
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.6, 2012

13

Integration of Java EE Applications on C – Based Implementations

RajaSekhar Kraleti

Sivani College of Engineering, Chilakapalem

Srikakulam , AndhraPradesh,India

Tel: +91-8860367494 E-mail: rajkraleti@ymail.com

Under Guidance of MVN Naidu (Asst. Proffesor),

The research is financed by my father.

Abstract

Sometimes we may encounter a scenario in which We need to Integrate the existing Java – Based applications

With the Native formats of C/C++ Based implementations For example the applications of Defense, Aerospace

weather Forecasting Applications contain complex algorithms and that might be too complex And too difficult or

even some times implementing those again will include risqué as well As time consuming also in such cases to

integrate such C based implementations with java programs We need an adapter in between those two language

API ‘s . The Java Native Interface (JNI) will provide you the bridge for exchanging data between java and C,C++

API’s this article describes the steps that will ease the integration of JAVA With C- Based Implementations.

Keywords: JNI : Java Native Interface

 API : Application Programming Interface

1. Introduction

Though its normal for us to implement in general JNI but in large scale industrial perspective I have found the

implementation with a large scale Software development tools such as IBM Websphere Integration Developer

which will lets the user to work with the SOA where all the services will be saved in a WSRR (Websphere Service

Repository Registry) and runs on WebSphere Application Server in the background though it is simple to develop

with general programming but no real-time software development was processing on direct programming now a days

that is the reason why I have selected this Integration Developer to run my Integrations in The Java™ Native

Interface (JNI) which is a programming framework that enables Java code running in a Java Virtual Machine (JVM)

to call and to be called by native applications and libraries written in other languages such as C, C++ and assembly.

This article describes how developers can leverage this framework to integrate their J2EE™ applications deployed

on IBM WebSphere Application Server with these ‘C’ libraries.

1.1 What are these Websphere technologies actually

Application Server is a Java EE 6 compatible, robust, and highly available middleware environment that provides a

platform for hosting and managing a variety of enterprise applications. Some users may encounter scenarios in which

they will need to integrate their Java-based applications we do not use Java programs directly for that there were

different Software Development tools for that for a high scale organizations as they were written with the most

efficient programming methodologies but with native C/C+ + based implementations in some traditional

organizations which can be very difficult to reintegrate again and that are very difficult to communicate with Generic

SOA (Service Oriented Architecture). For example, applications involving defense, aerospace, weather forecasting,

and other scientific applications contain certain algorithms that can only be implemented using these native

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.6, 2012

14

languages and are either too complex, too difficult, or too risky to implement in Java. To integrate such C-based

implementations with Java programs, you need to put some sort of bridge in place between the two programming

language APIs

1.1.1 Implementation

Java Native Interface (JNI) provides this bridge to exchange data between Java and C/C ++ APIs. To achieve this

solution, you need to define the interface in Java with the methods you wants to expose to other Java classes,

generate a header file out of the compiled code of this interface, and then import the header file in native shared

library modules, such as Dynamic Link Libraries (.dll) for Windows® and Shared Object (.so) libraries for

UNIX®-based systems. These modules can be created through a variety of tools provided by a number of vendors.

This article describes steps that will ease the integration of Java-based applications deployed on WebSphere

Application Server with C-based implementations through Java Native Interfaces (JNI). At the end, you will be able

to create, configure, and invoke shared libraries for WebSphere Application Server. The information included here

applies to IBM WebSphere Application Server V6.1, V7, and V8 and assumes familiarity with the corresponding

IBM Rational® tooling. Be aware that the examples presented here are very basic to illustrate the high level

development procedure involved, and do not address data validation or other good practices that would otherwise

ordinarily be included in typical application development.

1.1.2 My Idea of Development

Here is the way of developing JNI Codes with a WebSphere Integration Developer

Got to the Websphere Integration Developer and select a Java Project from the Integration Developper and after

that Create a Java class with the methods that you want to associate with native methods The method declarations

will be dependent on the signature of the C methods you want to invoke. In this case, the assumption is that a third

party C API requires simple type and an array of data (in this case, a double array). (To invoke another native library,

you need to associate it with your DLL by importing its header file during header Implementation.)

Here is the sample method invocation showing the java project Class such that we can write

public class InvokeNativeLanguages {

public Static native int sum (int a , int b);

public Static native double sum (double a , double b);

public Static native double sum (double[] a);

 }

And after that Compile the Java Interface and run the command on the .class file Compile the Java Interface and run

the .Class file generated from {APPSERVER_Rot}/Java/bin directory to generate respective C header files after that

we need to implement the methods created in native library It is this library implementation that you can integrate

with other C libraries during C API to C API calls. After that we have to configure the native library shared in the

runtime environment for the Integration developer. In the path for that in the Application server will be as follows

Server > ServerTypes > WebSphere Application Server > server1 > Java and Process Management > Process

Definition > Java Virtual Machine > Custom Properties

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.6, 2012

15

References

IBM Info center for WebSphere Integration Developper

URL: http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp

Java Naming Interface Info Centre

URL:

http://docs.oracle.com/javase/6/docs/technotes/guides/jni

IBM Developer Works by Sandeep Kundra

URL:

http://www01.ibm.com/support/docview.wss?uid=swg21144595

Wiki

URL:

http://en.wikipedia.org/wiki/Java_Native_Interface

Notes

Note 1.

By encouraging this kind of work culture in the Enterprise work level will almost reduce 30% development costs that

intern raises to software development a cheaper and efficient process that can reach many organizations which

were suffering from this problem of having a old software in C, C++ based traditional language implementations and

not yet supported by any enterprise level tools here i have taken IBM’s Integration Developer as my tool on which i

have a good command we can select any Integration tool like this even oracle BPM also

Note2

Many thanks provided to the IBM professionals who helped me in learning this proficient and strong technology as

now a days SOA is stretching its arms towards perfection this is the right time to introduce this kind of technology

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. Prospective authors of

IISTE journals can find the submission instruction on the following page:

http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified

submissions in a fast manner. All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than

those inseparable from gaining access to the internet itself. Printed version of the

journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/Journals/

