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Abstract 

This paper presents an efficient multiclass sequential feature selection and classification (mk-SS) method using 

gene expression signatures. The development of this method employs 10-fold cross-validation to ensure stability. 

The efficiency of this method is assessed through the misclassification error rate and some other performance 

measures. The performances of the mk-SS were compared with the classification results of the Support Vector 

Machines (SVM) over five published multiclass microarray datasets. The results showed that the mk-SS method 

efficiently selects the informative gene biomarkers for proper classification of the biological groups of the tissue 

samples. This method competes favourably with SVM in terms of prediction accuracy while it outperforms the 

SVM in 80% of cases considered. The quality of the features selected by mk-SS algorithm was validated by 

hybridizing the feature selection scheme of the mk-SS into the standard SVM algorithm which significantly 

improves the predictive power of the standard SVM method. This work has shown that classification of various 

cancer type using gene expression profiles is feasible especially when the endpoints are of multi-category. 

Keywords: k-SS, mk-SS, Support Vector Machines, Microarray, Misclassification error rate 

 

1. Introduction 

Non-clinical classification of cancer tumour samples using gene expression profiles has been given prominent 

attention in the recent time (Harper, 2005; Theisen et al, 2006; Yahya et al, 2014). Attention has been more on 

binary class prediction than the multiclass cases (Yahya et al, 2011; Hapfelmeier et al., 2011). However, the 

situations that call for multiclass tissue sample classification are becoming more frequent in many clinical studies 

(Perou et al., 2000; Ramaswamy et al., 2001; Beer et al., 2002). Thus, the need for the development of more 

efficient methods for the classification of biological samples using gene expression data for multi-category 

response groups is inevitable.  

An early diagnosis of a disease or tumourous patients will enable easy identification of disease status and 

increase the patients’ survival rate (Yahya and Ulm, 2009). Literature has it that clinical diagnosis of cancer tumour 

might take considerable longer time before proper identification could take place (Yahya et al, 2014). Within such 

period, the cancer tumour might metastasize which may eventually affect the survival of the patients. An 

alternative non-clinical approach is the use of microarray technology for proper cancer diagnosis using the gene 

expression profiles (Burnside et al , 2008; Cooper, 2001; Surks et al, 2003; Ochs and Godwin, 2004) 

In this paper, two non-clinical methods for multi-category cancer tumour classification using high-

dimensional microarray data sets are compared. These are the multiclass sequential feature selection and 

classification (mk-SS) method and the support vector machines (SVM). The efficiency of the methods relative to 

each other was reported in terms of their classification results and identification of relevant gene biomarkers.    

 

2.0    Materials and Method 
2.1   Data Descriptions 

Five different published data sets were employed to demonstrate the applications of the mk-SS and the SVM for 

tissue sample classification and feature selection in this work. All the five data sets are multi-categorical response 

microarray cancer data sets. 

A short description of the five data sets employed here is provided in what follows.  

The first data set was the Small Round Blue-Cell Tumor (SRBCT) data of childhood described by Khan et al. 

(2001). The data contained four different types of tumors with 11, 29, 18 and 25 biological samples in the four 

tumour groups. By this, a total of 83 biological samples and 2,308 gene chips were present in the data. 

The second data consist of consist of four distinct types of Thyroid tumor cells. For each tissue sample, 2,000 gene 

expression measurements were available. As described in James et al.(2013), the four tumour classes in the data 

were coded as "FA"=1, "FC"=2, "N"=3 and "PC"=4 which correspond to the four biological groups  with 

respective sample sizes 17, 8, 12 and 12. 

The next data set was microarray breast cancer data with five distinct cancer tumour subtypes. The data contained 

a total of 85 biological samples on which 456 gene expression profiles were measured. The sub-group sample sizes 

were 14, 11, 13, 15 and 32 as described in Sørliea et al. (2001and 2003). These data can be accessed at 

http://genome-www.stanford.edu/breast_cancer/.  

The fourth data set called the ‘Christensen data’ is a microarray data set that contained 1,414 gene expression 

profiles of 217 tissue samples with three distinct sub-tumour groups. The three response groups were coded as 
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"Blood" = 1 and "Placenta" = 2, "Others" = 3. These data are pre-loaded in the R statistical package and can be 

accessed through the URL site http://www.R-project.org/ 

The last data set analysed in this work contained gene expression profiles of nine cancer subtype as described in 

Ross et al.(2000). The nine tumour classes were coded as "BREAST" = 1, "CNS" = 2, "COLON" = 3, 

"LEUKEMIA" = 4, "MELAN" = 5, "NSCLC" = 6, "OVARY" = 7, "PROSTRATE" = 8 and "RENAL" = 9. These 

data are available online and can be accessed at: http://genome-www.stanford.edu/nci60/help.shtml. 

The characteristics of the five published data sets used in this work are presented in Table 1 for clarity. 

Table 1: Summary of the characteristics of the five published datasets used 

Microarray Dataset 
Total 

Sample size 

Number of 

classes 

Number of sample per 

class 

Variables 

(genes) 

SRBCT (Khan et al. 2001)  83 4 11 / 29 / 18 / 25 2,308 

Thyroid  49 4 17 / 8 / 12 / 12 2,000 

Breast cancer (Sørliea et al., 2001)  85 5 14 / 11 / 13 / 15 / 32 456 

Christensen 217 3 113 / 85 / 19 1,414 

Ross et al.(2000) 60 9 8 /6 /7 /6 /8 /9 /6 /2 /8 1,376 

 

2.2  Multiclass Classification Techniques 

Multiclass learning simply implies learning to classify an object into one of many classes other than binary. 

However, this extension is not straight forward in some cases.  

This method focuses on effective identification of informative genes for each group. Feature selection is 

very important for biomarker discovery in microarray experiment and this leads to new knowledge about the 

biology of the disease. In that case, the genes selected are more important than the classifier used.   

A number of methods to handle the classification of multi-categorical responses using genomic data have 

been reported in the literature. Notable among these are the Decision Tree (DT) algorithm (Quinlan, 1993), 

Classification and Regression Trees (CART) (Breiman, 1993; Breiman, 2001), Random forest (RF) classifiers 

(Breiman, 2001; Hapfelmeier, 2012) and the like.  

The first step in multiclass classification using microarray data is to form the pivot category. This is the 

formation of subpopulations of binary response groups with identical covariate patterns. At this stage, the scheme 

to adopt to form the series of binary subgroups from the original multi-categories of the tissue samples is 

determined. Two of the popular approaches to handle this are the pear-wise coupling (Hastie and Tibshirani, 1998; 

Hastie et al., 2001; Tan et al., 2005) and One-versus-Others schemes (Hand, 1997; Speed, 2003; Dudoit et al., 

2002). The pear-wise coupling technique is sometimes referred to as One-versus-One scheme (Tan et al., 2005) 

or Round Robin Ensemble (Furnkranz, 2002). In this work, the scheme of One-versus-Others which is sometimes 

called One-against-All (Aremu and Yahya, 2015) is employed for the two classifiers discussed here. 

As a brief overview of One-versus-Others, consider a polytomous response class � = �0, 1, … , �	 in 

which the class members follow some natural ordering, the classifier can be constructed to distinguish a reference 

class �∗ ∈ � from all other class labels. By this, all other complementary classes are put into one group and 

subgroups of binary responses are formed with the existing set of gene predictors. 

Specifically, in a multiclass microarray classification problem with three distinct biological groups �
 
defined by  

                                             �
 = �1	��	�ℎ�		����������	�������	��	���� 	12	��	�ℎ�	���	�������	�������	��	���� 	23	��	�ℎ�	���	�������	�������	��	���� 	3 ,                          (1) 

the One-versus-Others scheme requires that the following three possible binary data subgroups be formed and 

used for classification using the set of gene signatures: 

 �
 = #1	��	�ℎ�		����������	�������	��	���� 	1									0	��	�ℎ�	���	�������	�������	��	���� 	2	��	3                        (2) 

 �
 = #1	��	�ℎ�		����������	�������	��	���� 	2									0	��	�ℎ�	���	�������	�������	��	���� 	1	��	3                        (3) 

 �
 = #1	��	�ℎ�		����������	�������	��	���� 	3									0	��	�ℎ�	���	�������	�������	��	���� 	1	��	2                        (4) 

The final performance of a classifier is however based on majority votes after classification results are obtained 

(Hand, 1997; Speed, 2003; Dudoit et al., 2002).  

The above procedure can be easily extended for multiclass problems with more than three biological groups.  

 

2.3   The Multiclass k - Sequential Feature Selection and Classification (mk-SS) Method  

The multiclass k - Sequential Feature Selection and Classification (mk-SS) method is an extension of the classical 
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k-Sequential feature Selection and classification (k-SS) method for binary class microarray data problem (Yahya, 

2009; Yahya et al., 2011; Hapfelmeier et al., 2012; Yahya, 2012; Yahya et al., 2014). The classical k-SS classifier 

provides a fast and flexible algorithm that sequentially selects relevant features for classification in any binary 

response microarray classification problems. It is a stepwise feature selection that adopt misclassification error 

rate (MER) as the search criterion.   

The mk-SS method allows the choice of � classes of outcome to be modeled as a set of � independent 

binary outcomes in which � − 1 classes are chosen as a "pivot" class (one set of pivot classes at a time) and this 

is combined with the remaining one class of outcome for feature selection and classification. The log of the ratio 

of the posterior probabilities used in the logit function employed by the mk-SS classifier would be of the form 

%
&'( = �� ) *+�∗,'-∑ *+�,'-/012 3 following the classical binary class set-up in equations (2) to (4). 

2.3.1  The mk-SS Algorithm in Brief 

Step1: Based on the binary class settings in Section 2.2, logit model of the form %
+45- = ����� 67+45-8 = 9 +;545 , � = 1, … ,   is fitted to on individual gene variable 45  using the training sample ��<  and compute the 

misclassification error rates (MERs), =>5 = ?@AB∑ ��C� = 1 DEFGH+IJ-KLHM for each 45  over the test sample ��C , where E&.( = 1 if the argument is true and 0 otherwise. Within the logistic regression set up, the predicted class label %O
+45- = �O
 = 1 if  &�O
 = 1|45( ≥ 0.5 and �O
 = 0 if otherwise. 

Step2: Randomly draw R replicates of training sample ��< with or without replacement (depending on the cross-

validation type adopted), from the original �  sample and compute the average MERs   =̅>5 =?T×@AB∑ V� = 1∑ ��C� = 1 DEFGHW+IJ-KLHWM for each gene 45, � = 1,… ,  . 

Step3: Select the gene variable 4&?( that yields the least average MER value, say  =̅>&?( among all the MER values =̅>5, � = 1,… ,   in STEP 2. 

Step4: The second best gene predictor 4&X( is selected by forming a set of pairs of genes with the first selected 

gene 4&?( and the remaining  − 1 left out genes. Repeat steps 1 and 2 on each of the gene pairs and the gene pair 4&?(4&X( that yielded the least average MER, say =̅>&X( is selected.  

Step5: Before the third best gene 4&Y(, and more generally, the &Z + 1(�� best gene 4&[\?( could be selected after 

the selection of the Z�� gene 4&[(, the marginal gain in prediction strength ∆̂[=	 =̅>&[( − =̅>&[\?( due to the inclusion 

of gene 4&[( into the classification model is examined by testing the hypothesis H0k: ∆[= 0 vs. H1k: ∆[> 0,  ∆[=	=̅&[( − =̅&[\?( , via the test statistic 

 `∆̂a = ∆̂abc&∆̂a(
de&∆̂a(                                                             

where f&∆̂[( is the empirical variance and `∆̂a  has a skew-normal density with shape parameter g = 4.0398 

(Yahya et al., 2011) where k+∆̂[- = 0 under H0k.  

Decision rule:  

i.)  When the null hypothesis H0k cannot be rejected, then, the &Z + 1(��  gene 4&[\?(  under consideration is 

dropped from the classification model and the k-SS algorithm terminates assuming that no other gene variable 

among the remaining  − Z genes is capable of improving the prediction strength of the current classification 

model containing Z gene variables.  

ii.)  If H0k is rejected, it shows that gene 4&[\?( has significantly enhanced the prediction strength of the current 

classification model and should therefore be retained while the selection of the next best gene 4&[\X( begins 

following Steps 1 to 4. 

Repeat Steps 1 to 5 until no more gene satisfies the decision rule ii. above. STOP and RETURN the selected k 

genes. 

 

2.4 Support Vector Machines 

Support vector machines (SVM) is one of the state-of-the art techniques developed in the field of statistical learning 

theory and pattern recognition (Vapnik and Chervonenkis, 1974; Vapnik, 1982; 1995; 1998). The SVM method 

has become increasingly popular among the kernel based methods as an excellent tool in response group 

classification, regression and statistical pattern recognition (Cortes and Vapnik, 1995; Lee, 2004; Yahya, 2012). 

The goal in SVM methods (Smola and Schoelkopf, 2004; Yahya, 2012) is to find a decision function of the form 

                                  ℎ&l( = ���&〈n. l〉 + 	�(                              (5) 

that would classify the test sample ��C into their respective class labels �
 ∈ �−1,1	, where n is a vector of weights 
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with Euclidean norm ‖n‖ = 	 〈n.n〉?/X = 1 with � being the bias. The quantity 〈n. l〉 is the inner product of 

vectors n and l defined as 〈n. l〉 = nrl.  

Suppose we define a hyperplane st ∈ s, simply called the separating hyperplane, that separates the training 

samples into the two existing response class labels &−1,1(. If the two response groups in the training sample are 

linearly separable, then the maximal distance of the separating hyperplane st from the closest positive sample 

(�
 = 1) can be defined by u\ units and its respective maximal distance from the closest negative sample &�
 =−1( by ub units.  If the two maximal distances are the same, that is, u\ = ub = u, then the two sample groups 

are 2u units apart. The task in SVM procedure therefore, is to find the weight vector n and bias � that will 

maximize the distance u.  

In a linearly separable sample, the SVM algorithm seeks for the separating hyperplane with the maximal margin 

(distance) u. This essentially results to the following optimization problem using (5); 

                                     vwxn,y u                                        (6) 

subject to the conditions that; 

                                 〈n. l〉 + 	� ≥ u, if �
 = 1                              (7) 

                                〈n. l〉 + 	� ≤ −u, if �
 = −1                            (8) 

with	n having  a unit norm ‖n‖ = 	1. Therefore, for any given linearly separable set of training data, we define a 

maximal margin hyperplane s? ∈ s for which the equality 〈n. l〉 + 	� = u in (7) holds and maximal margin 

hyperplane sb? ∈ s for which the equality 〈n. l〉 + 	� = −u in (8) also holds. The vector l of gene variables for 

which these two equalities are satisfied is called support vector and the solutions of the optimization problem 

depend only on this vector and not on the entire dimension of the training set (Bennett and Campbell, 2000). 

The goodness of SVM classifier ℎ&x
( is determined through the average MER over the test sample ��C defined 

by  

                                =̅>{|} = ?X@AB∑ ,�
 − ℎ̂&x
(,@AB
~?	                            (9) 

where  �
 ∈ &−1,1( is the observed class labels and ℎ̂&x
( ∈ &−1,1( is the predicted class label of the classifier ℎ&x
( for � subject.  

 

3.0 Analysis and Results 

The mk-SS and SVM methods were implemented on the five published microarray data sets described in Section 

2.1 following their procedures as detailed in Section 2. The 10-fold cross-validation technique (Yahya, 2012) was 

employed in which the entire sample data is randomly partitioned into ten segments of apparently equal lengths 

and nine of such segments were used to train the two classifiers and the samples in the tenth segment were used 

as the training data to assess their performances. This was repeated ten times to ensure that each data segment is 

used as training and test sets at different times to ensure results’ stability. The performances of the classifiers were 

assessed through the average misclassification error rate (MER) or average correct classification rate (CCR). All 

analyses were implemented in the environment of R statistical package (http://www.R-project.org). 

Table 2: Table of the Misclassification Error Rates (MERs in %) provided by mk-SS and SVM on the five cancer 

microarray data sets. The numbers of features employed for classification by the two methods are equally reported 

in parentheses as well as number of groups of biological sample in each data. 

Dataset 
Number of 

Biological group 

MER in % (Number of features selected or used) 

mk-SS SVM 

Khan 4 1.5 (10) 12.8(2308) 

Thyroid 4 6.4(10) 13.5(2000) 

Sorlie 5 2.6(17) 10.2(456) 

Christensen 3 2.0(7) 15.8(1414) 

Ross 9 11.8(28) 5.6(1376) 
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Table 3: Table of classification results of mk-SS and SVM classifier on all the five published data sets considered. 

The Correct Classification Rate (CCR) (in %) provided by the two methods were reported. Results of the SVM 

that employed only the selected features by mk-SS algorithm here called the SVM-kSS classifier are equally 

reported as asterisked (*) for easy comparisons.    

Dataset 
Correct Classification Rate (CCR) (in %) 

Number of Features Employed SVM SVM-kSS mk-SS 

Khan 
All features 87.2   

Features selected by mk-SS  *91.4 98.5 

Thyroid 
All features 86.5   

Features selected by mk-SS  *87.1 93.6 

Sørliea 
All features 89.8   

Features selected by mk-SS  *89.9 97.4 

Christensen 
All features 84.2   

Features selected by mk-SS  *97.6 98.0 

Ross 
All features 94.4   

Features selected by mk-SS  *94.5 88.2 

Average CCR 
All features 88.42   

Features selected by mk-SS  *92.1 95.14 

We present in Table 2, the estimated average MERs (in %) provided by the mk-SS and SVM classifiers on the five 

published data sets over the test samples. The number of response class (biological groups) in each data as well as 

the number of genes employed for classification (in parentheses) that yielded the respective (MERs) performances 

by each method is reported. The numbers of genes reported against the MERs for mk-SS method were the numbers 

of genes selected by the mk-SS algorithm for classification. On the other hand, the numbers of genes reported for 

SVM were the entire gene variable in the respective data sets as earlier stated in Section 2. 

In Table 3, the CCRs (in %) yielded by mk-SS and SVM classifiers over all the five published data sets are 

presented. The results of the SVM that employed only the selected genes by the mk-SS algorithm which is here 

called the SVM-kSS classifier are equally reported in the table. 

 
Fig 1: Line graphs of estimated correct classification rates (CCR) (in %) of mk-SS, SVM, and SVM-kSS 

classifiers for all the five published data sets. The SVM-kSS classifier is the SVM classifier that employed only 

the features selected by mk-SS algorithms as its input gene predictors. The SVM classifier used all the available 

features in each data set for classification. 

 

4.0  Discussion and Conclusion 

Another variant of feature selection and classification technique, mk-SS for multiclass microarray data problem is 

presented in this work. It incorporates the features of the classical k-SS method (Yahya, 2012; Hapfelmeier et al., 

2012; Yahya et al, 2014) for binary class data problems.  

Results in Table 1 showed that the prediction accuracy of mk-SS method is better than that of the SVM 

Khan Thyroid Sørliea Christensen Ross

SVM 87.2 86.5 89.8 84.2 94.4

SVM-kSS 91.4 87.1 89.9 97.9 94.5

mk-SS 98.5 93.6 97.4 98 88.2

75

80

85

90

95

100

C
C

R
 (

in
 %

)

Line graphs of estimated Correct Classification Rates (in %) of the classifiers



Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.7, No.10, 2016 

 

42 
 

in four of the five data sets considered. The prediction performance mk-SS method is slightly lower than that of 

SVM in just one of the cases (Ross data set). By this, it showed that the mk-SS is relatively more efficient in 80% 

of the cases than the SVM classifier. However, if we consider the average overall prediction performances of the 

two classifiers reported in Table 3, it can be easily observe that the mk-SS classifier with overall prediction 

accuracy of about 95% performs better than SVM that yielded about 88% prediction accuracy.  

It should be noted that while the SVM method uses all the gene predictors that are available in the various 

data sets for classification, the mk-SS method efficiently selected only few relevant gene subsets from these pool 

to achieve better classification results. The numbers of genes selected by the mk-SS method to achieve the 

respective prediction accuracies are provided in parentheses in Table 1 for all the data sets.   

 It can be observed that can be observed from the results in Table 1 that the number of genes employed 

by mk-SS to achieve good prediction accuracies are relatively fewer than that of SVM that uses all the gene 

variables in the data. This is a simple indication that the genes selected for classification by mk-SS methods are 

quite relevant and more correlated to the respective biological groups in the data sets. 

To further demonstrate the quality of genes selected by mk-SS method for tumour classification, the 

techniques of both the mk-SS and SVM were hybridized which resulted into SVM-kSS classifier. By this 

hybridized procedure, the few marker genes selected by mk-SS algorithm in all the five genomic data sets were 

fed into the SVM algorithm for classification. The results in Table 3 showed that the prediction accuracies of the 

SVM-kSS method (that employed the genes selected by mk-SS) are far better than that of the traditional SVM 

method in all the five data sets. These various performances of all the classifiers are clearly presented by the line 

graphs in Fig 1 across the five microarray data sets.  

This work has shown that classification of various cancer type using gene expression profiles is feasible 

especially when the cancer type are of multi-category. The performance measures adopted show the efficiency of 

the mk-SS method as compared to SVM classifier on multiclass response groups. However, further validation 

regarding the efficiency of the proposed mk-SS method for multiclass prediction might be desirable in future, 

especially on microarray data sets with complex structures. This will enable a broader comparison of its prediction 

performance with several other existing competing algorithms for multiclass tumour classification. 
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