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2. Introduction and Preliminaries:- In 1999, Molodtsov [10]proposed a completely new 

approach,which is called soft set theory for modeling uncertainly. Then Maji et al.(2003)[8] 

introduced several operations on soft sets .Aktas and Cagman (2007) [1] compared soft set 

with fuzzy sets and rough sets. Resently studies on soft vector spaces and soft normed linear 

space have been intiated by Das and Samanta [ 3, 4,  5 ] and later on studied by Yazar et 

al[19]. Maji  et al[9 ],Chen [2] introduced a new definition of soft set theory.           

we introduced soft contractive mapping on soft Banach space and section 1 study some of its 

properties.In section 2 preliminary results are given.In section 3 show that concept of soft 

Banach space and Related theorem proved. 

Definition 2.1:- Let X be an initial universe set and E be a set of parameters. A pair (F,E) is 

called a soft set over X if and only if X is a  mapping  from E into the set of all subsets of the 

set X i.e. F:E P(X) is the power set of X. 

Definition 2.2:-  The intersection of two sets (A,D) and (B,C) over X is the soft set 

(F,G),where  

C= D C and C, H( )= A( )  B( ).This is denoted by (A,D) (B,C)= (F,G). 

Definition 2.3:-   The union of two sets (A,D) and (B,C) over X is the soft set,where C= A  

B and C, 

 H( )=  

This relationship is denoted by (A,D) (B,C)= (F,G). 

Definition 2.4:-  The soft set  (A,D) over X is said to be a null soft set denoted by  if for all 

D, A = ( null set). 

Definition 2.5:-  A soft set  (A,D) over X is said to be an absolute soft set, if for all D, 

A = . 

Definition 2.6:-  The difference (F,E)  of two soft sets (F,E) and (F,E) over X denoted by 

(F,E)/(F,E),is defined as F(e)= A(e)/B(e)for all e  E 

Definition 2.7:-   The complement of a soft set (A,D) is  denoted by  and is defined by 

 =(  where  mapping given by , D. 

Definition 2.8:-   Let  be the set of real number and B ) be the collection of all nonempty 

bounded subsets  of  and E taken set of parameters. Then a mapping A:E  B ) is called a 

soft real set. It is denoted by (A,E). If specifically (A,E) is a singleton  soft set , then 

identififying (A,E) with the corresponding soft element , it will be called a soft  real number 

and denoted  etc.  are the soft real number where  (e)=0, (e)=1 for all e  
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E,respectively. 

Definition 2.9:-    for two soft real numbers 

I.   if  (e)  (e) ,  for all e  E. 

 

II.   if  (e)  (e) ,  for all e  E. 

 

III.   if  (e)  (e) ,  for all e  E. 

 

IV.   if  (e)  (e) ,  for all e  E. 

 

Definition 2.10:-   A soft set over X is said to be a soft point if there is exactly one e  E, such 

that P(e)= {x} for some x  X and P(e) =  ,  E\{e}. It will be denoted by . 

Definition 2.11:-    Two soft point  are said to be equal if e=e
’ 
and P(e)=P(e

’
) i.e. x=y.  

Thus     x  or e  e
’
. 

Definition 2.12:-    A mapping   : SP( ) * SP( ) Ř(E)*
,is said to be a soft metric on the 

soft set  if d satisfies the following condition: 

(M1)       )   for all  , 

(M2)       )=    if and only if , 

(M3)       )    ) for  all  , 

(M4)   )    )+  ) for all  . 

The soft set  with a soft metric  on  is called a soft metric space  and denoted by 

( ). 

 Definition 2.13:- (Cauchy Sequence): A  sequence{ }n  of soft point in( ) is 

considered as a Cauchy Sequence  in   if  corresponding to every    ,  mm N such that 

d(  )   , m,i.e. d(  ) as i,j . 

Definition 2.14:- (Complete Metric Space): A soft metric space  ( ) is called complete, 

if every Cauchy Sequence in  converges to some point  of . 

Definition 2.15:- Let  be the absolute soft vecter space i.e =x, .Then a mapping 

:SE Ȓ(A)* 
is said to be soft norm on the soft vector space  if  satisfies the following 

condition. 

1.  , for all  . 

2.  , if and only if  

3.  ,for all   and for every soft scalar . 

 

Definition 2.16:- A sequence of soft element in a normed linear space ( ,A) is said 

to be convergent and converges to a soft element    as n n .This means 

for every , choose arbitrary,there exists a natural number =N( ),such that 

,whenever n .we denoted this by  as n  or by 

 is said to be the limit of the sequence  

Definition 2.17:- Let ( ,A) be a soft normed linear space.Then  is said to be complete if 

every of Cauchy sequence in  convergents to a soft element of .Every complete soft 

normed linear space is called a soft Banach space. 
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Definition 2.18:- A sequence of soft real number  is said to be convergent if for arbitrary 

,  there exists a natural number N such that for all 

 n N , .we denoted it by  

3. MAIN RESULT   

THEORAM 3.1: Let (  be a soft mapping of Banach  space  in to itself. If F satisfies 

the following contractive conditions. 

 

( 2
 = I, Where I is the identity mapping ( 3.1.1) 

 

     

 

 

 }+ 
                                     

{  

 

For Every   SP ( ). Where  +  < 1. Then  has a soft point, if     

 4  +  +  < 2. then  has a unique soft point. 

 

PROOF:  Suppose  in a point in the Banach sapace. 

  

                                      =  [  + I]  

                                       =   ) and 

              =  2 -  

We have  

   

    =   =   

 
                        

  

                                                             

                                

 }+ 
 
                                { } 

+  
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                                 }+ 

 

                                           { }

                                          

                         , 

                          

                                           }+                                    

                   

                                          {  +  } 

                                          

     { 2  + ,  + 

2 } 

 

                          {  +  }              

                                                                                                                                      …………………………
 (A) 

  

CASE I:  When  

     

 { 2  + ,  + 2 -  

 

 =   2  +  

  Then 

                    { 2  + } 

+P +  } +    

                            { 2  +  +  } 

 

                                             +  {  +  }+   

 

                            { 3  + } +  {  + 

 }+   

                                   

                         )  +   + P { + 

 }+   

                         )  +   + P  

                            +  }+   

                         )   + (  + P+  )  

 

          ………………… (B) 
Also, 

     =  

    =   
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                        }+                                    

                   

                        {  +   
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, 

                          

                        }+                                   

                   

                        {  +   

 

, 
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  {   } 
  

+  {  +   +  }            …………… (C) 

CASE  I  When 

 max { }  

 

   =  +  

 

Then 

    { } +  { 

+  }+  

                    {  +  } +  {  +   } 

 
                         +  

                     {  +  +  } +  {  
                         +   +  

                    {  +   } +  {  

                         +   +  

                  )   + (  +   )  

 

          ………………… (D) 
Now by equations (B) and (D) 
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Also 

 

      =     

       

                                                                              =      

So 

  

   )   +  (  +2   )  

 

 

   )   +  )   

 

)     

 

                              

 

Since 

        +  +  <2 

 

 
CASE II :- When   

 

 { 2  + ,  + 2  

 

                   =     +2 , 

  Then 

   

  { 2  + +  } 

 

                                              + +   
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                                             +  }+   
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          ………………… (E) 
 

 
CASE II  :- By equation (C)  When 

 

 max { }  

 

   =  +   
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Then 

 

    { } P { 

 } +   

                           

  {  +  +  } + P {  +  

 }+  

 

  {  +3  } + P {  +   } 

 
                          +  

 

)   + ( + P+  )  

 

          ………………… (F) 
 

Now by equations (E) and (F) 

 

    +    

 
)   + ( + P+  )  

 
+ )   + ( + P  )  

 

)   + 2 ( + P+  )  

 

Also 

 

      =    =      

So 

  

   )   + 2 (  +2P+   )  

 

                                          )   + (  +2P+   )  

 
)   ( + P+  )  

 

                              

 

Since 

       < 1  

 

     < 2 

 

On taking  

 

 F =  (  ) then for every         

 

  

By  definition of q. we claim that {  }  is a Cauchy  sequence  in  There fore by the property of completeness   
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{ (  ) } converge to same element    in  . 

 

     i.e. (  ) =   

 

which implice   (  ) =  hence  ( ) =  

 

i.e.  is a  soft point of    

 

Uniqueness :- If possible let   (   ) be another soft point of    

 

Then  

 

  =  

 

 

    , 

                          

                                              }                                    

                   

                                                  + {  +   

 

 

                                

 

                                   } 

  

                                     + {  +   

 

 
                      {   } + p (o) +    

  

  <  (  +    

   

Since   +  ,   there for  = 0  

 

                                                       Hence       

This complete the proof.                

 

THEOREM 3.2:- let K closed and convex subset of a soft Banach space .Let ( ):KK K, 

( ):KK K, satisfy the following condition, 

(3.2.1)     ( ) and ( ) commute. 

(3.2.2)    ( )
2 

=I and ( )
2  

= I ,where I denotes identity mappings. 

(3.2.3) 

 max 

        {  

         } 

      

   + { } 
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+  

For every  .  and there exist at leaJst one soft pointnt =  such that  

)= )=   

futher if  1. 

Then  is the unique soft point of ( ) and( ). 

PROOF:-  

 From (3.2.1) and (3.2.2) if follows that [
2 

=I and (3.2.2) and (3.2.3) imply                                                                                             

   

                  

                         } 

                      

+ { }     

+  

Now we put   and  , then we get  

      

 { , 

                    } 

                  + { }     

                  +   

We have  
  
= I

 ,      
   has at least one fixed point,say  in K,i.e 

(3.2.4)       

                      =  

and    = ) 

(3.2.5) = ) 

 

 

NOW 

 =     

                  

     , 

                  } 

                + { }     

                +     

     

           , 
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+ { } +  

 

     { +  

      

There for  

    

Since ,it follow 

     i.e  

      is the soft point of  therefor,we have 

                                                     

i.e.      is the common soft point of  and 
 

Uniqueness:-Now we shall prove that  is the uniqness common soft point of and 

If possible let   be another soft point of and   

Now by using (3.2.1),(3.2.2)(3.2.3) and (3.2.4) ,(3.2.5) 

We have                                                                                                                                

 = =  

                      

                             } 

                      + { }     

                      +  

 

   

              + { }   +      

 {   ,0}+      

       

Since ,it follow that 
                                  

 

Proving the uniqueness of , the proof of the theorem 2 is complete. 

 THEOREM 3.3:-  Let k be closed and convert subset of a soft Banach space Let  

and   be three mapping of  in to it self such that 

(3.3.1)                    

                       =  ,       =  , and  

                       =   

(3.3.2)    = I,  = I = I, where I denotes the identity mapping. 

(3.3.3)   

    max {   
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} 

                                                       

+ { }  

                                                       +  

For every   and    such thatt  2.  Then there exist at least one soft 

point =  such that  )= )  and )= )    

futher if  1.  Then  is the common soft point of( ) ( ) and( ). 

Proof:-  From (3.3.1) and (3.3.2) if follows that [
2 

=I ,where I is the 

identity mapping, from (3.3.2) and (3.3.3)  

We have  

                                                                                              

   

             

 

            

} 

             

+ {

}     

             +  

 

    

          } 

         + {     

         +  

Now if we put   , 

      

  

+ 

                 

             } 

              + { }     
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               +  

We have [
2 

=I and  2.  We infer that 

 in here exist at least one soft 

point   

such that 

(3.3.4)  

                         )= )     and  

      

(3.3.5) 
                                                 

 also 

         and there for 

(3.3.6) 
                                        

Now by using (3.3.1),(3.3.2),(3.3.3) and (3.3.4),(3.3.5),(3.3.6) we have 

  = = 

                                 

  

        } 

               + {  

                  }     

                +  

          

                  } 

                 + { } +  

 

 { ,0}+  +  

  

Since  .it follows that  
                     

i.e.  is the soft point of . Thus we have from (3.3.5) 

                     

Again 

 =  

                                                      =                 
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           } 

                

+ { }     

                +  

 

    

                   } 

             + { } +  

 

 { ,0}+  +  

  

Which is contradiction. 

 Since  . Hence it follows that  
                     

                  

There for  

 i.e.  is the common soft point of   and .  

Now to confirm the uniqueness of  .Let  be another common soft point of  

  and . 

By (3.3.1),(3.3.2),(3.3.3) and (3.3.4),(3.3.5),(3.3.6) 

   = 

                                

 

   

 

                     

} 

             

+ {

}   

             +  

    

                    } 

                   + { } +  
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 Which is contradiction. 

Since  . Hence it follows that  
                     

Proving the uniqueness of  

This complete of the proof of the theorem.  
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