varphi)\left(\tilde{x}_{\lambda}^{\circ}\right)\right\|, 0\right\}+\rho(0)+\omega\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{\circ}\right)-\left(\tilde{x}_{\lambda}^{o}\right)\right\|$
$\leq(\mu+\omega)\left\|(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{x}_{\lambda}^{0}\right)\right\|$
Which is contradiction.
Since $\mu+\omega+\rho<1$. Hence it follows that

$$
\begin{gathered}
(g, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)=\left(\tilde{x}_{\lambda}^{o}\right) \\
(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)=(f, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)
\end{gathered}
$$

There for $(g, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)=(f, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)=(h, \varphi)\left(\tilde{x}_{\lambda}^{o}\right)=\left(\tilde{x}_{\lambda}^{\circ}\right)$
i.e. \tilde{x}_{λ}^{o} is the common soft point of $(g, \varphi)(f, \varphi)$ and (h, φ).

Now to confirm the uniqueness of $\tilde{x}_{\lambda}^{\circ}$. Let $\tilde{y}_{\lambda}^{\circ}$ be another common soft point of $(g, \varphi)(f, \varphi)$ and (h, φ).
By (3.3.1),(3.3.2),(3.3.3) and (3.3.4),(3.3.5),(3.3.6)

$$
\begin{aligned}
&\left\|\left(\tilde{x}_{\lambda}^{0}\right)-\left(\tilde{y}_{\lambda}^{0}\right)\right\|=\left\|(g, \varphi)^{2}\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)^{2}\left(\tilde{x}_{\lambda}^{0}\right)\right\|= \\
&\left\|(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|
\end{aligned}
$$

$\leq \mu \max$

$\left\|(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|\left\|(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{y}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{y}_{\lambda}^{0}\right)\right\|+$
$\left\|(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{v}_{\lambda}^{0}\right)\right\|\left\|(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{\hat{x}}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|$
$\left\|(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(f, \varphi)(h, \varphi)(f g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|$,
$\|(f, \varphi)(h, \varphi)(g, \varphi))\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\| \|(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{v}_{\lambda}^{0}\right) \|_{+}$ $\left.\frac{\left\|(f, \varphi)(h, \varphi)(g, \varphi)\left(\hat{y}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{\varphi}_{\lambda}^{a}\right)\right\|\left\|(f, \varphi)(f, \varphi)(g, \varphi)\left(\hat{y}_{\lambda}^{0}\right)-(g, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)\right\|}{\left\|(f, \varphi)(h, \varphi)(g, \varphi)\left(\tilde{x}_{\lambda}^{0}\right)-(f, \varphi)(h, \varphi)(f g, \varphi)\left(\tilde{y}_{\lambda}^{0}\right)\right\|}\right\}$

```
+}\rho
|(f,\varphi)(h,\varphi)(g,\varphi)(\tilde{x}
\| \| ( f , \varphi ) ( h , \varphi ) ( g , \varphi ) ( \tilde { y } _ { \lambda } ^ { 0 } ) - \quad ( g , \varphi ) ( g , \varphi ) ( \tilde { y } _ { \lambda } ^ { O } ) \|
}
    +\omega|(f,\varphi)(h,\varphi)(g,\varphi)(\mp@subsup{\tilde{x}}{\lambda}{0})-(f,\varphi)(h,\varphi)}(g,\varphi)(\mp@subsup{\tilde{y}}{\lambda}{0})
```



```
    +\rho{|(\mp@subsup{\tilde{x}}{\lambda}{0})-(\mp@subsup{\tilde{x}}{\lambda}{0})|+|(\mp@subsup{\tilde{y}}{\lambda}{0})-(\mp@subsup{\tilde{y}}{\lambda}{0})|}+\omega|(\mp@subsup{\tilde{x}}{\lambda}{0})-(\mp@subsup{\tilde{y}}{\lambda}{0})|
    \| ( \tilde { x } _ { \lambda } ^ { 0 } ) - ( \tilde { y } _ { \lambda } ^ { 0 } ) \| \leq ( \mu + \omega ) \| ( \tilde { x } _ { \lambda } ^ { 0 } ) - ( \tilde { y } _ { \lambda } ^ { 0 } ) \|
```

Which is contradiction.
Since $\mu+\omega+\rho<1$. Hence it follows that

$$
\left(\tilde{x}_{\lambda}^{0}\right)=\left(\tilde{y}_{\lambda}^{0}\right)
$$

Proving the uniqueness of \tilde{x}_{λ}^{o}.
This complete of the proof of the theorem.

References

[1] Aktas H. Cogman N :- "Soft set and soft groups." Inf. sci. 177 (13) 2726-2735
[2] Chen. D. the "the parameterization reduction of soft sets and its applications" Comput. Math. Appl. 49, 757 - 763 (2010)
[3] Das. S. Samanta, S.K. "on soft metric space," J. Fuzzy Math. 21(2013) 707-734
[4] Das. S. Samanta, S.K. Soft metric, Ann. Fuzzy Math. In form 6 (2013) 77 - 94
[5] Das. S. Samanta, S.K. Soft real set, soft real Number and there properties. J. Fuzzy Math. 20 (2012) 551-576.
[6] Gunduz, C. (Aras), Sonmez, A. Cakalli, H. On soft mapping, arxiv : 1305. 4545 V1 (Math, GM) 16 may 2013.
[7] Hussain, S. Ahmad, B. Some Properties of soft topological space, Comput. Math. Apple. 62 (2016) 4058- 4067.
[8] Moji, P.K. Roy, A.R., Bisbas, R. An application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002) 1077-1083.
[9] Moji, P.K. Roy, A.R., Bisbas, R. Soft set theory, Comput. Math. Appl. 45 (2003) 555 - 562 .
[10] Majumdar, P. and Samanta, S.K. On soft mapping Comput. Math. Appl. 60 (2010) 2666-2672.
[11] Molodtsov, D. Soft -theory-first result, Comput. Math. Appl. 37 (1999) 19-31.
[12] Rhoades, B.E. A comparison of various definition of contractive mappings, Trans. Amer. Math. Soc. 266 (1977) $257-290$.
[13] Rhoades, B.E. Some theorems on weakly contractive maps. Nonlinear Analysis, 47. (2001), 2683-2693.
[14] Shabir, M. and Naz, M. On soft topological space, Comput. Math. Appl. 61 (2011) 1786-1799.
[15] Balaji R. Wadkar, Ramakant Bhardwaj, Basant Singh, "Coupled fixed point theorems with monotone property in soft metric and soft b-metric space" International journal of Mathematical Analysis, Vol. 11, No. 1, pp 363-375, 2017.
[16] B. R. Wadkar, R. Bhardwaj, V. N. Mishra, B. Singh, "Coupled fixed point theorems in soft metric and b- soft metric space" Scientific publication of the state university of Novi Pozar, Ser. A: Appl. Math. Inform. And Mech. Vol. 9, No. 1, pp 59-73, 2017.
[17] Balaji Raghunath Wadkar, Ramakant Bhardwaj, Vishnu Narayan Mishra, Basant Singh, "Fixed point results related to soft sets" Australian Journal of Basic and Applied Sciences, Vol. 10, No. 16, Pages: 128-137, 2016.
[18] Balaji R. Wadkar, Ramakant Bhardwaj, Vishnu Narayan Mishra, Basant Singh, "Fixed point theorems in dislocated Soft metric space" Open Journal of Discrete Mathematics, Vol. 7, No. 3, pp108-133, 2017.
[19] Yazar M, Bayramol, Gunduz Cigdem :- "Fixed Point theorem of soft Contractive mapping," Filomat 30:2 (2016), 269 - 279.

