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Abstract  

Real world data is high-dimensional like images, speech signals containing multiple dimensions to represent data. 

Higher dimensional data are more complex for detecting and exploiting the relationships among terms. 

Dimensionality reduction is a technique used for reducing complexity for analyzing high dimensional data. 

There are many methodologies that are being used to find the Critical Dimensions for a dataset that significantly 

reduces the number of dimensions. They reduce the dimensions from the original input data. Dimensionality 

reduction methods can be of two types as feature extractions and feature selection techniques. Feature Extraction 

is a distinct form of Dimensionality Reduction to extract some important feature from input dataset. Two 

different approaches available for dimensionality reduction are supervised approach and unsupervised approach. 

One exclusive purpose of this survey is to provide an adequate comprehension of the different dimensionality 

reduction techniques that exist currently and also to introduce the applicability of any one of the prescribed 

methods that depends upon the given set of parameters and varying conditions. This paper surveys the schemes 

that are majorly used for Dimensionality Reduction mainly high dimension datasets. A comparative analysis of 

surveyed methodologies is also done, based on which, best methodology for a certain type of dataset can be 

chosen. 

Keywords: Data Mining, Dimensionality Reduction, Clustering, feature selection; curse of dimensionality; 

critical dimension 

 

I. INTRODUCTION 

Data mining is task of extracting data from larger dataset. Main objective of data mining is to collect, process, 

classified and grab (select) useful data from available dataset. Real world data like speech signals, images are 

high dimensional that is hard to analyze. Various techniques of high dimensional data clustering find many 

applications in real time applications. Former clustering algorithms are biased while it is applied with high-

dimensional datasets. Main objective of dimensionality reduction is to search for small set of important feature 

that describes larger dataset. Many methods use global dimensionality reduction techniques that over fits the 

problems of higher dimensions. The solution for higher dimensional data is to reduce dimensions of data before 

applying clustering techniques. Dimensionality reduction is to solve two different kinds of problems. The one is 

used in extracting a feature vector from an original object, and the other is to reduce the dimensionality of a 

high-dimensional feature vector already extracted [1]. It will reduce input dimensions as well as data from 

dataset. Feature extraction is one the special form of dimensionality reduction, used for extracting important 

features subset from available dataset. When analyzing larger dataset with higher dimensions, it is necessary to 

transform into smaller and more manageable dataset [2]. 

Different approaches have been used for dimensionality reduction. They are supervised approaches and 

unsupervised approaches [3]. When some discriminate analysis uses class information called as supervised 

approach while some analysis do not use class information referred to as unsupervised approaches. Some 

supervised approach methods are like LDA (Linear Discriminate Analysis), NN (Neural Network) used for 

dimensionality reduction. Clustering is an unsupervised approach that do not use label information. 

Unsupervised methods like PCA (Principal Component Analysis), ICA (Independent Component Analysis), 

SVD (Single Value Decomposition), KPCA (Kernel Principal Component Analysis), Fourier analysis (FA) etc. 

are used for reducing dimensions of data set. In this review paper, all these techniques for dimensionality 

reduction of data set has been discussed and compared. This study will be useful to select method for particular 

application. 
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Fig. 1 Process of Dimensionality Reduction 

In order to achieve accuracy in classification of such data, we require identifying and removing irrelevant 

and insignificant dimensions. The process of reducing dimensions is referred as Dimensionality Reduction. It is a 

crucial pre-processing step in Data Mining to improve computational efficiency and accuracy. Dimensionality 

reduction provides benefits such as improved dataset classification accuracy, increased computational efficiency 

and better visualization of dimensions. 

The survey is focused on studying the methodologies that are used to reduce dimensions in a dataset 

without compromising on classification accuracy. It has been observed that the methodologies that have been 

adopted for reducing features are dataset specific, i.e., in each surveyed paper, the reduction scheme is applied to 

a specific set of datasets but not generalized. 

 
Fig.2. Categorization of dimensionality reduction techniques 

The algorithms that are used for feature reduction are categorized as Feature Ranker, Feature Evaluator, 

Dimensionality Reduction and Clustering Algorithms. Each of these types of algorithms has their own 

advantages and disadvantages. Depending upon the combinations of algorithms used, mainly 4 types of 

methodologies has been identified. Fig. 2 shows the broad categorization of various types of methodologies that 

are used for dimensionality reduction. 

 

II. LITERATURE SURVEY  

The field of Data Mining has a different behavior towards Big Data. It can deal with data-sets having size 

gigabytes or even TBs. The main concern over here is that the algorithms which are used in data mining 

operations work on small data sets and do not give better results on large data sets. To work efficiently with large 
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data sets, the algorithms must have high scalability. Clustering high dimensional data has always been a 

challenge for clustering techniques. Clustering is unsupervised classification of patterns (observations, data items, 

or feature vectors) into teams (clusters). The drawbacks of clustering have been addressed in several contexts by 

researchers in several disciplines and so reflect its broad charm and quality in concert of the steps in exploratory 

data analysis. Clustering is useful in several exploratory pattern analysis, grouping, decision making and 

machine learning situations including data mining, document retrieval, image segmentation and pattern 

classification. Adil Fahad, et al [18] performed a survey on clustering algorithms for Big Data. They have 

categorized 24 Clustering Algorithms as Partition-based, Hierarchical-based, Density based, Grid-based and 

Model-based. Depending on the size of datasets, handling capacity of noisy data and types of datasets, Clusters 

are formed and the complexities of algorithms are calculated. They concluded that no clustering algorithm 

performs well for all the evaluation criteria. The entire clustering algorithm suffers from Stability problem. 

MacQueen [19] defined a technique for partitioning N-dimensional population into k-sets, which they named as 

K-means. They successfully concluded that k-means is computationally feasible and economical and has been a 

successful implementation for differentiating the data within a class. S. Nazim presented a comparative review of 

dimensionality reduction techniques in regard with information visualization. The survey analyzed some DR 

methods supporting the concept of dimensionality reduction for getting the visualization of information with 

minimum loss of original information. As we deal with Big Data. The issue of stability of clusters comes into 

picture. The theories [20] state that k-means does not break down even for arbitrarily large samples of data. The 

focus is on the behavior of stability of clusters formed by k-means algorithm-Means is closely related to 

principal component analysis [21]. The outcomes subject with regard to effectiveness of the solution obtained 

from k-means. Unsupervised dimensionality reduction and unsupervised learning are associated closely [22]. 

The result provides new perception towards the observed quality of output obtained by PCA-based data 

reduction.  

Bara’a Ali Attea et al. [23] discovered that performance of clustering algorithms degrades with more and 

more overlaps among clusters in a data set. These facts have motivated to develop a fuzzy multi-objective 

particle swarm optimization framework (FMOPSO) in an innovative fashion for data clustering, which is able to 

deliver more effective results than state-of-the-art clustering algorithms. To ascertain the superiority of the 

proposed algorithm, number of statistical tests has been carried out on a variety of numerical and categorical real 

life data sets.  

Suresh Chandra Satapathy et al. [24] introduced an idea of an algorithm that can combine dimensionality 

reduction techniques of weighted PCs with AUTO-PSO for clustering. The intention behind it was to reduce 

complexity of data sets and speed up the Auto PSO clustering process. A significant improvement in total 

runtime has been achieved. Moreover, the clustering accuracy of the dimensionality reduction technique i.e. 

AUTO-PSO clustering algorithm is comparable to the one that uses full dimension space.  

Li-Yeh Chuang et al. [25] invented an improved particle swarm optimization based on Gauss chaotic map 

for clustering. Gauss chaotic map provides the significant chaos distribution to balance the exploration and 

exploitation capability for search process. This easy and fast function generates a random seed processes, and 

further improve the performance of PSO due to their unpredictability. In the experimental analysis, the eight 

different clustering algorithms were compared on six test data sets. The results indicated that the performance of 

the proposed one is appreciably better than the performance of other existing algorithms.  

Xiaohui Cui et al. [26] presented a Particle Swarm Optimization (PSO) document clustering algorithm. 

Unlike, localized searching of the K-Means algorithm, PSO clustering algorithm used to perform a globalized 

search in the entire solution space. In the experiments conducted, they have applied the K-Means PSO, and 

hybrid PSO clustering algorithm on four different text document data sets. From the comparative results, the 

hybrid PSO algorithm can generate more compact clustering results than the K-Means algorithm 

 

II. MAJOR CHALLENGES AND ISSUES IN DIMENSIONALITY REDUCTION 

As the dimensionality of dataset increases, the volume of the space increases so fast that the available data 

become sparse. Generally, this data is not distributed uniformly over the search space i.e., usually a larger 

percentage of the training data resides in the corners of the feature space which is more difficult to classify than 

that near the centre. In order to obtain a statistically sound and reliable result, the amount of training data needed 

to support the result often grows exponentially with the dimensionality. Hence, high dimensionality leads to a 

problem known as “Curse of Dimensionality” that specifically makes it difficult to perform classification on a 

dataset having a large number of dimensions [4]. 

Dimensionality reduction is used for downsizing input data that is more relevant for further analysis. 

Reduced dataset preserves much of variance from larger dataset and without any loss of important features. It 

will also become easy to detect and use from real world data. Comparison of FA, PCA and wavelet analysis are 

applied to stable combustion and It was found that frequent characteristic were of similar qualitatively and 

quantitatively [5]. But when unstable and transient combustion is applied, FA and PCA are not feasible, only 



Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.9, No.1, 2018 

 

10 
 

Wavelet analysis is capable of revealing dynamic frequency component. FA and PCA are having limitation as 

they are linear methods and work efficiently with steady and structured phenomena. PCA and 2DPCA requires 

more computational time and memory usage because it requires whole training data to extract vectors. Also it is 

linear method, so it is not able to represent the non-linear data effectively and efficiently [6]. So in this paper a 

new online non-linear method is adopted that can easily handle non-linear data by applying kernel method to 

PCA. Kernel method is having disadvantages that it takes entire data set with heavy computational load and it 

needs to refer to previously acquired data to update Eigen vectors. So, I2DKPCA is adopted to solve the problem. 

PCA is used for dimensionality reduction, based on synchronized covariance which is not always effective for 

some cases [7][8]. This paper proposes asynchronous methods for dimensionality reduction. A new semi-

supervised approach is developed that combines supervised (LDA) and unsupervised learning (K-means) 

approach with dimensionality reduction to improve K-means clustering performance so it can perform well in 

new space. Some of issues available are [9]: 

• PCA is a most widely used linear dimensionality reduction technique. As it is a linear method it can 

work with linear data only and not work with real data efficiently because of complexity and high-

dimensionality. PCA works with structured and steady dataset [5]. 

• ICA is an unsupervised dimensionality reduction technique. ICA has high computational complexity 

that relates to data independence measure [9]. 

• LDA is having issue that lack of the sample data per class does degrade the classification performance 

as significantly due to the generalization of decision for arbitrary data with noise regularization. 

Robustness improvement is pursued as the other critical issue in LDA for better classification 

performance in noisy environment [10]. 

 

III. EXISTING APPROACHES 

Many research areas like science, engineering, astronomy, biology, economics, sensing networks etc. are having 

greater amount of information available from various observation and experiments. Mining of data means 

extracting data from this information. This real world data is with larger dimensions and complex to analyze. So, 

for better analyzing dimensions need to be reduce. Various available methods for dimensionality reduction are 

described here: 

A. Linear Discriminant Analysis 

LDA is a widely used technique for dimensionality reduction. During some medical dataset experiments, growth 

of amount in existing cases is more where dimensions are greater or less features and occurrence of features are 

significantly larger than the size of sample [10]. Number of independent features, relative to which the data is 

described, LDA creates linear combination of these which yields the larger mean differences between described 

classes. Mathematically two measures have been defined for all class samples [10]: 

• Within-class scatter matrix 

• Between-class scatter matrix 

Main goal of LDA is to maximize the between-class measure while minimize within-class measure [11]. To 

do this is to maximize the ratio det |sb| / det |sw|. Advantage of this is that it has been proven that if Sw is a non-

singular matrix then this ratio is maximized when the column vector of projection matrix w, are the Eigen vector 

of Sw-1Sb 

B. Neural Network 

Neural Network is a method that uses supervised approach for analysis. NN is a supervised dimensionality 

reduction method used for study of human brain neurons. A neuron in the brain receives input from other 

neurons through its dendrites [12]. 

• The perceptron receives several input values (x0 – xn). 

• Each input connection has weight (w0 – wn) in the range of 0 – 1. 

• The threshold unit then sums the input, and if the sum exceeds that threshold value, a signal is send to 

output, otherwise no signal is sent. 

Neural network learning is also referred to as connectionist learning because of input/output connection 

between them. The simplest neuron network contains three layers: the input layer, one hidden layer and one 

output layer. 

For each net input unit computation, each input connected to the unit is multiplied by its corresponding 

weight w, and this is summed. 

Given a unit j in a hidden or output layer, the net input, Ij, to unit j is 

Ij = ∑I wij Oj +Ɵ j (3) 

Where wij = weight of connection from unit I in the previous layer to unit j, 

Oj = ith output from previous layer 

Ɵj = bias of unit Training time require for Neural network 
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Ɵj is larger so, it only useful for some application where it is feasible [13]. They have been condemned for their 

poor interpretability. Advantages of neuron network include higher tolerance of noisy data as well as their ability 

to classify some patterns on which they have not been trained. Neuron network adopts parallelization technique 

for speeding up the computational process. 

C. Principal Component Analysis 

PCA is most widely used linear method for dimensionality reduction. The PCA is a statistical data analysis 

method that transforms the initial set of input variables into various set of linear combinations, referred as the 

principal components (PC). This PC contains specific properties with respect to variances. This reduces the 

dimensionality of the system while retaining information on the variable connections [15]. Steps that PCA 

performs are [14][15]: 

• The given high-dimensional input data are normalized as each attribute falls within same range. This is 

to ensure that all attributes with larger domains will not dominate attributes with smaller domain. 

• PCA calculate k orthogonal vector which provides a basis for normalized input. The input data are 

linear combination of PC. 

• This principal component is sorted in decreasing order of their strength or significance. 

• Because of this sorting of principal component, the size of data can be reduced by excluding weaker 

component meaning that PCs with lower variance. It should be possible to reconstruct a better 

approximation of original input data by using these strongest principal components. PCA is used in 

various domains like face recognition, Image Compression, Microarray Gene Expression, coin 

classification, seismic series analysis. Main problem with PCA is that it is not efficiently represent 

larger and nonlinear distribution of input data. 

D. Kernel Principal Component Analysis 

In order to solve the problem of non-linearity, various different approaches along with kernel functions have also 

been studied as extensions to the PCA. To convert the nonlinear distribution of input data to linear distribution, 

kernel PCA maps the samples into high-dimensional kernel space before conducting PCA [6]. Basic principle of 

KPCA is to transform original input vectors to a high dimensional feature space F with a nonlinear function � 

and then to calculate the linear PCA in feature space [13]. Given a set of input vectors x1, x2…..,xm ϵ Rn and 

then the covariance matrix in F is given by, 

CF = 1/m ∑i=1m ɸ(xi)ɸ(xi)T                                  (4) 

Some important drawbacks of Kernel PCA are that the kernel matrix size is proportional to the square of the 

number of instances in the input dataset. Also, Kernel PCA mainly focuses on retaining large pair wise distances. 

Kernel PCA computes principal eigen vector for kernel matrix rather than covariance matrix. The kernel matrix 

K having the data points xi. The entries in the kernel matrix are defined by kij = k(xi,xj),where k is kernel 

function. There is direct reformulation of PCA in kernel space as kernel matrix is most similar to data point 

production in high-dimensional space which is created using kernel function. Kernel PCA has been applied 

successfully to different domains like face recognition, speech recognition, novelty detection etc. 

E. Independent Component Analysis 

ICA is a computational technique mainly used for splitting an assorted signal into its reduced subcomponents. 

Considering the absence of time delays, usually this kind of difficulty is interpreted. If there are N sources 

present, at least N estimations are required to mine the original signals like microphones [13]. The ICA algorithm 

is capable of employing higher order statistics which may contain some essential complementary data unlike 

PCA, which only analyses covariance. Most ICA algorithms require an identity covariance matrix; this is more 

than a statistical criterion. 

Definition: ICA of random vector x consist of finding linear transformation s = Wx so that the component si 

are a independent as possible, in the sense of maximizing some function F (s1,..,sm) that measures independence. 

ICA can also be used as an augmented version of the PCA based method. Dimension was reduced to a 

smaller set of independent sources or latent variables, which then can be used further discriminant analysis by 

using regularized whitening technique. The components of the collaborating matrix can themselves be examined 

to gather more thoughts from a larger perspective, about the genetic keystones of the procedure that generated 

the data required for further processing [16]. ICA is used for discovering the projection where all the expected 

components are “the most independent”. ICA checks all the modules in parallel and forecasts the directions 

where all the projected components are most independent to each other in the sense of an independent degree. 

F. Single Value Decomposition 

Singular Value Decomposition is gene selection procedure for reducing dimensionality. SVD is method that uses 

matrix factorization and that comes under linear vector algebra. Main purpose of applying Singular value 

decomposition is identification and structural constitution extraction inside the data and also involves gene 

expression that relates to some important associations. Main goal of singular value decomposition is to compute 

Eigen values and Eigen vectors of covariance matrix from sample gene matrix. To infer variation in 

corresponding Eigen vector, these Eigen values or singular values are used. Initially appearing eigenvectors are 
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chosen as principal component that illustrate higher unpredictability. By removing some feature element, 

information may lose while original input set is preserved. In order to obtain feature genes some loss of 

information is utilized [17]. 

One of the advantages of using single value decomposition is that an algorithm can be easily computed. 

Also used in kinematics and dynamics of robot manipulators. But it is not having ability of handling larger 

dataset. SVD of a set A of N k-dimensional vector is 

A=U ∑ VT                                                      (5) 

Where, A = N×k data matrix composed of the N k dimensional vectors,  

U = N×k orthonormal matrix, 

∑ = k×k diagonal matrix of Eigen values, 

V = k×k orthonormal basis matrix. 

SVD can solve problem of gene expression data in parameter estimation. When the size of cluster is small 

or higher dimension data it becomes challenging task. Singular value decomposition is applied to dataset then 

probit transformation performed on that result. From these results we can conclude that SVD transformation can 

be applied on both with or without scattered genes and becomes beneficial. All these techniques discussed here 

are compared in Table I with some parameters. 

TABLE 1: Comparison of different Dimensionality Reduction Methods 
PARAMETERS ICA KPCA LDA NN PCA SVD 

Data pre-

processing 
Not required 

For large data set 

required 
Not required Required Not required Required 

Dataset type 
Multivariate 

Signals 
Eigen values - Numeric Eigen values 

Multivariate 

data, gene 

expression data 

Fault Tolerance 
Sensitive to 

Fault 

More sensitive to 

fault compare to 

PCA because of 
non-linear 

behavior 

Less sensitive 
Sensitive to 

fault 

Less Sensitive 

due to Linear 
Nature 

Less sensitive 

Important 

parameters 

Statistics 

Transformation 

S=Wx 

Orthogonal 

Linear 
Transformation , 

Feature Space 

- 
Weighted 
connection 

Orthogonal 

Linear 

Transformation 

Singular values 

Large data set 

handling 

ability 

Good Moderate Good Medium Good Not good 

Multi-

dimensional data 

set ability 

Good Very good Good Not good Good Not good 

Overfitting 

Problem for 
high dimension 

data with 

insufficient 
sample size 

Problem for large 
data set 

Happens when 

trailing set is 
small or set is 

with 

insignificant 
PCA 

dimensions 

Not feasible for 
Longer training 

time 

and having poor 
interpretability 

Problem for 

large data 

set 

Only for 
singular values 

Required 

Parameters 

Source Matrix, 
weight matrix 

(w) 

Loading vector 

(w), 
data matrix with 

column wise zero 

empirical mean, 
covariance 

matrix of data 

set 

Sb = Between 

class matrices, 
Sw =with class 

scatter 

matrices 

Input/ 

Output units 
each 

having weights 

associated with 

Loading vector 

(w), 
data matrix with 

column wise 
zero 

empirical mean, 

covariance 
matrix of data 

set 

Dataset values 

Training Not required Most required Not required Required Required Not required 

Training time 

Slightly 
moderate 

compare to 

other model 

Very High Less than PCA High High Moderate 

 

IV. CONCLUSION 

The sole purpose of this paper is to provide information on different dimensionality reduction techniques. 

Ultimate goal of performing dimensionality reduction is to improve the accuracy and efficiency. This is to 

improve the throughput, for minimizing error rate, and for decreasing complexity of computational work. This 

study work will be useful to select the method for particular application based on characteristics of dataset and 

method i.e. Data type, Training time, Large  dataset handling capability, Multi-dimensional dataset, Important 

parameters, Fault tolerance etc. This work gives clear idea of comparison of all available dimensional reduction 
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techniques. It is concluded that in order to select a scheme to reduce dimensionality, we should consider the type 

of dataset and specific requirement of machine learning algorithm. Table I can be referred for this purpose. A 

combination of schemes may also be used to overcome the disadvantages of one scheme over another. 
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